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Abstract

We present a progress report on ongoing research in algorithms for finding sample Nash equilibria of
two-player matrix games. We present a combination of background material, new results, and promising
directions for further study. Our new results include a reduction from general games to {0, 1} games,
a relation between the complexity of finding Nash equilibria and program obfuscation, and a fixed-
parameter tractable algorithm for games with bounded treewidth and degree.
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1 Introduction

We study the problem of finding Nash equilibria in two-player matrix games, a problem that has found
increasing applications in both economics and the internet. It has been shown that it is #P-hard to count
all Nash equilibria of a two-player game, even if all the matrix entries are 0 or 1 [CS1]. However, the
complexity of finding a Nash equilibrium is wide open, and has been proposed as one of the most important
open problems in complexity theory today [Pap1].

We give a new polynomial reduction from finding Nash equilibria in general bimatrix games to finding Nash
equilibria in games where all payoffs are either 0 or 1, resolving an open problem posed in [CS2]. We
exposit the Lemke-Howson algorithm, which is the standard algorithm used in practice to find a single Nash
equilibrium, and define the class PPAD that generalizes the problem. We then provide an argument that
under standard assumptions, either PPAD is NP-hard or a particular class of random functions cannot be
obfuscated. We then describe the state-of-the-art in theoretical algorithms for finding a Nash equilibrium
and also the more general notion of an approximate Nash equilibrium. Finally, we give a new algorithm that
computes an approximate Nash equilibrium which runs in polynomial time in the case where both treewidth
and degree are constant.

2 Definitions and General Lemmas

Definition 1 (Game) A bimatrix game is a two-player game defined by a pair (R,C) where R and C are
m × n matrices. R and C are the payoff matrices for the row and column players, respectively. When the
game is played, the row player picks a row i to play and the column player picks a column j to play, and
each player gets a payoff equal to the element (i, j) of his payoff matrix.

The goal of the game is to maximize one’s expected payoff.

Definition 2 A pure strategy for the row or column player is a row or column index of the payoff matrix,
respectively. A (mixed) strategy is a probability distribution over the pure strategies, denoted by a vector
x. To be a probability distribution, each entry must be in [0, 1] and their sum must be 1. The support of a
strategy Supp (x) is the subset of the pure strategies which the player sometimes plays.

Note that the (expected) payoff for a player with payoff matrix M if the row player is playing strategy x
and the column player is playing strategy y is xT My.

Given such a game, a natural question that arises is what a “rational” player should do. The notion of
rationality that has become widely accepted and almost ubiquitous is that of a best response. The concept
for it is that a player should play a strategy that maximizes his payoff, given what the other player is playing.

Definition 3 A strategy x is a best response (for the row player) to a strategy y if for every strategy x′,
x′T Ry ≤ xT Ry.

Given such a game, one might ask what the outcome might reasonably be when both the row and column
players are “rational”. In this situation, both players will be playing the best response to the other’s strategy.
This is exactly the notion that the pair of row and column strategies are in a Nash equilibrium.

Definition 4 A Nash equilibrium is a pair of (mixed) strategies x∗ and y∗ such that each player’s strategy
is a best response to the other’s, i.e. for any strategies x, y,

xT Ry∗ ≤ x∗T Ry∗, and x∗T Cy ≤ x∗T Cy∗
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Definition 5 A zero-sum game is a game in which R + C = 0, where by 0 we mean the m× n zero matrix.
More generally, a constant-sum game is one where R + C is an m × n matrix all of whose entries are the
same. We also will consider the notions of a {0, 1} -game, where all payoffs are either zero or one and a
[0, 1]-game, where all the payoffs are in the interval [0, 1].

Note that constant-sum games are equivalent to zero-sum games, since subtracting the constant from all of
the entries of one player’s payoff matrix M gives a zero-sum game. We apply the following lemma:

Lemma 6 The best responses for a player with payoff matrix M are the same as those if we replace the
matrix by z(M − 1r), where 1 is the m× n matrix with all entries equal to one, for r, z ∈ R, z > 0.

Proof: We have that
xT z(M − r1)y = z(xT My − rxT 1y) = z(xT My − r)

so that the payoffs are simply shifted by a constant and then scaled by another constant, which by linearity
does not affect the notion of a best response.

Corollary 7 The problem of finding a Nash equilibrium in a general bimatrix game has a polynomial reduc-
tion to finding a Nash equilibrium in a [0, 1]-game.

Proof: Apply the previous lemma for each of the matrices, with r equal to the smallest payoff in the matrix
and z equal to the difference between the largest and the smallest, unless all the entries are equal in which
case we set z = 1.

Lemma 8 x is a best response to y if and only if for every pure strategy ei,

ei
T Ry ≤ xT Ry

Proof: Suppose every pure strategy ei satisfied

ei
T Ry ≤ xT Ry.

Then by linearity of matrix multiplication, for an arbitrary x′ =
∑m

i=1 x
′

iei, we have

x′T Ry =

(
m∑

i=1

x
′

iei

)T

Ry =
m∑

i=1

x
′

i

(
ei

T Ry
)
≤

m∑
i=1

x
′

i

(
xT Ry

)
=

(
m∑

i=1

x
′

i

)
(xT Ry) = xT Ry

which implies that x is a best response. The converse is obvious, since any pure strategy is a strategy.

The following corollary simplifies the process of testing whether a pair of strategies is a Nash equilibrium.

Corollary 9 (x∗, y∗) is a Nash equilibrium if and only if neither player has a pure strategy that gives that
player a higher payoff.
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3 Complexity Classes and Reductions

There are several natural questions to ask about the Nash equilibria of a game G. Some standard questions
are:

1. Find a Nash equilibrium of G.

2. Find the Nash equilibrium with highest total expected payoff.

3. Find all Nash equilibria of G.

4. Does there exist more than one Nash equilibrium?

5. Does there exist a Nash equilibrium where a specified player’s expected payoff is above a specified
constant?

6. Does there exist a Nash equilibrium with support that intersects/is disjoint from a specified set?

Unfortunately, all the above problems but the first are known to be NP hard [CS1]. The first problem,
however, is wide open, and defines the complexity class NASH . We assume here that the elements of the
matrices that define game G are represented as rational numbers in the canonical way. A related complexity
class is the class NASH{0,1}, which is the subset of the class NASH where the matrices are restricted to have
values in {0, 1}.

The main result of this section is that there is a polynomial reduction from NASH to NASH{0,1}.

3.1 Reduction to Mimicking Games

The first step of our reduction is the well-known reduction from general games (R,C) to mimicking games
(M, I), where I is an identity matrix. These games are called “mimicking” because the payoff of the second
player is non-zero iff she plays the same move as the first player. This implies the following simple lemma.

Lemma 10 In any Nash equilibrium (x∗, y∗) of the mimicking game (M, I), Supp (y∗) ⊂ Supp (x∗).

Proof: Suppose for the sake of contradiction that the second player sometimes plays a strategy not in the
support of x∗. The second player will get 0 payoff in this case, and could profitably change her play to mimic
some strategy in x∗. Thus (x∗, y∗) is not a Nash equilibrium, the desired contradiction.

The next lemma trivially implies the reduction to mimicking games.

Lemma 11 For any bimatrix game (R,C) with R and C m×n matrices, there is a mimicking game (M, I)

with M =
(

0 CT

R 0

)
and I the (m + n)× (m + n) identity matrix such that the Nash equilibria of (R,C)

correspond exactly to the Nash equilibrium strategies of the column player in the game (M, I).
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Proof: (sketch, see [CS2] for details) Given an equilibrium (x∗, y∗) of the game (M, I), we decompose y∗

as y∗ = (c∗, r∗) where r∗ and c∗ have m and n entries respectively. We then note that the condition that
(x∗, y∗) is an equilibrium of (M, I) trivially implies the conditions that that make (r∗, c∗) an equilibrium of
(R,C), after we scale r∗ and c∗ to have sum 1.

Similarly, if (r∗, c∗) is an equilibrium of (R,C), we may scale the two vectors to vectors (αr∗, βc∗) with
α, β > 0 so that the scaled incentives are equal:

α max
i

(Cr∗T )i = β max
i

(Rc∗T )i,

and so that (αr∗, βc∗) sums to 1. Let y∗ = (αr∗, βc∗) and let x∗ be uniform on the support of y∗. It is
straightforward to show that (x∗, y∗) is a Nash equilibrium of the game (M, I).

The above lemma implies that NASH is equivalent the the mimicking-game version of NASH .

3.2 Reduction to {0, 1} Games

We now describe the reduction to {0, 1} games. The first ingredient of our construction is a method of
representing each rational entry of a payoff matrix using only zeros and ones.

We first observe that given an n × n game (M, I), we can scale M by any positive constant, or add any
number to its entries without changing the Nash equilibrium strategies by Lemma 6. Thus we may put
all the rational entries in M under a common denominator to produce a new matrix M ′ whose entries are
integers. We further note that while each entry may now take more bits to express, the number of new bits
that are needed per entry is at most the number of bits in the common denominator, which is at most the
number of bits needed to express M . Thus the total number of bits has increased at most quadratically.

We now have a game (M ′, I) where each entry is integral. We will express each entry in binary by replacing
the n×n matrix M ′ with an kn×kn block matrix M ′′, for some k bigger than the binary length of any entry
in M ′. We then encode each entry of M ′ into a binary string, and place it in the corresponding k × k block
of M ′′, using the rest of the entries to ensure that the binary string is correctly “interpreted” as representing
an integer payoff.

We now describe the part of the construction that enforces this interpretation: a (k− 1)× (k− 1) matrix G
with the property that the game (G, I) for a (k−1)×(k−1) identity matrix I has a unique Nash equilibrium
(r∗, c∗), and furthermore, there exist k−1

6 columns whose probabilities of being played are in the ratio

1 : 2 : 4 : ... : 2
k−1
6 .

This property is proven in the following lemma.

Lemma 12 Define matrices A,B as

A =

 1 0 0
0 1 0
0 0 1

 , B =

 1 1 0
0 1 1
1 0 1

 .

For j = k−1
6 define the k−1

2 × k−1
2 matrix G′ to have the following j × j block form:

G′ =


A A · · · A B
A A · · · B 0
...

... . .
. ...

...
A B · · · 0 0
B 0 · · · 0 0

 .
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Explicitly, G′ has block B on the minor diagonal, block A above, and 0 below. Further, let G =
(

0 1−G′T

G′ 0

)
.

Then the game (G, I) (equivalent to the constant-sum game (G′, 1 − G′) has a unique equilibrium (r∗, c∗)
with

r∗ =
1
6j

(1, 1, ..., 1)

and

c∗ = (
2 · 2j − 3
3 · 2j − 3

v,
2j

3 · 2j − 3
v),

where v = 1
3·2j−3 (2j−1, 2j−1, 2j−1, 2j−2, 2j−2, 2j−2, ..., 2, 2, 2, 1, 1, 1).

Proof: Consider the game (G′, 1−G′). This will have a Nash equilibrium (x, y) with full support only if
all entries of G′yT and all entries of x(1−G′) are equal.

We show by induction that these constraints are satisfied iff both x and y are scaled versions of v. Suppose
we know the first 3i entries of y are in the proportions of v. Then in the i + 1st block row of G′, we
have three rows, which must all have equal incentives for the row player since the row player’s strategy has
full support, by hypothesis. For each of those rows, the incentives from the A-blocks are the same by the
inductive hypotheses, so we must have that the payoffs from the B-block are also the same, i.e.

y3i+1 + y3i+2 = y3i+1 + y3i+3 = y3i+2 + y3i+3,

which implies y3i+1 = y3i+2 = y3i+3. To show the ratio of 2 : 1 between adjacent blocks, we note that the
payoff for this block of rows must be the same as that for the previous one; the payoffs between the two
blocks differ by 2y3i − (y3i + 2y3i+3); setting that to zero proves the inductive step. Thus we have shown
that the entries of y are in the ratio specified by v.

Clearly, the same argument applies to x. Thus since both x and y must sum to 1, x = y = v is the only
Nash equilibrium with full support.

We now note that the game (G′, 1 − G′) is in fact a constant-sum game, so its Nash equilibria are the
solutions to a linear program. This implies that the set of Nash equilibria is convex. If we suppose for the
sake of contradiction that there is another Nash equilibrium in addition to the one x = y = v, then all linear
combinations of these two equilibria must also be equilibria, and hence by standard topology arguments
there are a continuum of full support equilibria, which contradicts the uniqueness argument of the previous
paragraph.

Thus x = y = v is the unique equilibrium for the game (G′, 1 − G′), and by lemma 11 the game (G, I) has
the unique equilibrium described above.

Thus we can express integers t in our game by representing them in binary as (tj−1...t1t0), and putting digit
ti in column 3(j − i) of a matrix based on G.

We now show how to embed the matrix G in larger games so as to allow the binary representation described
above.

Given a game (M ′, I), with M ′ an n× n matrix with integral entries, construct the kn× kn {0, 1} -matrix
M ′′ as follows. Construct the k − 1× k − 1 matrix G defined in the above lemma, and append a column of
k− 1 ones to the right end to create a k− 1×k matrix Ḡ. Place this matrix along the main diagonal of M ′′,
(with the upper-left corner on the diagonal) filling the rest of these (k− 1)n rows with zeros. Note that this
leaves n rows unaccounted for. Since M ′′ may be considered as a n×n block matrix, we fill in each block’s k
unspecified entries with the binary expression of the corresponding entry in the n×n matrix M ′, putting the
ith digit of entry M ′

r,s in M ′′
kr,k(s−1)+3(j−i) as described above. We make the slight modification of making
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first two entries in these rows one, M ′′
kr,k(s−1)+1 = M ′′

kr,k(s−1)+2 = 1, so that the number represented is
actually M ′

r,s + 2j . The rest of the entries are 0.

We prove the following lemma, which implies our main result.

Lemma 13 Given any game (M, I) with M rational, construct the game (M ′′, I ′) by first rescaling M to
an integral matrix M ′, and then shifting M ′ so as to make its entries integers in the range 0 < M ′

r,s < 2j for
some j. Let k = 6j + 1, and construct the matrix M ′′ as above. Then, up to scaling, the Nash equilibrium
strategies for the column player of the game (M, I) are identical to the elements (1, k + 1, ..., (n − 1)k + 1)
of the Nash equilibrium strategies for the column player of the {0, 1} -game (M ′′, I ′).

We note that since the size of M ′′ is polynomial in the number of bits used to express M , and lemma 11 proves

that a mimicking game M =
(

0 CT

R 0

)
may be constructed so that the Nash equilibrium strategies for

its column player correspond exactly to the Nash equilibrium strategies for both players in the game (R,C),
this lemma trivially implies the following theorem.

Theorem 14 NASH = NASH{0,1}.

We now prove the lemma.

Proof: Consider any Nash equilibrium (x′, y′) of the game (M ′′, I ′). Motivated by the block decomposition
of M ′′, we consider y′ in blocks of k. Recall from the construction of M ′′ that each occurrence of Ḡ stands
alone in its corresponding rows, and that the corresponding entries in I ′ form a k− 1× k− 1 identity matrix
with a column of zeros added. A straightforward application of the definition of a Nash equilibrium reveals
that the k − 1 corresponding weights in y′ are either all zero, or are a scaled Nash equilibrium for the game
(G, I). Thus these k − 1 weights {y′(r−1)k+i}

k−1
i=1 equal y′′r (2j−1, 2j−1, 2j−1, ..., 1, 1, 1, ...) for some y′′r ≥ 0 as

shown in lemma 12. Thus we have found a block representation for any Nash equilibrium strategy y′. Note,
however, that we have not yet discussed the n entries y′(r−1)k+k = y′rk.

Recall from lemma 10 that y′(r−1)k+i > 0 implies that x′(r−1)k+i > 0, which implies from the definition of a

Nash equilibrium that the ((r − 1)k + i)th entry of M ′′y′
T is at least as big as any other entry. We apply

this technique to prove a sequence of useful results.

Suppose for the sake of contradiction that for every r, y′′r = 0. This means that the only nonzero entries are
those of the form y′rk. Note, however, that this implies that (rk)th entries of M ′′y′T are all 0, since for any
r, s, M ′′

rk,sk = 0. However, the (rk)-th columns have ones everywhere else, so every other row gets positive
payoff. Thus this is not a Nash equilibrium. We conclude that some y′′r > 0.

For some y′′r > 0, consider the payoffs of the k rows (r− 1)k + 1, ..., rk. From the construction of the matrix
G, we conclude that the first k − 1 of these payoffs equal 2jy′′r + r′rk and that the last payoff is at least the
sum of the entries in the k corresponding columns: (M ′

r,r + 2j)y′′r , where by construction, M ′
r,r > 0. Thus

this may be a Nash equilibrium only if r′rk > 0. Thus whenever y′′r > 0, we must have y′rk > 0. The crucial
consequence of this is that the payoff of the (rk)th row must now be optimal by the mimicking argument.

Note that the incentive of the (rk)th row is just∑
s

(M ′
r,s + 2j)y′′s , (1)

which equals the incentive in the game (M ′ +2j , I) when the second player plays strategy y′′s (up to scaling).
Since as noted above, for every nonzero y′′r , the corresponding row must have optimal incentive, we conclude
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that the strategy y′′s , properly scaled, is in fact a Nash equilibrium of the game (M, I). We have proven one
direction of the correspondence.

The other direction is fairly straightforward. Given a Nash equilibrium (x, y) of the game (M, I), let y′′ = αy
for some scaling constant α, and let

{y′(r−1)k+i}
k−1
i=1 = y′′r (2j−1, 2j−1, 2j−1, ..., 1, 1, 1, ...),

as above. From equation 1 we see that all the optimal incentives in (M, I) will remain optimal in (M ′′, I ′)
when we restrict our attention to rows rk. Further, each k − 1 block of rows will have equal payoffs since
their corresponding columns have probabilities proportional to the full-support Nash equilibrium of the game
(G, I). To make all these blocks have equal payoffs, we need only pick the additive constants y′rk so that
the total payoffs are equal. We then scale these y′rk and α so as to make

∑
i y′i = 1, and we have a Nash

equilibrium, as desired.

Thus we have constructed the desired correspondence between the column player strategies in Nash equilibria
of the games (M, I) and (M ′′, I ′).

These results suggest that the problem of finding a Nash equilibrium may be easier than was previously
thought. In the next section, however, we provide some intuition showing how the problem may still be
hard.

4 Why NASH may be Hard

4.1 The Lemke-Howson Algorithm

We now explicate the Lemke-Howson algorithm for finding a Nash equilibrium in a bimatrix game, which is
the standard algorithm used in practice. This algorithm is perhaps the canonical way to find an equilibrium,
and has the further property that the construction of the algorithm yields a surprising proof of the existence
of Nash equilibria. This style of proof has been generalized to define the complexity class PPAD , which we
discuss later.

Consider a mimicking game (M, I). As a trivial consequence of Lemma 8, a pair of equilibrium strategies
(x∗, y∗) exists iff for every column i in the support of y∗, the ith entry of My∗ is optimal. In such a case,
we call i a best response.

For the remainder of this section, we shall assume that M is nondegenerate, by which we mean that for
any strategy y, the number of pure best responses is at most the size of the support. This notion is a
slightly stronger than a condition that M have full rank. In practice, there are methods of adding slight
perturbations to M to ensure nondegeneracy while preserving Nash equilibria. See for example [Ste1] We
further assume without loss of generality that all entries in M are positive, since adding a constant to each
entry does not change the game, by Lemma 6

We may thus rephrase the above condition to say that each pure strategy is either not played, or is a best
response. This motivates the idea of labelling a strategy y as follows: for each i, label y with i if either
i is never played, or is a best response. A strategy y∗ represents a Nash equilibrium pair (x∗, y∗) if it is
completely labelled. We say that a strategy y is k-almost completely labelled if y has every label except for
possibly k.

We now express these conditions algebraically. Given a vector y∗ that satisfies the above conditions, we can
scale it to a vector z = µy∗ so that Mz ≤ 1, with equality only for the rows in the support. Thus for any
row i, either zi = 0 or (1−Mz)i = 0. Thus the above conditions imply

z ≥ 0, z 6= 0, Mz ≤ 1, zT (1−Mz) = 0.
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We now observe that we can transform any z satisfying the above linear complementarity problem (LCP),
there exists a scaled version y∗ that produces a Nash equilibrium. Specifically, the third condition, that
Mz ≤ 1 implies that the set of best response rows are those for which Mz = 1. Thus the fourth condition
implies that every index is either not in the support, or a best response. The first two conditions imply that
z can be scaled to a proper probability distribution.

It is important to note here that the second condition, that z is not uniformly 0, is not one that we can
enforce with quadratic programming, and that we must therefore remove this condition. Upon doing so,
however, we note that we now have a trivial solution to the LCP, namely the all zero solution. The problem
now becomes to find a second solution.

We now have the LCP
z ≥ 0, Mz ≤ 1, zT (1−Mz) = 0,

which may be interpreted geometrically as follows. Given a n×n matrix M , the first two conditions define a
polytope in Rn with 2n (n−1)-dimensional hyperfaces, or more specifically, n pairs of hyperfaces. The third
condition then labels a point by the indices of the hyperfaces to which it belongs, and asks for completely
labelled points. Assuming nondegeneracy, each vertex has exactly n (possibly duplicate) labels, and each
edge has n− 1.

The Lemke-Howson algorithm starts at the trivial completely labelled vertex z = 0, and picks an arbitrary
edge leading from this vertex. Since the points on this edge still have n−1 coordinates 0, this edge will be k-
almost completely labelled, for the remaining coordinate k. From here on, the algorithm is deterministic, and
runs as follows: given a k-almost completely labelled edge, where we have already processed one endpoint,
consider the other endpoint. If it picks up the label k, then we are done. Otherwise, it must have picked
up a duplicate label. To fix this, we find the hyperface corresponding to that duplicate label, and find the
(unique) edge going away from this hyperface. Repeat until a fully labelled vertex is found.

We note that this algorithm defines a unique path from z = 0. Further, the algorithm may equivalently be
run in reverse, with the same arguments implying that there is at most one (k-almost completely labelled)
edge going into any vertex. We note that the k-almost completely labelled edges are truly directed, and we
may define their direction by the sign of a determinant, the details of which are not important here.

Thus given a matrix M and an index k, we define an implicit directed graph as follows: the vertices of the
graph are the vertices of the polytope, which may be represented by 2n-bit strings denoting which hyperfaces
they are members of, that are k-almost completely labelled. The edges of the graph are as defined above,
and satisfy the properties that the in-degree and out-degree of any vertex is at most one, and these edges
may be computed (in polynomial time) given the vertex. We are given one endpoint, z = 0, with in-degree
0, and asked to find another endpoint. The Lemke-Howson algorithm does this by simply following the path
until it reaches a sink. Note that there cannot be any cycles.

The above explication essentially proves that Nash equilibria exist, and is a version of a more general
argument called the directed parity argument that goes as follows: A di-graph G with in-degree and out-
degree at most 1 is a disjoint union of paths and cycles. Specifically, the number of endpoints must be even.
Thus, given one endpoint, there must be another.

We note that the “algorithmic” part of the Lemke-Howson algorithm, namely the decision to trace a single
path, is more a heuristic than an algorithm, as the length of the path that starts at z = 0 is not guaranteed
to be sub-exponential, and we could just as easily traverse the vertices in any other order. Indeed, it is an
open problem whether Nash equilibria may be found in polynomial time, but it is known that the Lemke
Howson algorithm fails at this task [SS].

4.2 The Class PPAD

As mentioned above, we may cast the Nash equilibrium problem for some matrix M in graph theory terms
by defining the k-almost completely labelled subgraph of the edge graph of the induced polytope, and try
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to find a nontrivial endpoint. This problem falls in the complexity class known as PPAD , defined in [Pap2]
which is the directed version of the class PPA , an acronym for the polynomial parity argument. The class
PPAD consists of those problems expressible in the following terms.

Given a set of strings {0, 1}k, we implicitly define a digraph G = (V,E) of in and out-degree at most one
as follows. We are given a vertex recognition algorithm, that in polynomial time returns whether or not a
string in {0, 1}k is a vertex in V . Further, given a vertex v ∈ V , we are given a pair of polynomial time
algorithms that find the (at most one) edge going into and out of v respectively. We are further given an
algorithm to find a starting vertex of total degree 1. Given such a graph, the class PPAD asks us to find
another vertex of total degree 1. We note that the vertex recognition algorithm is not strictly necessary,
since we may incorporate it into the edge finding algorithms, so that “fake” vertices lack any edges.

Thus far, the class PPAD is not known to be in P , and is also not known to be reducible to any canonical
“hard” problems. However, if the definition of PPAD is modified slightly in any of several ways, then many
standard hard problems result. We discuss this below.

Problems in PPAD are characterized by three abilities: given a vertex on a path we can go forward, and
we can go back; further we can find a starting vertex. We consider what happens if we relax any of these
conditions.

Intuitively, it would appear that being given a vertex with in-degree 0 does not help, and that we might even
prefer a vertex with in-degree 1, since the vertex with in-degree 0 is as far as possible from the other end of
the path. However, this modification would render PPAD as hard as the search version of NP , TFNP , as
evidenced by the following construction. Consider some polynomial-time predicate FY (X), with X ∈ {0, 1}k

and data Y , such that we want to find a satisfying X. Connect each string X to the strings lexicographically
before and after it, wrapping around at the ends, with the exception that nothing is connected to satisfying
strings. Thus finding a source or sink is as hard as finding a satisfying X.

Another way to modify the definition of PPAD is to remove our ability to go backwards. Intuitively, this
ability does not seem that useful. However, if one-way permutations p(x) exist — a fairly standard complexity
assumption — then we can define the successor of a node v to be the image of that node under permutation
p(v) unless the image is some specified randomly drawn number x, in which case we call v a sink. Then
given the source x, the problem of finding the sink is equivalent to finding p−1(x), a hard problem.

A third reasonable modification to the definition would be to insist that the vertex returned be at the other
end of the path of the initial vertex. However, finding such a vertex is PSPACE hard, as we can encode
the execution of a Turing machine into the di-graph. We outline this construction below, as it has some
important consequences.

It is easy and quite standard to encode the possible states of a Turing machine as strings in {0, 1}k. Further,
given a state, we can easily compute the successor of a state by simulating the Turing machine for one
iteration. However, in general it is hard to compute the predecessor of a Turing machine state.

Towards this end, we introduce the notion of reversible computation. A computation is reversible if from each
state we can uniquely compute the next state and the previous state in polynomial time. As an interesting
side note, this notion was introduced by physicists who observed that the energy use of a computer can
by lower-bounded by the number of irreversible operations, so that if a computer were designed using only
reversible operations, it could run on negligible power.

4.3 The Pebble Game

Suppose we wish to simulate a Turing machine in a reversible manner. At any instant in our simulation,
we will store the complete memory state of the Turing machine at a selection of times t1, ..., tn for some n.
Given that we know the memory state at time ti, one reversible operation that we will allow ourselves is
the ability to compute the memory state at time ti + 1 and store it in some empty memory slot tj . This
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operation is reversible since the reverse of this is just clearing the memory slot tj . We further allow ourselves
the ability to run the reverse of this operation, namely given a record of the machine at time tj , we may
delete it if and only if for some i, ti + 1 = tj and we have a record of the machine at state ti. These are the
two operations we allow ourselves. We now consider how much reversible time and space it takes to simulate
a Turing machine using time and space (T, S), and show that

Turing-(T, S) ⊂ reversible-(T log23, S log2 T ).

Consider the following pebble game, sometimes called the east model [DGC]. We are given a handful of n
pebbles, and a sequence of squares, {ai|i > 0}, each of which may be occupied by a pebble. The rules of the
game are as follows: we may add or remove a pebble at square i + 1 only if there is a pebble at square i, or
i = 0. The question is how far we can get with n pebbles, and in how many moves. This is clearly analogous
to the above model of reversible computation,‘ — we let a pebble at position i correspond to storing the
state of the simulated machine at time i.

We now introduce an algorithm to get a pebble out to position 2n − 1, which is optimal, using the optimal
time 1

2 (3n−1). Optimality is proven in [Ben]. The construction is recursive, with the base case of one pebble
consisting of placing the pebble in position 1. Given a construction to get a pebble to position 2n − 1 in
time 1

2 (3n − 1) using n pebbles, consider the following procedure: run the construction once; then place the
n+1st pebble in position 2n; then reverse the construction to remove all the pebbles but this from the board;
then run the construction shifted 2n stones to the right, to place a stone at 2n+1 − 1 in time 1

2 (3n+1 − 1), as
desired.

Thus we may construct an instance of PPAD where the vertices represent positions in the pebble game,
namely a record of up to n states of a Turing machine M ; we connect each position to the positions
immediately before and after it in the optimal pebble game strategy. Thus if we let M be a Turing machine
that solves a PSPACE complete problem, then the other endpoint of the path starting at its input will be
PSPACE hard to find.

We note that this does not prove that PPAD itself is hard, since our construction provides no way to verify
whether a vertex indeed lies on this path, and the PPAD may have many trivial solutions corresponding to
“fake” pebble game simulations. We address this in the next section.

4.4 Half-Baked Hardness Constructions for PPAD

Supposing we had a polynomial-time function f : {0, 1}k → {0, 1}k with some designated generator e ∈
{0, 1}k with the following two properties:

• fn(e) is hard to compute for some exponentially large n = N .

• We may verify that fn(e) = y in polynomial time, for any n.

In this case, we construct the following PPAD . Let each vertex be a sequence of pairs (ti, f ti(e)) such that
the set {ti} represents a valid position in the optimal pebble game play, and such that ∀i, ti ≤ N . To form
a graph, we connect each pebble position to the positions immediately preceding and following it in optimal
play.

From [DGC] we can easily determine whether the sequence {ti} appears in optimal play of the pebble game,
and from the second property of f we can ensure that only valid pairs (ti, f ti(e)) appear. Thus we have
constructed an instance of PPAD where the graph consists of a single path, which starts at a position
computable from input e, and ends at a position from which we could compute fN (e). Thus any algorithm
for PPAD must solve the hard problem of finding fN (e).
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We provide an incomplete construction of such an f . Define a binary block of length 2j to be a sequence of
2j integers such that all but the last j binary digits of each number are equal.

We present a construction for f if a function g : {0, 1}k → {0, 1, ..., k} exists with the following properties:

• g−1(k) is hard.

• For exactly one x in any binary block of length 2j , 0 ≤ j ≤ k, is g(x) ≥ j.

Thus g(x) is k for one x, is at least k − 1 for two xs, is at least k − 2 for four xs, etc. This special form of g
enables us to find a simple proof of statements of the form

max
i<n

g(i) = y

in the following manner: for any binary block of size 2j we can prove the maximum value of g in that block
by exhibiting the x for which g(x) ≥ j. Thus, by subdividing the integers between 0 and n into at most k
binary blocks, we can construct a polynomial time proof of the value of maxi<n g(i). We further note that
if we iterate through n, such a proof may be incrementally constructed by keeping track of the best value of
g(x) found so far in each block.

Thus, if such a g exists, we could define fn(e) to consist of this proof. Thus, since these proofs are incre-
mentally constructed, f is polynomial-time computable. Further, by definition we can verify the value of
fn(e) for any n. And finally, we can read off from f2k

(e) the value of g−1(k), which was hard by assumption.
Thus, if such a g exists, then an f exists, and PPAD is hard.

4.5 Obfuscating g

Suppose we weaken the first condition on g to the following:

• g−1(k) is hard to compute given only oracle access to g.

We note that we can easily construct such a g if we are given a strong (pseudo-) random bit generator.
Namely, for each j, 1 ≤ j ≤ k, and each binary block of size 2j in {0, 1}k, flip a coin, and assign this value to
the block (note that we do not have to store these bits since they can be computed using the pseudo-random
bit generator). Thus each x ∈ {0, 1}k is contained in k binary blocks, one for each j. Then to evaluate g(x),
compute the bits assigned to each of the k binary blocks containing x, and interpret these k bits as a k-bit
binary number x̂, by letting the bit from the block of size 2j correspond to the jth bit from the right in x̂.
Let g(x) be the number of trailing ones in

x xor x̂.

From a trivial induction argument, g satisfies its second property. We now argue that g−1(j) is hard to
compute for any length 2j binary block when given only oracle access to g. We note that until we have found
an x such that g(x) ≥ j − 1, none of the values of g will depend on the binary bit pseudo-randomly chosen
for this block, and hence the parts of the algorithm that access the left and right halves of this block may
as well run independently, and we may as well just examine one half (of size 2j−1) first. Suppose it takes
expected time T (j − 1) to find an x with g(x) ≥ j − 1 in one of the two halves. If this g(x) is in fact at least
j, then we are also done for the whole block. However, with probability half, the x for which g(x) ≥ j is in
the other half, and we need to expend T (j − 1) additional effort to find it. Thus

T (j) =
3
2
T (j − 1),
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and we conclude that finding g−1(k) is exponentially hard, given only oracle access to a g generated with
strongly random bits.

However, we have not been able to prove similar results when the player is given the code to g. Indeed, as
mentioned above, such results would imply that PPAD is NP -hard. If such a g did not exist, however, then
we would have a curious distinction between what we could compute given oracle access to a function g as
in the previous paragraph, and what we could compute given any Turing machine implementation. Indeed
this distinction is at the heart of the fundamental problem of software obfuscation.

The goal of software obfuscation is to derive a procedure such that given a function defined by a Turing
machine that computes it, we can polynomially transform the Turing machine into another Turing machine
that computes the same function, but acts as a virtual black box. A Turing machine P is a virtual black box
if knowing the code of P allows us no more abilities than having only access to an evaluation oracle O(P ).
This is a formalization of the heuristic that “the only useful thing you can do with software is run it,” an
impression which most major software companies have huge interest in promoting. If this were false, then
any software that accomplishes some given task might be reverse engineered

It was a major result of [BGI] that there exist functions that cannot be obfuscated. However, these functions
were constructed similarly to the canonical uncomputable function that simulates itself, and thus do not
provide a natural class of un-obfuscatable functions. Thus it might be hoped that the impossibility of
software obfuscation applies only to such contrived examples.

The function g described above has no such general simulation abilities, and is the kind of pseudo-random
function computed in a variety of software. We have thus shown that either PPAD is hard, pseudo-random
numbers may not be generated, or that g is un-obfuscatable.

We note that it remains open whether NASH is complete in PPAD .

5 Finding a Nash Equilibrium by Support Enumeration

We provide an interesting well-known algorithm for finding a Nash equilibrium of a bimatrix game, in
exponential time, which relies on the following result:

Proposition 15 Given that there exists a Nash equilibrium with supports S1 = Supp (x) and S2 = Supp (y),
there is a polynomial time algorithm to compute a Nash equilibrium with exactly those supports.

Proof: Let Ri be the ith row of R, and Cj be the jth column of C.
We solve the following linear program on 2n + 3 variables:
Variables: xi, yi ≥ 0, U, V, δ
Maximize: δ
Constraints:
xi = 0 if i /∈ S1, yi = 0 if i /∈ S2,∑m

i=1 xi =
∑n

i=1 yi = 1 if i ∈ S1
xi ≥ δ if i ∈ S1, yi ≥ δ if i ∈ S2.

for each row i
Riy = U if i ∈ S1
Riy ≤ U if i /∈ S1
for each column j
xT Cj = V if j ∈ S2
xT Cj ≤ V if j /∈ S2
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We show that any solution to those conditions is a Nash equilibrium with supports (S1, S2). The first set
of constraints require that the probabilities xi are non-negative and sum to one; further, they are 0 outside
the desired support, and at least δ inside the desired support. We will show that if a Nash equilibrium with
that support exists, then δ > 0, so that the xi give a strategy that has the desired support.

The second set of conditions requires that each of the rows in the support is a best response to y, since
they obtain U , the payoff for the row player, and no other pure strategy gives a higher payoff than U . This
implies x is a best response to y, by Lemma 8.

We also have the equivalent symmetric conditions for y. Since each player’s strategy is a best response to
the other’s, any solution to the LP is a Nash equilibrium.

The linear program has a solution since the Nash equilibrium we were given has supports (S1, S2), and thus
obviously satisfies all those constraints, with δ > 0 since each of the xi are for i ∈ S1. Linear programming
is solvable in polynomial time (using, for example, the ellipsoid algorithm), so our claim holds.

Corollary 16 There exists an exponential-time algorithm to find a Nash equilibrium of a bimatrix game.

Proof: The algorithm is simple – enumerate all pairs (S1, S2) where S1 is a subset of the pure strategies
for the row player, and S2 for the column player. For each such pair use the above algorithm to find a
Nash equilibrium (if one exists) with those supports. If no Nash equilibrium exists with those supports, the
algorithm will still terminate in polynomial time, and will either assert no solution exists, or find one with
δ = 0. In the latter case, the solution will be a valid Nash equilibrium, but it will not have the support
we input, which for this purpose is irrelevant. There always exists a Nash equilibrium, so the algorithm
will necessarily find a Nash equilibrium when it uses the previous algorithm on the support of the Nash
equilibrium.

There are at most 2m × 2n such pairs of sets, so we get total (n + m)O(1)2(m+n) total runtime.

A powerful consequence of the linear programming formulation is that we can require additional properties
of our Nash equilibrium through adding additional constraints to the linear program. For example, we could
require the Nash equilibrium to have each pure strategy played by the row player be played with probability
at least 1

2k , where k is the size of the support (say, if the row player doesn’t want to use a complicated
strategy), and our algorithm would find a Nash equilibrium with that additional property, if it exists. Many
of the properties of restricted classes of Nash equilibria that are shown to be NP-hard to find in 3 are similarly
trivial to find in exponential time using this linear programming formulation, without having to actually
find all Nash equilibria, which could be unpleasant since the set of Nash equilibria can in general be infinite
(in cases with degeneracy).

6 Approximate Nash Equilibria

6.1 A Pseudopolynomial Algorithm

Here we exposit several results from the excellent paper [LMM].

In general, Nash equilibria can be very complicated. In particular, there exist games in which there is a
unique Nash equilibrium of full support (for an example, see Lemma 12). In the real world, one does not
want to play such a complicated strategy. It is thus reasonable to consider sacrificing a small amount of the
payoff in a game in exchange for the advantage of playing a simple strategy. The first notion of simplicity
that might come to mind is having small support. However, we also don’t want to have strategies that use
some pure strategies with very low probability, since then it is likely the cost of implementing that option is
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greater than the value it provides. Thus, one comes to develop the notion of a k-uniform strategy x, where
each strategy is played with probability an integral multiple of 1

k .

One also must consider what we mean by an approximation of a Nash equilibrium. The commonly accepted
notion of a good approximation to a Nash equilibrium is as follows.

Definition 17 An ε−Nash equilibrium is a pair of strategies (x′, y′) such that for any strategies x, y, we
have that

xT Ry′ ≤ x′T Ry′ + ε and x′T Ry ≤ x′T Ry′ + ε

The real-world application might be two countries that sign a treaty restricting them to a certain subset of
the pure strategies, and they’d want to make sure that there is a treaty where both countries get almost
the same payoffs in the game, with a k-uniform strategy. The amazing result in [LMM] is that there always
exists a k-uniform ε-Nash equilibrium with k logarithmic in the size of the game.

Theorem 18 (Lipton, Markakis, Mehta) Assume that R and C have entries all in [0, 1], and are both
square of size n × n. Then for any Nash equilibrium (x∗, y∗), and any real number ε, there exists a pair
(x′, y′) of k-uniform strategies (for k ≥ 12 ln n

ε2 ) such that

(1) (x′, y′) is an ε-Nash equilibrium

(2) |x′T Ry′ − x∗T Ry∗| ≤ ε (the row player’s payoff is within ε of the equilibrium payoff)

(3) |x′T Cy′ − x∗T Cy∗| ≤ ε (the column player’s payoff is within ε of the equilibrium payoff)

Proof: The argument uses the probabilistic method – we prove that an ε-Nash equilibrium exists by giving
a construction with a nonzero probability of producing it. First, pick an integer k ≥ 12 ln n

ε2 . Then, sample k
values independently at random from the Nash equilibrium probability distribution x∗, to form the multiset
A. Construct the distribution x′ from A by giving each of the pure strategies in A probability r

k , where r is
the number of times that strategy appears in A. Similarly, construct the strategy y′.

Now, one would expect that the distributions x′ and y′ would be close to the Nash equilibrium distributions
x∗ and y∗. In fact, one can prove through a rather straightforward argument that with positive probability,
they do in fact form a k-uniform ε-Nash equilibrium. It follows that such an equilibrium must exist, for if it
did not, then that probability would be zero.

Corollary 19 There exists an algorithm that finds an ε-Nash equilibrium for a [0, 1] game in O(n1+ 24 ln n
ε2 )

time.

Proof: We enumerate all multisets of size at most k = 12 ln n
ε2 for each of the players, and for each of those,

simply check whether it is an ε-Nash equilibrium by testing whether all deviations to pure strategies do not
improve payoffs by more than ε.

By the last proposition, a k-uniform ε-Nash equilibrium must exist, so by an argument similar to that in
Corollary 16, our algorithm will find one. There are at most n2k pairs of multisets of our pure strategies of
size k each, which amounts to n2k+O(1) runtime, since we can check whether we have an ε-Nash equilibrium
in nO(1) time.

Note this allows us to find all k-uniform ε-Nash equilibria in n2k+O(1) time, and we have by our theorem
that each exact Nash equilibrium has payoff within ε of that of a k-uniform one. Thus, since it is NP-hard to
determine whether there exists a Nash equilibria where the row player receives payoff at least some constant,
we have the following theorem:
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Theorem 20 Either there are ε-approximate Nash equilibria with payoffs for both players better (by more
than ε) than the maximum Nash equilibrium payoff, or we have a sub-exponential algorithm for solving
satisfiability.

Proof: [CS1] constructs games with the property that for an arbitrary boolean formula φ in Conjunctive
Normal Form, if φ is satisfiable, there is a Nash equilibrium with payoff 1, and otherwise there is a unique
Nash equilibrium of payoff 0. Consider the following algorithm to determine if there is a Nash equilibrium
of payoff 1 for the row player in such a game. Pick ε < 1, and with that corresponding k, compute all
k-uniform ε-Nash equilibria. If some k-uniform ε-Nash equilibrium has payoff for each player of at least 1−ε,
report that there is one, and otherwise report that none exists. If φ is satisfiable, the algorithm will report
correctly that it is, by Theorem 18. If φ is not satisfiable, there is a unique Nash equilibrium with payoff 0,
so either this algorithm reports correctly that φ is not satisfiable, or it finds a k-uniform ε-Nash equilibrium
with payoff at least 1− ε for each player. Since this algorithm runs in n2k+O(1), and with a choice of ε < 1,
we have k = O(lnn), so that our runtime is nO(ln n).

We’ve not been able to resolve which of the two possibilities in the previous theorem holds, but we strongly
suspect the former. A provably subexponential algorithm for solving satisfiability would be a very exciting
result. Let us assume for the moment the more likely possibility that the opposite is true, since it reflects
more on game theory, the subject of our paper. This would imply that in the class of games studied by [CS1],
there are pairs of strategies where both players receive high payoffs, and both have very small incentives (of
size at most ε) to change their strategies so as to increase their payoffs, but if they do so, they will fall into
an equilibrium with payoff 0.

We can also use the linear programming formulation we gave in Proposition 15, with some modifications, to
find the ε-Nash equilibrium with support of size at most k, and force additional restrictions on our ε-Nash
equilibria, as before.

Related results that follow directly from those in [LMM] include the following, for which we omit the proof.

Theorem 21 If R and C have ranks r and c, respectively, then for every Nash equilibrium (x∗, y∗), there
exists another Nash equilibrium (x, y) with |Supp (x)| ≤ c + 1 and |Supp (y)| ≤ r + 1 such that each player
receives the same payoff as in the original equilibrium.

This theorem has the following immediate corollary.

Corollary 22 If both of the payoff matrices have constant rank, then there is a polynomial time algorithm
to find a Nash equilibrium. In particular, if one of the players has a constant number of pure strategies, then
there is a polynomial time algorithm to find a Nash equilibrium.

Proof: The first assertion follows immediately from the previous theorem. The second follows from the
first, since the rank of the payoff matrices is bounded by the number of pure strategies of either player.

Corollary 23 In a zero-sum game (R,−R), where R has rank r, there exists a Nash equilibrium with support
including at most r + 1 pure strategies.

Proof: This follows from the previous theorem, since R and −R have the same rank r.
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6.2 Fixed Parameter Tractable with Respect to Treewidth and Maximum De-
gree

Here we develop another algorithm for the computation of approximate Nash equilibria. This algorithm
works well when the graph of strategies that effect each other has small treewidth k, and the number of
strategies affecting the payoff of a given strategy is at most m, which is also small. For fixed k and m, our
algorithm has linear dependence on n and has dependence on ε of the form log( 1

ε )( 1
ε )2k+2. On the other

hand, the algorithm in section 6.1 has dependence in the order of nO(1/ε2). Hence the algorithm here should
be more effective for small k, m and ε, and large n than the previously known algorithm.

Definition 24 For a vector y define the response to y, Resp (y) to be the strategy x whose components are
1

|Supp (y)|
on the support of y, and 0 elsewhere.

Definition 25 Let (R, I) be a mimicking game. Define a strategy x for the column player to be an ε-relative
Nash equilibrium for some ε > 0 if Resp (y)T Ry(1 + ε) ≥ xT Ry for any strategy x.

The idea of an ε-relative approximate Nash equilibrium is somewhat analogous to that of an ε-Nash equi-
librium. In particular, notice that if the entries of the payoff matrix are in [0, 1], then for an ε-relative
approximate Nash equilibrium, y, (Resp (y), y) is an ε-Nash equilibrium.

Definition 26 Let (R, I) be a mimicking game. Define a strategy y for the column player to be a strong ε-
relative Nash equilibrium for some ε > 0 if for every strategy z with Supp (z) ⊆ Supp (y), zT Ry(1+ε) ≥ xT Ry
for any strategy x.

This says that the strategies in the support of y are not worse for the row player to play than any other
strategy by a factor of more than ε.

Note that any strong ε-relative approximate Nash equilibrium is an ε-relative approximate Nash equilibrium.

Note also that to check for a strong ε-relative approximate Nash equilibrium it is sufficient to check only the
basis vectors z for elements of Supp (y).

Lastly, we note that if y is a vector with non negative coefficients, not all 0, that do not necessarily add to
1, and otherwise satisfies the conditions in Definition 25 (resp. 26), then upon dividing y by the sum of its
coefficients we get a (strong) ε-relative approximate Nash equilibrium.

We would like to be able to assume that the largest entry in each row of R is 1. We are able to reduce to this
case after making the observation that if we scale the rows of R and the corresponding entries of y correctly,
this does not effect our problem. This is formalized in the following Lemma.

Lemma 27 If A is a diagonal matrix with positive entries along the diagonal , then y is a (strong) ε-relative
approximate Nash equilibrium of (R, I) if and only if the strategy proportional to A−1y is a (strong) ε-relative
approximate Nash equilibrium of (RA, I).

Proof: We have that Supp (A−1y) = Supp (y), therefore if y is an ε-relative approximate Nash equilib-
rium, Resp (A−1y)T RAA−1y(1 + ε) = Resp (y)T Ry(1 + ε) ≥ xT Ry = xT RAA−1y, and hence the strategy
proportional to A−1y is an ε-relative approximate Nash equilibrium of (I,RA). If y is a strong ε-relative
approximate Nash equilibrium of (R, I), then if z is a strategy, and Supp (z) ⊆ Supp (y) = Supp (A−1y),
then we have that zT RAA−1y(1 + ε) = zT Ry(1 + ε) ≥ xT Ry = xT RAA−1y, and hence A−1y is a strong
ε-relative approximate Nash equilibrium of (RA, I).
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Definition 28 Assign to a mimicking game (R, I) the digraph GR on the pure strategies of the column
player, by putting an edge from any pure strategy ei to another pure strategy ej if and only if ej

T Rei 6= 0.

Theorem 29 Let (R, I) be a mimicking game where R has non-negative entries and is an n× n matrix. If
GR has treewidth k and vertices having maximum in-degree m, then there is an algorithm which given (R, I),
an elimination order of GR, and an 0 < ε < 1 returns a strong ε-relative approximate Nash equilibrium in
O(k log(m

ε )( 20m
ε )2k+2n) time.

First if any column of R is all 0, then the vector y that is 1 on this entry and zero elsewhere and Resp (y)
define a Nash equilibrium, and also a 0-relative approximate Nash equilibrium.

Otherwise, we can reduce to the case where the largest entry in each column of R is equal to 1 using Lemma
27 to replace each column of R by this column divided by the size of its largest entry (this corresponds to
multiplying R by a diagonal matrix on the right).

Definition 30 For a vector, y and matrix R, define bRycj =
∑

ibRj,iyic to be the vector obtained by
multiplying R by y in the normal way, only taking the floor of the products of components.

Our next definition is somewhat technical, but it is useful as we will see in the next two lemmas. We define
a class of vectors given ε and a parameter N , that we will see for N sufficiently large, both exist and are
strong ε-relative approximate Nash equilibria.

Definition 31 If (R, I) is a mimicking game, N is a positive integer, and 0 < ε < 1, then a non-zero vector
y is an N -discrete ε-approximation of (R, I) if y has coefficients in {0, 1

2 , 3
2 , . . . , 2N−1

2 }, bRyc has entries at
least (1− ε

3 )N on Supp (y), and at most (1 + ε
9 )N everywhere.

Lemma 32 If y is an N -discrete ε-approximation of a mimicking game (R, I), where R has non-negative
entries, vertices in GR have in-degree at most m, and N ≥ 9m

2ε , then y when normalized to 1 is a strong
ε-relative approximate Nash equilibrium of (R, I).

Proof: Let 1 be the vector all of whose coefficients are 1. For any strategy x,

xT Ry ≤ xT (bRyc+ m1) ≤ (1 +
ε

9
)N + m ≤ (1 +

ε

3
)N

. On the other hand, for any strategy z with Supp (z) ⊆ Supp (y), zT Ry ≥ zT bRyc ≥ (1 − ε
3 )N . Since

1 + ε > 1+ε/3
1−ε/3 for 0 < ε < 1, these together imply that zT Ry(1 + ε) > xT Ry, which proves our lemma.

Lemma 33 If (R, I) is a mimicking game where R has non-negative entries, the largest entry in each column
of R is 1, and the maximum in-degree of a vertex in GR is m, then for any 0 < ε < 1 and any integer N > 9m

2ε
there exists an N -discrete ε-approximation of (R, I).

Proof: Let (Resp (y∗), y∗) be a Nash equilibrium of the game (R, I). Note that row player’s payoff in
this equilibrium must be positive, since for y non-zero with non-negative coefficients, Ry has non-negative
coefficients at least one of which is non-zero, since all columns of R are non-zero with non-negative coefficients.
Since this is a Nash equilibrium, Ry∗ has its maximum entries on Supp (y∗). Scale y∗ to a non-zero vector
y with non-negative coefficients so that the entries of Ry are N on Supp (y) and smaller elsewhere. Notice
that since each column in R has some entry equal to 1, all coefficients of y are at most N . Let z be the vector
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obtained by rounding the non-zero components in y to the nearest half integer. Clearly the coefficients of z
are in {0, 1

2 , . . . , 2N−1
2 }.

Notice that the components of bRzc are
∑

ibRj,izic =
∑

(i,j)∈GR
bRj,izic ≥

∑
(i,j)∈GR

Rj,iyi − Rj,i

2 − 1 which
is at least the corresponding coefficient of Ry minus 3m

2 . Similarly, the coefficients of bRzc are at most the
corresponding coefficients of Ry plus m

2 . Therefore, the coefficients of bRzc on Supp (y) = Supp (z) are at
least N − 3m

2 > (1− ε
3 )N , and everywhere these coefficients are at most N + m

2 < (1 + ε
9 )N . Therefore, z is

an N -discrete ε-approximation of (R, I).

Assign to the edge (i, j) of GR the value w(i, j) = Rij . Then, by definition, finding an N -discrete ε-
approximation to (R, I) is equivalent to finding an assignment of the values, v(i) ∈ {0, 1

2 , . . . , 2N−1
2 } to the

vertices, i ∈ GR so that
∑

(i,j)∈GR
bv(i)w(i, j)c ≥ (1− ε

3 )N if v(j) > 0 and
∑

(i,j)∈GR
bv(i)w(i, j)c ≤ (1+ ε

9 )N
for all j.

We generalize this to the following problem: given a digraph G = (V,E) of treewidth at most k and an
elimination order (here GR), a finite set S (here {0, 1

2 , . . . , 2N−1
2 }), a function f mapping S×E → {0, 1, 2, . . .}

(here (s, e) → bsw(e)c) , a set P of cliques of V (here the empty sets), a positive integer M (here b(1+ ε
9 )Nc),

for each v ∈ V a subset of S × {0, 1, . . . ,M}, here

{0} × {0, 1, . . . ,M} ∪ (S − {0})× {d(1− ε

3
)Ne, . . . ,M},

and for each clique in P , V ′, a subset of (S × {0, 1, . . . ,M})V ′
.

The problem is to find, if one exists, a function v : V → S and elements of the subsets of (S×{0, 1, . . . ,M})V ′

so that: for a ∈ V where a ∈ Vi ∈ P and the elements of (S×{0, 1, . . . ,M})Vi we picked maps a to (v(a), fi)
for some fi(a), and

(v(a),
∑

(b,a)∈E

f(v(b), (b, a)) +
∑

i

fi(a))

is in the subset of S × {0, 1, . . . ,M} associated with a.

We present an algorithm, that given an elimination order of G solves this problem in O(k log M(2|S|(M +
1))k+1(2|V |+ |P |)) time. It is clear that a solution to our specific case of this generalized problem produces
an N -discrete ε-approximation of (R, I) if one exists.

First we need an algorithm that given any l subsets of {0, 1, . . . ,M}a finds the intersection of all possible
sums of one element from each set with {0, 1, . . . ,M}a in O(a log M(4M)al) time. Given any two such sets,
S1 and S2, we can compute all of the sums of pairs of elements from them lying in {0, . . . , 2dlog(2M)e − 1}a

in O(a log M(4M)a time using the fast Fourier transform to perform the convolution. We then take the
intersection of this set with {0, 1, . . . ,M}a to get S1 + S2 (the set of all sums in {0, . . . ,M}a). Hence if we
are given such sets S1, S2, . . . , Sl, we compute all the correct sums of S1, S2, then take all the sums of these
with S3, and so on. Furthermore, if we keep all this information and are given a sum of values, we can work
backwards to find values si ∈ Si so that

∑
i si is equal to this sum in O(l(M + 1)a) time.

Algorithm:

If |V | = 1, then try all assignments of values in S and values in (S × {0, 1, . . . ,M})V ′
to see if they work,

and output one that does.

Otherwise, consider the first v ∈ V in the elimination order. Let V ′ be the set of vertices adjacent to V . Let
Vi be the elements of P containing v. We wish to compute the subset U of (S×{0, . . . ,M})V ′

corresponding
to a map w : V ′ → S × {0, . . . ,M} so that there exists an assignment of elements of S to V ′ ∪ {v} that
agrees with the first component of w, and an element, wi : Vi → S × {0, . . . ,M} from each of the subsets of
(S × {0, . . . ,M})(Vi) whose first component also agrees with w and
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1. (w(v),
∑

(u,v)∈E f(w(u), (u, v)) +
∑

i wi(v)2) is one of the elements of the subset of S × {0, . . . ,M}
associated with v.

2. for u ∈ V ′, w(u)2 is
∑

u∈Vi
wi(u)2 plus an additional f(w(v), (v, u)) if (v, u) ∈ E.

We do this by scanning through all of the at most |S|k+1 functions from V ′ to S. For each of these consider
the subsets of the Vi that agree with this assignment. We treat these subsets as subsets of {0, . . . ,M}V ′∪{v}.
We then compute all of the possible sums of these vectors that lie in {0, . . . ,M}V ′∪{v} using the algorithm
mentioned above. We then add these to the vector that assigns the values

∑
(u,v)∈E f(w(u), (u, v)) to v and

assigns f(w(v), (v, u)) to u if (v, u) ∈ E and 0 otherwise for u ∈ V ′. For all of these values that are still in
{0, . . . ,M}V ′∪{v} and assign to v values that along with w(v) is in the subset of S × {0, . . . ,M} associated
with v, we add w cross the projection of our element of {0, . . . ,M}V ′∪{v} to {0, . . . ,M}V ′

to our subset U .

Using the algorithm above, this list takes O(|V ′| log M(4|S|M)|V
′+1|) = O(k log M(4|S|M)k+1) time to

produce for each Vi and an additional copy of at most this long to record the values of U in a table. Notice
that set U stores for each assignment of values in S to elements of V ′ the elements of {0, . . . ,M}V ′

that can
be obtained as contributions to

∑
(b,u)∈E f(v(b), (b, u)) +

∑
i fi(u) coming from edges of the form (v, u) and

elements of our subsets of (S × {0, . . . ,M})Vi so that our assignments at v are consistent.

Therefore, we can reduce to solving our problem on G with v removed, edges added between all vertices
in V ′ (with f(s, e) = 0 for any new edge e), all of the Vi removed from P , and V ′ added to P with the
associated set U . After solving our problem on this reduced graph (with fewer vertices) recursively, we are
given assignments of values of S to vertices of G other than v, elements in sets associated with elements
in P not containing v, and an element of U so that if we can find an assignment of a value in S to v and
elements of the sets associated with the Vi that are consistent with this element of U , we will have solved
the problem. Working backwards, through our previous calculations, we can find an element of the subset
of S × {0, . . . ,M} associated with v, that led to this value in U . Then we just have to find elements of the
appropriate subsets of {0, . . . ,M}V ′∪{v} with the appropriate sum, which we can do.

The runtime of this algorithm is O(k log M(4|S|M))k+1) times the number of Vi plus one to create the new
table, plus the time to run the algorithm on the new graph. The new graph has |P | one smaller for each Vi

and one larger due to its new element. The new graph has |V | one smaller. Therefore, by induction on |V |,
it is easy to show that this algorithm terminates in O(k log M(4|S|M)k+1(2|V |+ |P |)) time.

For the actual case that we need to run, |S| = N + 1,M ≤ N(1 + ε
9 ) ≤ N 10

9 ,N ≤ 9m
2ε , |V | = n and |P | = 0.

Hence the total runtime is O(k log(m
ε )( 20m

ε )2k+2n).
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