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Abstract

We infer local influence relations between networked entities from data on out-
comes and assess the value of temporal data by characterizing the speed of learn-
ing under three different types of available data: knowing the set of entities who
take a particular action; knowing the order that the entities take an action; and
knowing the times of the actions. We propose a parametric model of influence
which captures directed pairwise interactions, formulate different variations of the
learning problem, and provide theoretical guarantees for correct learning based on
sets, sequences, and times.

Our results characterize the sample complexity of learning for the three cases. The
asymptotic gain of having access to richer temporal data for the speed of learning
is thus quantified in terms of the gap between the derived asymptotic requirements
under different data modes. We also evaluate the practical value of learning with
richer temporal data, by comparing learning with sets, sequences, and times given
actual experimental data. Experiments on both synthetic and real data quantify
the improvement due to the availability of richer temporal data, and show that our
maximum likelihood methodology recovers the underlying network well.

1 Introduction

Can we infer who influences whom in a network of interacting agents or entities based on timed data
of their actions/decisions? How does our inference potential change if, instead of times of actions,
we have only access to sequences of agent actions, or just the set of agents who undertake an action?

Consumers adopting a new product; an epidemic spreading across a population; a post trending
across Internet blogs; a sovereign debt crisis hitting several countries; a cellular process during which
the expression of a gene affects the expression of other genes; all of these are temporal processes



governed by local interactions of networked entities, which influence one another. Oftentimes, the
outcomes of such processes are observable, possibly with time stamps, yet the underlying network
of local interactions is hidden.

Untangling and quantifying local influences in a principled manner, based on observed outcomes, is
a challenging task, as there are many different confounding factors that may lead to seemingly simi-
lar phenomena. In recent work, inference of causal relationships has been possible from multivariate
time-series data [1} 2} 3]]. Solutions for the influence discovery problem have been proposed, which,
similarly to this work, treat time explicitly as a continuous random variable and infer the network
through cascade data, e.g., [4} 15,16} [7].

Main questions and contributions. How valuable is the knowledge of time stamps for the infer-
ence of the underlying network structure? What is the gain due to having access to increasingly
informative temporal data, in terms of the speed of learning? The overarching theme of our work
is to quantify the gain in speed of learning, due to having access to richer temporal information.
We seek to compare the speed of learning under three different cases of available data: (i) the data
provides merely the set of agents/entities who took an action; (ii) the data provides the (ordered)
sequence of agents/entities who took an action, but not the times; and (iii) the data provides the
times of the actions. This is, to the best of our knowledge, a comparison that has not been studied
before.

We propose a parametric model of influence which captures directed pairwise interactions, formulate
different variants of the learning problem, and provide theoretical guarantees for correct learning
with sets, sequences, and times. Our results characterize the sufficient and necessary scaling of i.i.d.
samples required for correct learning. The asymptotic gain of having access to richer temporal data a
propos of the speed of learning is thus quantified in terms of the gap between the derived asymptotic
requirements under different data modes. We also evaluate learning with sets, sequences, and times
with experiments. Given data on outcomes, we learn the parametric influence model by maximum
likelihood estimation. Learning with data of richer temporal detail is shown to be faster and more
accurate on synthetic data. On both synthetic and real data, our methodology is shown to recover
the underlying network structure well.

Other related literature. Recent research has focused on learning graphical models (which sub-
sumes the question of identifying the connectivity in a network), either allowing for latent variables
(e.g., 8L 9]]) or not (e.g., [10]). Instead of proposing and learning a general graphical model, we
instead focus on a simple parametric model that can capture the sequence and timing of actions
naturally, without the descriptive burden of a standard graphical model.

Of relevance is also [11]], in which knowledge of the graph and of the set of infected nodes are
both used to infer the original source of an infection. In contrast, and somewhat conversely, we use
knowledge of the set, order, or times of infections to infer the graph.

Last, economists have addressed the problem of identification in social interactions (e.g., [12, [13}
14, 11501164 [17, [18]) focusing on determining aggregate effects of influence in a group; they classify
social interactions into an endogenous effect, which is the effect of group members’ behaviors on
individual behavior; an exogenous (contextual) effect, which is the effect of group members’ ob-
servable characteristics on individual behavior; and a correlated effect, which is the effect of group
members’ unobservable characteristics on individual behavior. In sharp contrast, our approach iden-
tifies influence at the individual, rather than the aggregate, level.

2 The Influence Model

A product becomes available at time ¢ = 0 and each of n + 1 agents may adopt it or not. (In this
paper the word “product” is used throughout, but could be interchanged by any of the following:
information, behavior, opinion, disease, etc., depending on the context.) Agent ¢ adopts it at a
time that is exponentially distributed with rate A; > 0. After agent ¢ adopts, the rate of adoption
for all other agents j # i increases by A;; > 0. The overall time horizon of the adoption and
infection process is modeled as an exponentially distributed random variable with rate Aj,.. No
adoptions are possible after the end of the horizon. We study the adoption decisions for a collection



of products, assuming that the parameters are static across products, and adoptions across products
are independent.

3 Theoretical guarantees for learning networks of influence

Problem formulation. A directed graph G = (V, £) is a priori given and \;; = 0 if edge (i, j) is
not in £. We provide theoretical guarantees for learning for the case where each edge in £ carries an
influence rate of either zero or infinity, casting the decision problem as a hypothesis testing problem.
Given a graph G, lower and upper bounds for the number of i.i.d. products required to learn the
correct hypothesis can be sought for different variations of the problem, according to the following
axes:

e Learning one edge versus learning all edges: We pose two decision problems: learning
the influence rate \;; between two specified agents ¢, j; and learning all the influence rates
Aijs 1 F# J.

¢ Different prior knowledge over the hypotheses: We study this question in the Bayesian

setting of assuming a prior on the hypotheses, in the worst case over the hypotheses, as
well as in the setting in which we know how many edges carry infinite influence rate.

e Data of different temporal detail: We characterize the growth of the minimum number
of i.i.d. products required for learning with respect to the number of agents n, when the
available data provides information on sets, sequences, or times of adoptions.

e Different scaling of the horizon rate with respect to the idiosyncratic rates: We con-
sider different scalings of A, with respect to the idiosyncratic rates Aq, ..., Ay,.

We employ the proposed program for the star topology, shown in Figure[T] The star topology is one
of the simplest non-trivial topologies, and is illustrative of the difference in the sample complexity
between learning scenarios with information of different temporal detail.

Figure 1: The hypothesis testing problem: what influence does each link carry to the star agent
(n + 1): infinite or zero?

In order to simplify the analysis and derive crisp and insightful results, we consider the hypothesis
testing problem in which each of n agents influence agent n + 1 either with rate zero or infinity.

Each of agents 1,...,n adopts with rate A\ > 0, while agent n 4+ 1 does not adopt unless she is
triggered to. There is no influence from agent n 4+ 1 to any of the agents 1,...,n, or from any
of the agents 1,...,n to any of the agents 1,...,n. We compare the case when the available data

provides information on sets of adopters, to the case when the available data provides information
on the sequence of adopter

'For this particular formulation, knowledge of times of adoptions would not induce a gain over knowledge
of sequences because of our assumption that the influence rates are either zero or infinity, and A,,41 = 0.



3.1 The Bayesian setting

In the Bayesian setting, we assume that the influence rate on each link is infinite, with probability p,
and zero, with probability 1 — p, and that the selection of the rate for each link is independent of the
selection for other links.

31 p=1

We assume that the influence rate on each link can be zero or infinity with equal probability. TableT]
summarizes the results on the necessary and sufficient number of i.i.d. products for learning.

Table 1: Matching lower and upper bounds for the minimum number of i.i.d. products required to
learn the influence model in terms of n, in the Bayesian setting when p = %, for the two cases of
learning the influence between one agent and the star agent and of learning the influence between all
agents and the star agent, and for the two cases of learning based on sets of adoptions or sequences
of adoptions.

)\hor =A )\hor =n\
Sets Sequences Sets Sequences
Learn one O(n?) O(n) O(n) O(n)

Learnall  O(n?logn) ©(nlogn) ©O(nlogn) ©(nlogn)

For example, for the case when A\, = A, we have the following sample complexity result

Proposition 1. To ensure correct learning of M n+1, - . ., An nt1 With probability 1—6 based on sets
of adopting agents, it is sufficient for the number of i.i.d. products to be O(n?*logn), and necessary
for the number of i.i.d. products to be Q(n?logn). To ensure correct learning of A1 n1, - - - s Annt1
with probability 1—§ based on sequences of adoptions, it is sufficient for the number of i.i.d. products
to be O(nlogn), and necessary for the number of i.i.d. products to be Q(nlogn).

Proof. For brevity, we only show the second half of Proposition [I} which is illustrative of the rea-
soning used to prove the rest of our results.

To show the upper bound, consider the following estimator: after & products, decide 5\,;7n+1 = 00
if and only if there exists a product such that agent ¢ adopts and agent n + 1 adopts immediately

after (and decide Xi’nﬂ = 0 otherwise). Using the union bound, we relate the probability of error
in learning all of Ay 41, ..., Ay ny1 to the probability of error in learning Ay 41t

P(error) < (:\ 1 =0] A pp1 = oo)]P’()\LnH:oo)
1’2 A Fn-1\ 1\
2m CmA+ A A m 2

1
< —
- 2(n+1>

To ensure accurate estimates with probability at least 1 — J, for given 6 € (0,1), it suffices that

log 1
k> 10C;g%+51 = O(nlogn).

To prove the lower bound, we show that if & is small, there is a high probability event, where it is not
clear what a good estimator should decide. No matter how this event is split between the competing
hypotheses, the probability of error will be large.

We use X; to denote the outcome of product ;. Having fixed agent j, we say the outcome X; of
product ¢ is in BAD? if one of the following happens: agent j adopts, but agent n + 1 adopts before

2For the sake of brevity, we refrain from providing propositions or proofs for the rest of our results, which
are compactly stated in the tables.



her; agent j does not adopt. We say that the outcome X1, ..., X is in BAD? if X; € BAD{ for all
productsi =1,...,k.

We are interested in the probability that for some agent 7, it is the case that X1, ..., X; € BAD/.
We define A to be the event that each of the agents 1, ..., n adopts some product before all (other)
agents 1,...,n with links of rate infinity to agent n + 1 adopt that product. We define B to be the
event that all agents with links of rate infinity to agent n + 1 adopt some product first among other
agents with links of rate infinity to agent n 4 1. Then, we can write

P(3j:(Xy,...,Xy) EBAD?) = 1-—P(A)
> 1-P(B).
Let random variable S be the number of i.i.d. products until event A occurs. Let random variable T’

be the number of i.i.d. products to obtain event B. Then S > T'. The calculation of the expectation
of T’ is similar to the calculation for the coupon collector’s problem, after conditioning on the subset

of agents £ C {1, ...,n} whose influence rate on agent n + 1 is infinite:
ET] = ) PULE[T|L]
LC{1,....n}
= E[T|L =
2era() ()

-2 () ) ) ) 6

n

_ 1 Z m+1+m+1+ +m+1 n
T om m m—1 1 m

m=0

= 2% i (m+ 1)Hm<:1>

m=0

= Q(nlogn),

where H,,, is the mth harmonic number, i.e., H,, = Z;nzl % (and we define Hy = 0), and where
the last step follows by Jensen’s inequality.

A similar calculation for the variance yields var (T) < 2(n + 1)2. By Chebyshev’s inequality,

BT~ BIT]| 2 e(n+ 1)) < 3,

which establishes the ©(n log n) lower bound for the number of products k. O

312 p= %
We assume that the influence rate on each link can be infinite with probability p = % (In this case,
the expected number of agents who can influence agent n + 1 is ©(1).) Table [2| summarizes the
results on the necessary and sufficient number of i.i.d. products for learning.

Table 2: Matching lower and upper bounds for the minimum number of i.i.d. products required
to learn the influence model, in terms of n, in the Bayesian setting when p = % when learning
the influence between all agents and the star agent, for the two cases of learning based on sets of
adoptions or sequences of adoptions. Notice that no products are needed to learn just one influence
rate; an estimator can just guess that \; , 1 = 0.

)\hor =A )‘hor =nA\
Sets Sequences  Sets  Sequences
Learnall ©(logn) o(1) O(n) O(n)




3.2 The worst-case setting

In the worst-case setting, we assume that each of the influence rates Ay ,41,..., Ay n41 can be
either zero or infinity, but we assume no prior over the hypotheses. We provide upper and lower
bounds for the minimum number of i.i.d. products required to learn the correct hypothesis assuming
that the influence rates on the links are such that the minimum number of i.i.d. products required
for learning is maximized (the worst possible). Table[3] summarizes the results on the necessary and
sufficient number of i.i.d. products for learning.

Table 3: Matching lower and upper bounds for the minimum number of i.i.d. products required to
learn the influence model in terms of n in the worst-case setting, for the two cases of learning the
influence between one agent and the star agent and of learning the influence between all agents and
the star agent, and for the two cases of learning based on sets of adoptions or sequences of adoptions.

Ahor = )\hor =nA
Sets Sequences Sets Sequences
Learn one o(n?) O(n) O(n) O(n)

Learnall  O(n%logn) ©(nlogn) O(nlogn) ©(nlogn)

3.3 The worst-case setting with known scaling of agents with influence rate infinity to n + 1

We denote the number of agents with influence rate infinity to agent n + 1 by ¢. Table | summarizes
the results on the necessary and sufficient number of i.i.d. products for learning.

Table 4: Matching lower and upper bounds for the minimum number of i.i.d. products required
to learn the influence model in terms of n in the worst-case setting when the scaling of agents ¢
with influence rate infinity to agent n + 1 is known, for the two cases of learning based on sets of
adoptions or sequences of adoptions.

Ahor = A Ahor = NA
Sets Sequences Sets Sequences
=1 O(logn) o) O(n) O(n)
{=an,a € (0,1) O(n’logn) O(nlogn) ©O(nlogn) O(nlogn)
l=n—-1 O(n?) O(n) O(n) O(n)

3.4 Discussion

We characterized the scaling of the number of samples required for learning with sets and sequences,
thus theoretically quantifying the gain of learning with sequences over learning with sets in regard
to the speed of learning: depending on the setting, learning with sets can take a multiplicative factor
of ©(n) more samples than learning with sequences, when the horizon rate is moderate (i.e., as
large as the idiosyncratic rates). With much smaller horizon, learning with sequences has no gain
asymptotically over learning with mere sets, across all the settings we study; the sets of adoptions
provide asymptotically all the information pertinent to learning that sequences provide.

4 Experiments

Given data on adoptions, we estimate the idiosyncratic rates of adoption as well as the influence
rates (i.e., the network structure) using maximum likelihood estimation. We consider three cases of
different temporal detail in the available data (sets, sequences, times), which correspond to different
calculations of the log likelihood of the data. Unlike the previous section, we do not restrict the \;;
to be zero or infinite.

We evaluate our methodology on both synthetic and real data, showing that it recovers the network
structure well.



4.1 Synthetic data

We generate a directed network according to the Erd6s-Rényi model and assign some arbitrary
influence rates );;, idiosyncratic rates );, and the horizon rate A,,. We generate data on adoptions
of a number of products using the generative model of Section [2] and learn the parameters using
maximum likelihood estimation for an increasing sequence of sets of products.

Sets vs. sequences vs. times. Figure |2 showcases the recovery of two different sparse network
structures on a network of five agents. We plot the ¢; estimation error, calculated on both the
influence rates and the idiosyncratic rates, for different number of products, for the cases of learning
with sets, sequences, and times of adoptions. The sparsity pattern is in general recovered more

N=MS67»i—6 hyg = hpg = Moy = hyy = Ay = 10000, 2, =30 uO§5,xi=6,x14=h24=A51=x52=10000,xh0r=30
T T T T T T T T 18 T T T T T T T T T
——sets 16l ——sets
B ——sequences || ul ——sequences ||
times times

I1 error
I1 error

0 1‘0 26 35 45 5b Gb 7b 8b gb
Products

100 0 10 Zb 3b 4b 5b Btl 7tl Sb Qb
Products
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Figure 2: Learning a network of five agents with five high influence rates and all other influence
rates zero (left) and four high influence rates and all other influence rates zero (right). We plot the ¢4
estimation error calculated on both the influence rates and the idiosyncratic rates. Learning is more
accurate and faster with times than with sequences, and with sequences than with sets.

accurately with times than with sequences, and with sequences than with sets; learning with times
actually gives accurate estimates of the network influence parameters themselves.

Sequences vs. times. Optimizing the log likelihood function when learning with sets is compu-
tationally heavy, as the likelihood term for a specific set is the sum over the likelihood terms for
all possible permutations (i.e., orders) associated with the set. We therefore present experiments
on networks of larger scale only for learning with sequences and times. Figure [3] showcases the
recovery of sparse network structures on networks of 50 and 100 agents. We plot the ¢; estimation
error, calculated on both the influence rates and the idiosyncratic rates, for an increasing sequence
of products, for the cases of learning with sequences and times of adoptions. Timing information
yields significantly better learning.

N =50, ». = 0.6, 2. = 10000 with p=0.1, &,__ =300 N =100, 2. = 0.6, A, = 10000 with p=0.1, »,___ =300
o i ij hor L0 i ij hor
25 T T T T T T T

—sequences —t—sequences
\ times I — PN times
AL J| N

o

I1 error
I1 error
o

. 2 " " " 2 . L L "
0 10 20 20 40 50 60 70 80 90 100 0 10 20 30 50 60 70 80

40
Products Products

Figure 3: Learning a network of 50 (left) and 100 (right) agents, generated from an Erd6s-Rényi
model with probability p = 0.1 that each directed edge is present. We plot the ¢, estimation error
calculated on both the influence rates and the idiosyncratic rates. Learning is more accurate and
faster with times than with sequences.



Learning under model mismatch. We have generated data on adoptions using the generative
model of Sectionbut adding noise to the realizations of the times of adoptions; this affects also the
sets and the sequences of adoptions. Again, we were able to recover the underlying sparsity pattern
well, with timing information yielding significantly better learning.

4.2 Real data

We employ our methodology on a mobile applications dataset [19]. The available data captures
installations of mobile apps by 55 users during the experimental period of four months, as well as
call logs, bluetooth hits, and networks of declared affiliation and friendship among the participants.

The inferred influence rates are highly correlated with the realized communication networks, pro-
viding evidence for the soundness of the proposed inference methodology. Table [5] shows the per-
centage of the edges with top joint influence (i.e., highest sum of inferred \;; + A;;, as detected using
information on sequencesE] of adoptions) for which either calls, or bluetooth hits, or affiliation, or
friendship were reported. We note that some communication edge (calls, bluetooth hits, affiliation,
or friendship) exists between two randomly selected nodes with probability 0.8148, which is less
than the percentage corresponding to the 20, 50, 100, 200, 400 edges that carry the highest inferred
influence.

Table 5: There is higher probability of communication (calls, bluetooth hits, affiliation, or friend-
ship) in the edges where we detect influence using sequences. A communication edge exists between
two randomly selected nodes in the dataset with probability 0.8148.

50 100%
50 92%

Out of top ;88 joint influence edges, communication happened in 85%%6%
400 81.50%
800 80.75%

The correlation coefficient between the observations of calls and inferred (joint) influence (using
information on sequences of adoptions) per edge is 0.3381. The positive correlation between calls
and (joint) influence inferred from sequences is visualized in Figure

3Our model is not appropriate for using with information on times of adoptions on this dataset, as the start
and end of horizon are not provided. Indeed, when inferred using times, the influence along edges is less
correlated with the realized communication data than is the influence inferred using sequences.



Figure 4: Concurrent visualization of the realized network of calls (the color of each edge denotes
the number of calls between the users: closer to blue for lower number of calls, closer to red for
higher number of calls) and the inferred network of influence using information on sequences of
adoptions (the thickness of edge ¢ — j is proportional to the sum of the inferred influence rates
Aij + Aji). We observe that edges with higher number of calls (red) are more likely to carry higher
influence (thick).
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