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Abstract

In 1876, A. B. Kempe presented a flawed proof of what is now called Kempe’s Universality
Theorem: that the intersection of a closed disk with any curve in R2 defined by a polynomial
equation can be drawn by a linkage. Kapovich and Millson published the first correct proof
of this claim in 2002, but their argument relied on different, more complex constructions.
We provide a corrected version of Kempe’s proof, using a novel contraparallelogram bracing.
The resulting historical proof of Kempe’s Universality Theorem uses simpler gadgets than
those of Kapovich and Millson.

We use our two-dimensional proof of Kempe’s theorem to give simple proofs of two
extensions of Kempe’s theorem first shown by King: a generalization to d dimensions and a
characterization of the drawable subsets of Rd. Our results improve King’s by proving better
continuity properties for the constructions.

We prove that our construction requires only O(nd) bars to draw a curve defined by a
polynomial of degree n in d dimensions, improving the previously known bounds of O(n4)
in two dimensions and O(n6) in three dimensions. We also prove a matching Ω(nd) lower
bound in the worst case.

We give an algorithm for computing a configuration above a given point on a given
polynomial curve, running in time polynomial in the size of the dense representation of
the polynomial defining the curve. We use this algorithm to prove the coNP-hardness of
testing the rigidity of a given configuration of a linkage. While this theorem has long been
assumed in rigidity theory, we believe this to be the first published proof that this problem
is computationally intractable.

This thesis is joint work with Reid W. Barton and Erik D. Demaine.

Thesis Supervisor: Erik D. Demaine
Title: Esther & Harold Edgerton Associate Professor
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Chapter 1

Introduction

A linkage is an idealized mechanical framework consisting of rigid bars attached to each

other by hinges at their endpoints. We additionally fix some vertices of bars in place, to

factor out rigid motions. We ignore issues of bars crossing because we are primarily modeling

2-dimensional linkages in a 3-dimensional world, and thus they are not a practical constraint

to linkage design.

Early work on mechanical linkages was motivated by the design of locomotives [DO].

The goal was to build a device that would convert the linear motion of a piston into the

circular motion of a wheel. An early discovery was James Watt’s “parallel motion” linkage,

invented in 1784. Watt’s linkage converts approximate linear motion into circular motion.

See Figure 1-1(a).

During the first half of the 19th century, classical geometry problems such as squaring the

circle and trisecting an angle using a straightedge and compass were proved unsolvable. This

eventually led to the widespread belief that exactly converting linear motion into circular

motion was impossible [KM].

However, in 1864, Charles-Nicolas Peaucellier designed the first linkage that perfectly

converted circular motion into linear motion. See Figure 1-1(b). Because the key vertices

of his linkage are related by geometric inversion, the Peaucellier linkage is often called the

Peaucellier inversor. In 1875, Harry Hart proposed another linkage solving the same problem

using fewer bars [DO]. While the ideal inversors are theoretically superior, Watt’s linkage

continues to be preferred for practical applications.
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b

O1

O2

(a) Watt’s linkage. Vertices O1 and O2 are
fixed, and c is the midpoint of ab. The figure-
eight curve that is the locus of c approximates
a straight line near the point where it crosses
itself.

O

A

M

N

BX

(b) Peaucellier’s Linkage. Vertices
O and X are fixed, and the locus
of A is a straight line, because A is
the inversion of B about a circle.

Figure 1-1: Linkages designed to draw a straight line.

In 1876, Alfred Bray Kempe (best known for his insightful but faulty proof of the Four

Color Theorem in 1879) published a surprising proof that one could build a linkage such

that a pen placed at a single vertex could draw the intersection of any algebraic curve with

any closed disk [Kempe]. Kempe’s Universality Theorem, as this result is now called, can be

formalized as follows:

Theorem 1.1 (Kempe’s Universality Theorem [KM]). Let f ∈ R[x, y] be a polynomial, and

let B be a closed disk in the plane. Then there exists a planar linkage that draws the set

B ∩ { (x, y) ∈ R2 : f(x, y) = 0 }.

Kempe’s proof was flawed, however, because his constructions had additioanl configu-

rations beyond those he intended them to have. Several more recent works reproduce ver-

sions of Kempe’s argument, but also do not correctly address the additional configurations

(e.g. [HJW], [GZCG]). The earliest rigorous proof of Theorem 1.1 we are aware of is the

work of Kapovich and Millson, which was distributed as a preprint for several years before

being published in 2002 [KM]. Henry King published a rigorous proof of this result in 1999,

as a corollary of his work on cabled linkages, based on the (at the time unpublished) work

of Kapovich and Millson [King].
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However, Kapovich and Millson (and King following them) use different arguments from

those presented in Kempe’s paper. In particular, their universality is based on algebra over

the complex plane, rather than trigonometry over the reals. As a result, the techniques of

Kapovich and Millson do not generalize easily to d dimensions for d odd.

One might wonder whether Kempe’s paper was fundamentally flawed, or whether there

are simple changes that could be made to his proof to correct the flaws. In Chapters 3 and 4,

we prove Theorem 1.1 using an argument that closely follows Kempe’s original argument,

bracing constructions where necessary. In contrast with [KM] and [King], our presentation

is elementary. While there have been other elementary accounts of this result [JS], they use

substantially more complex gadgets than those required for Kempe’s original approach.

This thesis also addresses several interesting extensions and applications of Kempe’s

Universality Theorem. In order to state these results we must introduce some notation. If

L is a linkage with n vertices, then Conf(L) ⊂ (Rd)n is the configuration space of L. These

objects are defined precisely in Chapter 2.

1.1 Rigidity is Hard

In the field of rigidity theory, it has long been assumed that deciding whether a given config-

uration of a linkage is rigid (i.e. has no nontrivial motions starting from that configuration)

is computationally intractable [DO]. In Chapter 5, we prove that this assumption is indeed

correct:

Theorem 1.2. Rigidityd, the problem of deciding whether a given configuration of a d-

dimensional linkage is rigid, is coNP-hard for all d ≥ 2.

Our reduction uses an efficient algorithm for computing a configuration of a linkage that

projects to a given point of S to reduce from the coNP-hard problem of testing whether

a given point in an algebraic variety defined by homogeneous equations of total degree 2

is isolated [Koiran]. While Gao et al. [GZCG] have previously presented an algorithm for

computing the linkages of Kempe’s Universality Theorem, their paper is not rigorous, having

the same flaws as Kempe’s paper, and they do not give a running time for their algorithm

or work within a clear computational model.
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Chapters 1–5 build up to the proof of Theorem 1.2. The remaining chapters contain a

number of interesting results that follow relatively quickly from the lemmas needed to prove

Theorem 1.2.

1.2 Signing Your Name

By the Weierstrauss Approximation Theorem, any continuous curve is well-approximated

by an algebraic curve. Thus, Thurston summarized Kempe’s Universality Theorem with the

statement “there is a linkage that signs your name” [King]. Thurston’s elegant statement

is stronger than Theorem 1.1, because it suggests that if your signature is connected, one

could draw your entire signature in a single continuous motion of the linkage. In Chapter 4,

we prove the following stronger version of Theorem 1.1, which also follows from Kapovich

and Millson’s work:

Theorem 1.3 (Kapovich & Millson, [KM, Theorem E]). Let f ∈ R[x, y] be a polynomial,

and S := { (x, y) | f(x, y) = 0} be an algebraic curve. Let U be an open bounded subset of

S. Then there is a linkage L so that the projection p : Conf(L) → R2 onto the coordinates

of a single vertex defines a covering space over U .

By the lifting property of covering spaces, Theorem 1.3 implies that any path within the

target set S lifts to a path in Conf(L). Thus you can indeed draw each connected component

of your signature using a continuous motion of a linkage.

1.3 Higher Dimensions

In Chapter 6, we generalize Kempe’s Universality Theorem to arbitrary dimensions d.

Though this result was previously shown in a preprint by King [King3], our argument avoids

reproving the properties of many 2-dimensional linkages in d dimensions by rotating the

relevant distances into the x1x2-plane, and then appealing to our work in two dimensions.

We prove the following theorem, generalized further to constraining the m points in Rd:

14



Theorem 1.4 (King, [King3]). Let d ≥ 2. Let f ∈ R[x1,1, . . . , xm,d] be a polynomial with

real coefficients in dm variables of total degree n, and let B be a closed ball in Rd. Then

there exists a linkage over Rd such that the projection of Conf(L) onto the coordinates of m

vertices is Bm ∩Z(f), where Z(f) = { (x1,1, . . . , xm,d) : f(x1,1, . . . , xm,d) = 0} is the zero set

of f .

Theorem 1.4 follows fairly easily from Kempe’s Universality Theorem in two dimensions,

along with a d-dimensional Peaucellier inversor and a d-dimensional translator.

1.4 Characterization of Drawable Sets

Curves are not the only sets that can be drawn by a linkage. In Chapter 7, we prove the

following characterization of drawable sets, first proved in another preprint by King:

Theorem 1.5 (King, [King2, King3]). Let d ≥ 2. Then a set S ⊂ Rd is drawable if and

only if S = Rd or S is compact and semi-algebraic.

Our proof of Theorem 1.5 is essentially a corollary of our proof of Kempe’s Universality

Theorem, using a modified Peaucellier inversor that constructs a half-space and a gadget

constructing the union of two sets.

1.5 Construction Complexity

An important linkage design consideration is how complex a linkage needs to be in order

to draw a given set. There are several natural complexity metrics for linkages: the number

of bars, the ratio of the longest bar in the linkage to the shortest bar, and the maximum

number of bars meeting at any vertex. We focus on the number of bars in the linkage.

Gao et al. [GZCG] obtained an O(n4) bound for the number of bars needed to draw

a curve defined by a polynomial of degree n in two dimensions, and an O(n6) bound for

drawing a curve defined by a polynomial of degree n in three dimensions. In our proof

of Kempe’s Universality Theorem (and its generalization to d dimensions), we show that

drawing an algebraic curve of degree n in d dimensions can be done using O(nd) bars. We

prove a more general result, that reduces to O(nd) in the case m = 1:

15



Theorem 1.6. The linkage of Theorem 1.4 can be chosen to have O
((

n+dm

n

))

bars.

In Chapter 8, we prove a matching Ω(nd) worst-case lower bound on the number of bars

needed to draw the zero set of a single polynomial of degree n in d dimensions. We prove

the following:

Theorem 1.7. Drawing the zero-set of a polynomial function of total degree n in d variables

requires Ω(nd) bars in the worse case.

Chapter 8 also obtains tight Θ(n) bounds on the number of bars required to draw an

n-point set in the worst case.

1.6 Kempe’s Strategy

In order to motivate the various linkages that we detail in this chapter, we now sketch

Kempe’s strategy for proving Theorem 1.1. Through a clever application of the trigonometric

product-to-sum identities, rewrite the polynomial f(x, y) within the ball B as a trigonometric

expression of the form

f(x, y) =
∑

|r|+|s|≤n

fr,s cos(rα + sβ + γr,s),

where the fr,s and γr,s are constants, the sum is over all pairs of integers (r, s) such that

|r| + |s| ≤ n, and

x = R cos α + R cos β,

y = R sin α + R sin β.

Then, use a series of clever gadgets to

1. construct the angles α and β from a point (x, y);

2. multiply angles by an integer, to construct rα and sβ (the “multiplicator”);

3. add angles, to construct rα+sβ +γr,s (the “additor”); a bar of length fr,s at this angle

then has x-coordinate fr,s cos(rα + sβ + γr,s);

16



4. add the vectors constructed in the last step (the “translator”), to construct a point

with x-coordinate f(x, y); and

5. restrict a point to lie on a given line, to force the point whose x-coordinate is f(x, y)

onto x = 0 (a Peaucellier Inversor).

Our proof of Kempe’s Universality Theorem closely follows Kempe’s argument, deviating

only where necessary to correct the proof or prove the continuity and rigidity properties that

we need to prove Rigidityd is coNP-hard.

1.7 Generality of Kempe’s Technique

Kapovich and Millson’s techniques allow them to prove the following related universality

theorem, first stated in oral lectures by W. Thurston in the late 1970s [KM] (though Thurston

did not publish a proof):

Theorem 1.8 (Kapovich & Millson [KM, Corollary C]). Let M be a smooth compact man-

ifold. Then there is a linkage L such that Conf(L) is diffeomorphic to the disjoint union of

a finite number of copies of M .

We do not prove a result similar to Theorem 1.8 in this thesis. Note that unlike the

results of this thesis, the relevant diffeomorphism is not in general a projection onto some of

the coordinates of a configuration.

However, we observe that Kapovich and Millson describe several obstructions to using

Kempe’s techniques to obtain Theorem 1.8 and related results:

1. Some of Kempe’s constructions have additional degenerate configurations (e.g. paral-

lelograms can continuously deform into each other; see Section 3.1).

2. The projection p : Conf(L) → S might not be a covering.

3. The projection p might not be an analytically trivial covering.

This thesis directly addresses the first two of these obstructions in Kempe’s constructions.

However, the third obstruction cannot be avoided while following Kempe’s constructions,

17



because the additor’s angle bisector construction requires a nontrivial cover. It was resolving

this obstruction that caused Kapovich and Millson to use a multiplication construction based

on some clever algebra in the complex plane. One could not easily draw a picture of the

resulting linkage [KM].

The later chapters of this thesis rely on some results from real algebraic geometry. We

have included the relevant definitions in the body of this thesis as needed, and we have

collected the statements of required theorems from [BCR] in Appendix A.
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Chapter 2

Linkages

We define linkages embedded in d-dimensional space, where d ≥ 2. The definitions are also

valid when d = 1, but the theorems are not; we consider the special case d = 1 in Section 6.4.

Definition 2.1. An abstract linkage is a pair L = (G, ℓ) consisting of a graph G =

(V (G), E(G)) and a function ℓ : E(G) → R≥0 that defines the lengths of the edges. We

refer to the edges of G as bars.

Definition 2.2. A linkage in d dimensions is an abstract linkage L = (G, ℓ) together with a

function f : W → Rd defined on a subset W of V (G), assigning these vertices fixed locations

in Rd.

Definition 2.3. A configuration C of a linkage L = (G, ℓ) in d dimensions is a map C :

V (L) → Rd obeying the length and fixing constraints, i.e., C extends the fixing assignment

f and if (v, w) ∈ E(G) then |C(v) − C(w)| = ℓ(v, w). The set of all such configurations is

called the configuration space Conf(L) of L.

Drawable sets formalize the idea of drawing a set with a pen attached to one vertex of a

linkage.

Definition 2.4. The trace of a vertex v of a linkage L is the image of Conf(L) under the

projection trv : Conf(L) → Rd, trv(C) = C(v). Equivalently, it is the locus of positions of

the vertex v in the configurations of L. A linkage L draws a set S ⊂ Rd if there is a vertex

v ∈ L whose trace is S. A set S ⊂ R
d is drawable if there exists a linkage L that draws S.

19



2.1 Constructible Sets

We construct linkages from simple components, each of which computes a function or imposes

a relation on some subset of its vertices. For example, we would like to impose the relation

that x is a point of some line ℓ. However, no single linkage can impose precisely this relation:

Proposition 2.5. A drawable set S is either bounded or is Rd.

Proof. Because S is drawable, S is the trace of a vertex v in a linkage L. Suppose the

connected component of L containing v contains a fixed vertex u. Then in any configuration,

the vertex cannot be further from u than the sum of the lengths of all bars in that component,

which is clearly finite, hence S is bounded. If v’s component contains no fixed vertex, then

given any configuration, we can obtain a new one by translating the connected component

of L containing v so that v is at point in Rd. Thus in this case the trace of v either is Rd or

is empty, and thus bounded.

The Peaucellier linkage is advertised as “drawing a straight line”, but technically, it

draws a straight line segment. Now, one can draw an arbitrarily large line segment by using

a sufficiently large Peaucellier linkage. However, it would be extremely tedious to formulate

our arguments in terms of line segments rather than lines. Thus, in order to prove theorems

about linkages constructing unbounded objects such as lines, we must work with families of

linkages, where for any bounded set U ⊂ Rd, there is a linkage that with the desired property

within U . We formalize this idea with constructible sets:

Definition 2.6. For an integer n, a closed set S ⊂ (Rd)n is constructible using N bars if,

for every bounded open subset U of Rd, there is a linkage L with at most N bars and an

n-tuple (v1, . . . , vn) of vertices of L such that

p(Conf(L)) ∩ Un = S ∩ Un

where p : Conf(L) → (Rd)n is the projection onto the coordinates of vertices (v1, . . . , vn).

In this situation, we say that (L, v1, . . . , vn) constructs S inside the set U , or simply that L
constructs S inside U .

20



One might worry that the structure of L could depend on the set U . In our constructions,

only the bar lengths ℓ depend on U . There is no loss of generality: every bounded set U

is contained in some ball, so consider the linkages corresponding to an increasing sequence

of balls Ui. Because there are only finitely many linkage structures with at most N bars,

some structure appears infinitely often in the list of linkages corresponding to the Ui’s. Thus

without loss of generality, we may assume the structure of L does not depend on U .

Knowing that a set is constructible does not guarantee that connected components of

the set can be drawn continuously with a pen attached to a vertex of a linkage. To do this,

we need stronger notions of constructibility. Because the formal definitions are somewhat

technical, we begin with motivation and examples.

Continuous constructibility is the property needed to continuously draw a set using a

pen. Informally, it requires that we can choose the linkage L so that starting from any

configuration of L, vertices (v1, . . . , vn) can move continuously within S∩Un without having

to suddenly reconfigure the linkage.

Rigid contructibility is the other property needed to prove the coNP-hardness of testing

the rigidity of a given configuration of a linkage. Informally, rigid constructibility requires

that we can choose L so that for any point x, p−1(x) is a finite set, so that L has no motions

other than those necessary to continuously construct S.

Continuously constructible and rigidly constructible are orthogonal notions. The linkage

shown in Figure 2-1 continuously constructs the annulus (as the trace of vertex C), but it does

not rigidly construct the annulus because there are infinitely many configurations projecting

down to any point on the circle drawn by vertex A. Watt’s linkage (recall Figure 1-1(a))

is an example of a linkage that rigidly, but not continuously constructs its trace: vertex c

cannot change directions at the point where its locus crosses itself without moving a and b

discontinuously.

We often prove that sets are “continuously and rigidly constructible”; this means that

the same linkage L has both properties.

Before we can state the formal definitions, we need to introduce some standard mathe-

matical terminology.
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Figure 2-1: A linkage that does not rigidly construct its trace.

Definition 2.7. If f : A → B is a map, then the fibre of f over b ∈ B is the set f−1({b}).

Definition 2.8. A set A is a covering space of a set B if there is a surjective continuous

map f : A → B such that every x ∈ B has a neighborhood U whose inverse image f−1(U)

is a disjoint union of open sets, each mapped homeomorphically onto U by f .

In this situation we say that f is a covering space map, and that B is the base of the

covering.

A covering space has N sheets if the fibres of f each have cardinality N .

Some simple examples of covering space maps include the map z 7→ zn on C \ {0} and

the projection onto the first coordinate of the set R × {0, 1}.
We now precisely define the various stronger notions of constructibility:

Definition 2.9. A set S is continuously constructible if, in the definition of constructibility,

L can additionally be chosen so that for any path γ in S ∩ Un starting from a point P , and

point Q ∈ p−1(P ), there is a path γ′ in Conf(L) starting at Q lifting γ, so that p ◦ γ′ = γ.

In this case we say that γ′ lifts γ starting from Q.

A set S is rigidly constructible if, in the definition of constructibility, L can additionally

be chosen so that fibres of p : Conf(L) ∩ p−1(Un) → S ∩ Un are all finite.

A set S is nicely constructible if, in the definition of constructibility, L can additionally

be chosen so that Conf(L) ∩ p−1(Un) is a covering space of p(Conf(L)) ∩ Un = S ∩ Un.
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Theorem 1.3 can be restated as the claim that { (x, y) ∈ R
d : f(x, y) = 0} is nicely

constructible.

In Section 2.2, we prove nicely constructible implies continuously and rigidly constructible.

One might hope for an even stronger notion, where Conf(L)∩p−1(Un) is isomorphic to S∩Un.

However, this is in general impossible, because the disk is a 2-manifold with boundary, and

thus cannot be diffeomorphic to an algebraic set ([KM], Remark 1.5).

The following proposition gives an example of a linkage that continuously and rigidly

constructs its trace, but does not nicely construct its trace.

Proposition 2.10. For any 0 ≤ r ≤ R, the annulus

A =
{

(O, X) ∈ (Rd)2 : r ≤ |OX| ≤ R
}

is constructible. If r > 0, it is continuously constructible. If r > 0 and d = 2, it is rigidly

constructible.

Proof. Construct the linkage L with a bar of length R−r
2

connecting O to new vertex Y ,

and a bar of length R+r
2

connecting X to Y . See Figure 2-2. If O and X lie at two points

at distance d, then by the triangle inequality, we can find a location for Y satisfying the bar

length constraints if and only if r ≤ d ≤ R. Thus A is constructible.

If r > 0, we claim then L continuously constructs A. If U is the interior of A, Conf(L)∩
p−1(U2) is homeomorphic to Sd−2 × (A ∩ U2), where Sk is the unit sphere in Rk+1. On the

boundary of A, the points of the Sd−2 component are identified. This defines a continuous

surjective map g : Sd−2 × A → Conf(L). Given a path h in A starting at a given point

p ∈ Conf(L), let q ∈ g−1(p). We can continuously lift the path in A to Sd−2 ×A starting at

q; simply keep the first component fixed. Since g is continuous, we can now map this lifted

path over to Conf(L), giving a continuous lift of h, starting at p, as desired.

If r > 0 and d = 2, then given the locations of O and X there are at most two possible

locations for Y at the intersections of the distinct circles of radius R+r
2

about X and of radius

R−r
2

about O, so the fibres are always finite.

Following Kapovich and Millson, we call this linkage a “hook”. If r = 0, L does not

continuously construct the disk. Consider, for example, a path that maps each interval
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R+r

2

Y

X

O

R−r

2

Figure 2-2: The hook linkage; the trace of B is shown in gray.

[2−(i+1), 2−i] to a path of length 2−i going out from the origin and back alternating between

two orthogonal directions. This path is continuous but no lift to Conf(L) can be continuous.

In dimension d > 2, L is not rigidly constructible, because Y can rotate about the line

connecting O and X. Even if r > 0 and d = 2, L does not nicely construct the annulus,

because any neighborhood of a point on the boundary of the annulus contains interior points

with 2-element fibres and boundary points with 1-element fibres.

One simple construction we use frequently is to construct a point at a given fixed distance

along an existing bar, using a degenerate triangle linkage.

Proposition 2.11. For any positive reals L1 and L2,

S =

{

(O, P, Q) ∈ (Rd)3 :

−→
OP

|OP | =

−→
OQ

|OQ| , |OP | = L1 and |OQ| = L2

}

is nicely constructible.

Proof. Without loss of generality, suppose L2 ≥ L1. Construct the degenerate triangle

linkage L with bars OP, PQ, OQ such that |OP | = L1, |OQ| = L2, |PQ| = L2 − L1. See

Figure 2-3. In any configuration of this linkage, we have |PQ| = |OQ−OP | = |OQ| − |OP |,
so by the triangle inequality O, P , and Q are colinear, and

−−→
OP
|OP |

=
−−→
OQ

|OQ|
. Thus Conf(L) ⊂ S.
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Conversely, if (O, P, Q) ∈ S, then O, P , and Q are colinear, so |PQ| = |OQ| − |OP |. Thus

S ⊂ Conf(L). Thus with the trivial projection p and any set U , S ∩ U3 = p(Conf(L)) ∩ U3,

and S is constructible. Conf(L)∩p−1(U3) = Conf(L)∩U3 = S∩U3, so p is a homeomorphism

and S is nicely constructible.

O P Q

Figure 2-3: The degenerate triangle linkage

2.2 Properties of Constructible Sets

We should remark on a few properties of these stronger notions of constructibility. The

product of two covering spaces is a covering space of the product of the bases. The compo-

sition of two covering space maps is a covering space map. The preimage of a subspace of

the base under a covering space map is a covering space of that subspace of the base. It is

easy to check that both maps with the path-lifting property and maps with finite fibres are

preserved under product, composition, and restriction to a subspace of the domain and its

preimage.

Proposition 2.12. If S is nicely constructible, then it is continuously and rigidly con-

structible.

Proof. That a nicely constructible set is continuously constructible is the lifting property

of covering spaces: if X is a covering space over S, then any path f : [0, 1] → S in S lifts

uniquely to a path in X starting at any lift of f(0).

Covering spaces of semi-algebraic sets with semi-algebraic covering space maps always

have finite fibres. The fibres of a covering space are always discrete, but they are also semi-

algebraic, as the pre-images of a semi-algebraic set (a point) under a semi-algebraic map.

By Theorem 2.4.5 of [BCR], they are finite.

In designing complex linkages, it is often convenient to “forget about” some vertices of

a constructible set S by projecting down to a subset of the vertices of S. However, the pro-

jection of a constructible set might not be constructible, because it is not necessarily closed.
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For example, {((x1, y1), (x2, y2)) ∈ (R2)2 : x1x2 = 1} is constructible, but its projection onto

the first coordinate is an open half-plane, which is not closed. The following proposition

shows that this is the only possible obstruction:

Proposition 2.13. Let S ⊂ (Rd)m×(Rd)n be constructible using N bars, and let p : (Rd)m×
(Rd)n → (Rd)m be the projection onto the first factor. If p(S) is closed, then p(S) is also

constructible using N bars.

If any path in p(S) lifts to a path in S and S is continuously constructible, then p(S) is

continuously constructible.

If p : S → p(S) has finite fibres, and S is rigidly constructible, then p(S) is also rigidly

constructible.

If S is a covering space of p(S) and S is nicely constructible, then p(S) is nicely con-

structible.

Proof. Let U be a bounded open subset of Rd. Choose a compact set K ⊂ Rd containing

U . Let V1 ⊂ V2 ⊂ · · · ⊂ Rd be an increasing chain of bounded open sets whose union is Rd.

Then the compact set p(S) ∩ Km is the union of its open subsets p(S ∩ (Km × V n
i )), so by

compactness p(S)∩Km = p(S∩(Km×V n
i0

)) for some i0. Let W be an bounded open subset of

V containing both K and Vi0 , and let L be a linkage with vertices (v1, . . . , vm, vm+1, . . . , vm+n)

such that the projection of Conf(L) to the coordinates of these vertices meets W m+n in

S ∩ W m+n. Then the projection of Conf(L) to the coordinates of (v1, . . . , vm) meets Km in

p(S ∩ (W m × W n)) ∩ Km = p(S) ∩ Km. In particular, (L, v1, . . . , vn) constructs p(S) inside

U .

Because the path-lifting property is preserved under composition, if any path in p(S)∩Um

lifts to a path in S∩Um ×Un, and S is continuously constructible, then p(S) is continuously

constructible.

Because the property of having finite fibres is preserved under composition, if p : S →
p(S) has finite fibres and S is rigidly constructible, then p(S) is rigidly constructible.

Because the composition of covering space maps where the second map has finitely many

sheets is a covering space map, if S is nicely constructible and S is a covering space of p(S),

then p(S) is nicely constructible.
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We often combine several linkages together by gluing some vertices together. The follow-

ing proposition shows that gluing preserves our various notions of constructibility.

Proposition 2.14. If S ⊂ (Rd)m × (Rd)n and T ⊂ (Rd)n × (Rd)p are constructible using NS

and NT bars, respectively, then R = { (x, y, z) ∈ (Rd)m×(Rd)n×(Rd)p : (x, y) ∈ S and (y, z) ∈ T }
is constructible using NS + NT bars.

If S and T are both continuously constructible, then R is continuously constructible.

If S and T are both rigidly constructible, then R is rigidly constructible.

If S and T are both nicely constructible, then R is nicely constructible.

Proof. Given a bounded open set U ⊂ Rd, let LS be a linkage that constructs S inside U

with projection pS and LT be a linkage that constructs T inside U with projection pT .

Let R′ = S × T ⊂ ((Rd)m × (Rd)n) × ((Rd)n × (Rd)p), and LR′ = LS ⊔ LT . Let Z =

{ (x, y, y′, z) ∈ (Rd)m×(Rd)n×(Rd)n×(Rd)p : y = y′}, so that R is canonically isomorphic to

Z ∩ R′. Let LR′∩Z be LR′ along with additional 0-length bars connecting the corresponding

points of (Rd)n, and let LR be the linkage obtained by deleting the 0-length bars of LR′∩Z

and identifying their endpoints. Let pR′ = (pS, pT ), pR′∩Z be the restriction of pR′ to Z ∩R′,

and pR be the projection from Conf(LR) to R that agrees with pS and pT .

We claim pR(Conf(LR))∩Um+n+p = R∩Um+n+p, so that R is constructible using NS+NT

bars. If (x, y, z) ∈ R ∩ Um × Un × Up, then (x, y) ∈ S ∩ Um+n, (y, z) ∈ T ∩ Un+p. Because

LS and LT construct S and T , respectively, p−1
S (x, y) ∈ Conf(LS) ∩ p−1

S (Um+n), p−1
T (y, z) ∈

Conf(LT )∩p−1
T (Un+p). Thus p−1

R′ (x, y, y, z) ∈ Conf(LR′)∩p−1
R′ (Um+2n+p). Because the middle

two coordinates are equal, p−1
R′ (x, y, y, z) ∈ Conf(LR′∩Z)∩p−1

R′ (Um+2n+p). Thus p−1
R (x, y, z) ∈

Conf(LR) ∩ p−1
R (Um+n+p). The proof of the converse is similar.

Now suppose that LS and LT nicely construct S and T , respectively. Because a product

of covering spaces is a covering space of the product of the bases, Conf(LR′)∩p−1
R′ (Um+2n+p) =

Conf(LS⊔LT )∩p−1
R′ (Um+2n+p) = Conf(LS)∩p−1

S (Um+n)×Conf(LT )∩p−1
T (Un+p) is a covering

space of S ∩ Um+n × T ∩ Un+p = R′ ∩ Um+2n+p. Because Z ∩R′ ∩ Um+2n+p is a subspace of

R′ ∩Um+2n+p and Conf(LR′∩Z)∩ p−1
R′ (Um+2n+p) is its preimage under pR′ , Z ∩R′ ∩Um+2n+p

is a covering space of Conf(LR′∩Z) ∩ p−1
R′ (Um+2n+p). Because R ∼= Z ∩ R′ and Conf(LR) ∼=

Conf(LR′∩Z), it follows that Conf(LR) ∩ p−1
R (Um+n+p) is a covering space of R∩Um+n+p, so

27



that R is nicely constructible.

Because both continuous constructibility and rigid constructibility are also preserved

under products and restrictions to subspaces, the proof that the nicely constructible property

is preserved under gluing works for these properties as well.

The following result extends Proposition 2.10.

Proposition 2.15. Suppose T is a continously constructible set with vertices O and X

(among others) such that at any point of T , r < |OX| < R. Then the set S obtained by

gluing the linkage constructing T to a hook linkage OY X constructing

A =
{

(O, X) ∈ (Rd)2 : r ≤ |OX| ≤ R
}

is continuously constructible. If d = 2 and T is nicely constructible, then S is nicely con-

structible.

Proof. Let L be the hook linkage. Let U ⊂ Rd be any open set contained in the interior

of A and containing p(T ), where p is the projection down to vertices O and X of T . Then

Conf(L)∩ p−1(U2) is homeomorphic to (A∩U2)×Sd−2. Then by the lifting argument from

the r > 0 case of Proposition 2.10, S is continuously constructible.

If d = 2, then Conf(L)∩ p−1(U2) is homeomorphic to (A∩U2)×{0, 1}. Thus Conf(L)∩
p−1(U2) is the union of two disjoint sets, each homeomorphic to A ∩ U2, and the projection

is a covering space map.

It is not possible to strengthen Proposition 2.15 to an isomorphism, rather than a covering

space. This is essentially the only reason why the best we can obtain is a covering space

rather than an isomorphism. King’s work on cabled linkages shows this in a formal sense. He

proves that every compact algebraic set is analytically isomorphic to the configuration space

of a cabled linkage via a polynomial map, and derives Theorem 1.3 from this by replacing

each cabled bar with a hook [King].

In Chapter 7, we give a complete characterization of the possible drawable sets. To do

this, we transfer results about bounded constructible sets to drawable sets using the following

proposition:
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Proposition 2.16. A bounded set S ⊂ R
d is drawable if and only if it is constructible.

Proof. First, suppose that S is drawable. Then there is a linkage L and a projection p

such that p(Conf(L)) = S. Then for any bounded set U , p(Conf(L)) ∩U = S ∩ U , and S is

constructible.

Conversely, suppose that S is constructible. Let U be an open ball of radius R containing

S (this must exist because S is bounded). Because S is constructible, there is a linkage L
and a projection p such that p(Conf(L)) ∩ U = S ∩ U = S. We can create a linkage L′ by

attaching to L’s output vertex v a hook defined by Proposition 2.10 constraining v to have

a distance from the origin between 0 and R. Then p(Conf(L′)) = p(Conf(L)) ∩ U = S, and

S is drawable.

While there is a unique unbounded drawable set in d dimensions (Rd), there are many

unbounded constructible sets.
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Chapter 3

Elementary Linkages

In this chapter, we show how to build gadgets constructing various simple sets that are useful

for proving Kempe’s Universality Theorem. For this chapter and the next, we work in two

dimensions (d = 2) as our goal is to prove Kempe’s Universality Theorem in the plane.

3.1 Parallelograms and Contraparallelograms

Let L = ABCD be a rectangle linkage, with |AB| = |CD| and |BC| = |DA|. The configu-

rations of L fall into three classes:

(i) parallelograms, where AB ‖ CD and BC ‖ DA;

(ii) degenerate, where A, B, C, D are colinear;

(iii) contraparallelograms, where AC ‖ BD.

Kempe’s paper used both parallelograms and contraparallelograms to construct various

gadgets. Recall that the primary error in his flawed proof of Theorem 1.1 was his failure to

consider the continuous motions between the different types of configurations of the rectangle

linkage (see Figure 3-1).

In this section, we show how one can “brace” a rectangular linkage by adding vertices

and bars to produce linkages that construct the parallelogram configuration space and the

contraparallelogram configuration space (each configuration space contains the degenerate
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configurations). Then we prove that, with these bracings, the gadgets in Kempe’s original

design rigidly construct various useful sets.

The parallelogram bracing was previously known [KM], but the contraparallelogram brac-

ing is novel.

A B

CD

(a) parallelogram

A B CD

(b) degenerate

A B

C

D

(c) contraparallelogram

Figure 3-1: The various configurations of a rectangle linkage.

3.1.1 Parallelograms

Proposition 3.1. For any a, b > 0, the parallelogram configuration space

S =
{

(A, B, C, D) ∈ (R2)4 : |AB| = |CD| = a, |BC| = |AD| = b, AB ‖ CD, BC ‖ AD
}

is nicely constructible.

Proof. We brace a rectangle linkage L to remove the contraparallelogram configurations as

follows. By gluing degenerate triangle linkages, construct a new vertex M at the midpoint of

AB and a new vertex N at the midpoint of CD. Then add a new bar MN of length |BC| to

obtain a new linkage L′, as shown in Figure 3-2. Let p be the projection from configurations

of L′ to configurations of L that forgets about M and N .

Because S is defined by closed conditions, it is closed. We show that p(Conf(L′)) = S.

From this it follows that, for any U , p(Conf(L′))∩U4 = S ∩U4, and thus S is constructible.

In a parallelogram configuration, the distance between the midpoints of AB and CD is

always equal to |BC|, so any degenerate or parallelogram configuration of L can be extended

to a configuration of L′. Thus S ⊂ p(Conf(L′)).
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A B

CD

M

N

b

a

2

a

2

Figure 3-2: A braced parallelogram.

We now show p(Conf(L′)) ⊂ S, so that a (nondegenerate) contraparallelogram configu-

ration of L cannot be extended to a configuration of L′. Note that the locations of M, N

are determined by the locations of A, B, C, D, so we need only check whether the new bar

has the right length. In a nondegenerate contraparallelogram configuration, MN = AC+BD
2

.

Let X be the intersection of AD and BC. Then by the triangle inequality,

2|MN | = |AC| + |BD| < (|AX| + |XC|) + (|BX| + |XD|)

= (|AX| + |XD|) + (|BX| + |XC|)

= |AD| + |BC| = 2|BC|,

so |MN | < |BC|, a contradiction. Thus the only contraparallelogram configurations are

degenerate.

To see that S is nicely constructible, notice that given P = (A, B, C, D) ∈ S, M = A+B
2

and N = C+D
2

, so S is in fact homeomorphic to Conf(L′). Thus S is nicely constructible.

Corollary 3.2. For R1 > R2 > 0, the parallelogram configuration space

S =
{

(O, M, N, V ) ∈ (R2)4 :
−−→
OV =

−−→
OM +

−−→
ON, |OM | = R1, |ON | = R2

}

is nicely constructible.
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Proof. This is simply an equivalent description of the parallelogram configuration space.

3.1.2 Contraparallelograms

Proposition 3.3. For any distinct a, b > 0, the contraparallelogram configuration space

S =
{

(A, B, C, D) ∈ (R2)4 : |AB| = |CD| = a, |BC| = |AD| = b, AC ‖ BD
}

is nicely constructible.

Proof. Because |AB| = a 6= |AD| = b, there is just one degenerate configuration up to a

rigid motion. Without loss of generality, assume a > b. We brace the linkage L as follows.

Let K, L, M , N be vertices at the midpoints of bars AB, BC, CD, DA respectively, and

add a vertex X connected to K and M by bars of length R1 and to L and N by bars of

length R2, where R1 and R2 are large and satisfy R2
2−R2

1 = 1
4
(a2− b2). Call this new linkage

L′. See Figure 3-3. We must show that L′ is a braced contraparallelogram constructing S.

It suffices to show p(Conf(L′)) = S, and thus for any U , p(Conf(L′))∩U4 = S ∩U4, so that

the contraparallelogram S is constructible.

A

D

C

B

N
M

L

K

X

Figure 3-3: A braced contraparallelogram.

First we show p(Conf(L′)) ⊂ S, or equivalently that a (nondegenerate) parallelogram

configuration of L cannot be extended to a configuration of L′. Let ABCD be a nondegen-

erate parallelogram configuration of L. Then KLMN is also a parallelogram. Suppose X is
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a point such that XK = XM = R1 and XL = XN = R2. Then X lies on the perpendicular

bisectors of KM and LN . Since KLMN is a parallelogram, these perpendicular bisectors

intersect in a single point, the center O of parallelogram KLMN . But X cannot lie at O

because R1 > OK and R2 > OL (because we took R1 and R2 to be large). Hence there is

no extension to a configuration of L′.

It now suffices to show p(Conf(L′)) ⊃ S. To do this, we need some results on the

geometry of the pieces of L′.

Lemma 3.4. Let ABCD be a contraparallelogram (possibly degenerate) with AB = CD >

AD = BC and let K, L, M , N be the midpoints of sides AB, BC, CD, DA, respectively.

Then K, L, M , N are colinear, with K and M between L and N , NK = ML, and NK ·
NM = 1

4
(AB2 − AD2).

Proof. The only statement not clear by inspection is the last one. Let P be the midpoint

of BD and let H be the foot of the altitude from A to BD. Then NK = 1
2
BD = DP

and NM = 1
2
AC = HP , so NK · NM = DP · HP . But DP · HP is just the power of P

with respect to the circumcircle of triangle ADH . This circle has center at N and radius

AN = 1
2
AD, so NK · NM = DP · HP = PN2 − AN2 = 1

4
(AB2 − AD2) because PN

is a midline in triangle ABD. This proof requires ABCD to be non-degenerate, but by

continuity, the claim holds in the degenerate case too.

Lemma 3.5. Let K, L, M , N be colinear points (N 6= L) with K and M between L and

N and NK = ML. Let X be a point on the perpendicular bisector of segment NL. Then

XN2 − XK2 = NK · NM .

Proof. Let Q be the midpoint of segment NL, so XQ is perpendicular to the line through

K, L, M , N . Since NK = ML, Q is also the midpoint of segment KM . Thus

XN2 − XK2 = (XQ2 + NQ2) − (XQ2 + KQ2)

= (NQ − KQ)(NQ + KQ)

= NK · NM

as claimed.

35



Lemma 3.5 implies that a contraparallelogram can be used to perform geometric inversion;

Hart’s Inversor was based on this observation.

Now we are ready to show that p(Conf(L′)) ⊃ S, or equivalently that any degenerate or

contraparallelogram configuration of L can be extended to a configuration of L′.

Given any configuration of L, we must find a point X such that XK = XM = R1 and

XL = XN = R2. Choose X to be a point on the perpendicular bisector of NL such that

XL = XN = R2; we can do this because we chose R2 to be large. Now, by Lemmas 1 and

2, XN2 − XK2 = 1
4
(AB2 − AD2) = R2

2 − R2
1, so XK = XM = R1.

To see that S is nicely constructible, notice that K, L, M, N are each linear combinations

of A, B, C, D, and X can be at either intersection of the circles of radius R1 about K and M

(giving two disconnected components of Conf(L), each homeomorphic to S). Thus Conf(L)

is a 2-sheeted covering space of S, and S is nicely constructible.

To avoid cluttering our diagrams, we omit bracings of parallelograms and contraparallel-

ograms from diagrams in subsequent sections.

3.2 Multiplying and Adding Angles

One can represent an angle θ by a pair of bars with a common vertex O. Often one bar is

fixed, pointed away from O in the positive x direction. Following Kempe, we build gadgets

to manipulate angles so that we can construct bars of length frs at angles rα + sβ + γrs (see

Section 1.6 for a reminder on our strategy). To do this, we need gadgets to negate angles

(Kempe’s reversor) and add angles (Kempe’s additor, a clever combination of two reversors).

3.2.1 Multiplying Angles by an Integer

Proposition 3.6. Let a, b, c > 0. Then the multiplicator

S =
{

(O, X, Y, Z) ∈ (R2)4 such that |OX| = a, |OY | = b, |OZ| = c, ∠XOY = ∠Y OZ
}

is nicely constructible.
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Proof. After gluing a degenerate triangle linkage to OX, OY , and OZ, and projecting

away the original vertices (this projection is clearly a homeomorphism), we can assume a > b

and ac = b2. We construct L by gluing together similar contraparallelograms Y OXP and

ZOY W and degenerate triangle Y WP , as shown in Figure 3-4.

O

Y

W

X

P

Z

θ
θ

Figure 3-4: Kempe’s reversor.

In any configuration of L, angles XOY and Y OZ are equal, since they are corresponding

angles of similar contraparallelograms. Thus p(Conf(L)) ⊂ S.

The coordinates of W and P are a continuous function of (O, X, Y, Z): W is the reflec-

tion of O across the perpendicular bisector of Y Z, and P is the reflection of O across the

perpendicular bisector of Y X. Thus S ⊂ p(Conf(L)), and S is constructible. Further, S is a

gluing of nicely constructible sets followed by a homeomorphic projection forgetting W and

P , so S is nicely constructible.

By choosing which two of OX, OY , and OZ define the angle θ, the reversor allows us

to construct the angles −θ, 2θ, and θ/2 (though for θ/2, the configuration space contains

both θ/2 and θ/2 + π). Kempe called this linkage the “reversor”, because it can be used

to negate angles. This construction easily generalizes to Kempe’s “multiplicator” for mul-

tiplying angles by arbitrary integers k; simply glue together k − 1 reversors along adjacent

contraparallelograms. In Chapter 4 we use this technique to (nicely) construct the angles

kθ, for all −n ≤ k ≤ n, using O(n) bars.
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3.2.2 Adding Angles

Proposition 3.7. Let a, b, c, d > 0. Then the additor

S =
{

(O, W, X, Y, Z) ∈ (R2)5 : |OW | = a, |OX| = b, |OY | = c, |OZ| = d,

∠WOZ = ∠WOX + ∠WOY
}

is nicely constructible.

Proof. Construct L by gluing two reversors: one enforcing ∠XOM = ∠MOY and another

enforcing ∠WOM = ∠MOZ, where |OM | = 1 and all other lengths are set according to

the definition of S. See Figure 3-5. The first reversor ensures that 2∠WOM = ∠WOX +

∠WOY , and the second that ∠WOZ = 2∠WOM , so that ∠WOZ = ∠WOX + ∠WOY

in any configuration of L. Conversely, given any set of points (O, W, X, Y, Z) satisfying

∠WOZ = ∠WOX +∠WOY , one can construct a configuration of L by placing M on either

bisector of ∠WOZ.

This construction is a gluing of nicely constructible sets followed by a projection deleting

vertex M . The projection deleting M is a 2-sheeted covering space map, because M 7→ Z is

essentially the map z 7→ dz2 in the complex unit circle. Thus S is nicely constructible.

α

α

β

β
α+β

2

α+β
2

O W

X

Y

M

Z

Figure 3-5: Kempe’s additor.
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3.3 Translating

The angle manipulation techniques described in the last section can be used to construct

vertices vr,s with polar coordinates fr,s, rα + sβ + γr,s. Next we need to be able to add

together these vertices vr,s.

Proposition 3.8. Let a > 0. Then the translation by a bar OX,

S =
{

(O, X, Y, Z) ∈ (R2)4 : |OX| = |Y Z| = a,
−−→
OX +

−−→
OY =

−→
OZ
}

is constructible. If T ⊂ (R2)k is a nicely constructible set containing vertices O, X, and Y

such that inside T , |C(O)−C(Y )| is bounded away from zero, then the set obtained by gluing

S and T along vertices O, X, and Y is nicely constructible.

Proof. Fix a bounded open set U , and pick R > a such that the ball of radius R centered

at O contains U .

By gluing together two parallelograms OXMN and NMZY with short sides OX, MN ,

NM , and ZY of length a and other sides of length R, we obtain a linkage L′ that can

translate the vector
−−→
OX to any location in a large disk of radius 2R. See Figure 3-6. Let p

be the projection that forgets about all vertices except O, X, Y, and Z.

The conditions defining S are closed, so S is constructible if p(Conf(L)) ∩ U4 = S ∩ U4.

We claim p(Conf(L))∩U4 ⊂ S∩U4. By the definitions of OXMN and NMZY , |OX| =

|MN | = |Y Z| = a, and OX ‖ NM ‖ Y Z. Thus
−−→
OX =

−→
Y Z ⇒ −→

OZ =
−−→
OY +

−→
Y Z =

−−→
OY +

−−→
OX.

Thus p(Conf(L)) ⊂ S and so p(Conf(L)) ∩ U4 ⊂ S ∩ U4.

We claim p(Conf(L))∩U4 ⊃ S∩U4. Pick (O, X, Y, Z) ∈ S∩U4. Since Y ∈ U , |OY | ≤ R.

Thus the circles of radius R about O and Y must intersect; place N at any such point of

intersection, and set M = N+
−−→
OX. Now,

−→
OZ =

−−→
OY +

−−→
OX, so

−→
Y Z =

−→
OZ−−−→

OY =
−−→
OX =

−−→
NM .

Thus |XM | = |MZ| = R, and we have extended (O, X, Y, Z) to a configuration of L.

If additionally S is glued along vertices O, X, and Y to a set T nicely constructed by a

linkage LT where, within T , d(O, Y ) is bounded from below, then N is being projected away

from hook ONY , which is glued to a set on which 2R > |OY | > 0. By Proposition 2.15, the

projection forgetting N is a covering space map. Given N , M = N +
−−→
OX. It follows that
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M
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Figure 3-6: Kempe’s translator.

the set obtained by gluing S and T is nicely constructible.

Observe that if O = Y , then N is free to move in a circle about O of radius R, so that

S is not rigidly constructed by the translator.

3.4 Drawing a Straight Line or Half-Plane

The Peaucellier linkage constructs a straight line. See Figure 3-7(a). Like the rectangle link-

age, the Peaucellier linkage has some extra configurations, in this case those where the two

vertices M and N coincide or the two vertices A and B coincide. Because these are the non-

degenerate contraparallelogram configurations of the rhombus BMAN , bracing this rhombus

as a parallelogram suffices to remove the extra configurations. Some prior work on the subject

neglects or incorrectly treats this bracing issue (see for example [HJW] and [GZCG]).

The Peaucellier inversor can be modified to construct a half-plane by changing the con-

straint on B from a bar constructing a circle to a hook constructing a disk. See Figure 3-7(b).

Proposition 3.9. Every line L is nicely constructible. Every half-plane H is continuously

and rigidly constructible.

Proof. It suffices to show that the result holds for a particular small U that contains an
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O

A

M

N

BX

(a) Original Peaucellier inversor.

O

M

N

BX

Y

A

(b) Modified Peaucellier inversor.

Figure 3-7: The Peaucellier Linkage can be used to construct a line segment (a) or a half–
plane (b).

interval of the line ℓ or an interval of the boundary of H ; the general result follows after

applying a suitable affine transformation.

Pick D > C, and construct the linkage L by fixing a vertex O and attaching bars

constraining |OM | = |ON | = D and |BM | = |MA| = |AN | = |BN | = C. Points O, B, and

A are colinear because they all lie on the perpendicular bisector of MN .

Let Z be the center of rhombus BMAN (because of our bracing, BMAN must be in a

rhombus configuration). Then |OB| · |OA| = (|OZ| − |BZ|)(|OZ|+ |BZ|) = |OZ|2 − |BZ|2.
By the Pythagorean Theorem, |OB| · |OA| = (|OM |2 − |ZM |2) − (|BM |2 − |ZM |2) =

D2 −C2, a constant. It follows that A and B are related by geometric inversion f about O.

Any configuration of the hook OMA lifts to a configuration of L, so there are configurations

of L where B is at any point in an annulus of radii D−C and D+C. Thus R = { (O, B, A) :

|OB| · |BA| = D2 −C2, D−C ≤ |OB| ≤ D + C and O, B, A are conlinear} is constructible.

Let P be the center of an open ball W contained in this annulus. Construct a linkage LL

by fixing a vertex X at the midpoint of OP and adding a bar attaching X to B of length

equal to |OX|. Construct a linkage LH by fixing a vertex X at the midpoint of OP and

attaching X to B by a hook of positive inner radius and outer radius equal to |OX|.

Linkage LL constrains B to lie on a circle through O, thus by inversion this constrains
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A to a line. Linkage LH constrains B to an annulus with O on the boundary, and thus

constrains A to a vertical strip. Thus p(Conf(LL)) ⊂ L and p(Conf(LH)) ⊂ H . Let

U = f(W ). The bar attached to a fixed point draws a circle and the hook draws an annulus,

so L ∩ U ⊂ p(Conf(LL)) ∩ U and H ∩ U ⊂ p(Conf(LH)) ∩ U . Further, because the circle

about X of radius |OX| passes through W , for LL, L passes through U ; and for LH , the

boundary of H passes through U . We now can handle any U by applying an appropriate

affine transformation to our linkage and observing that any bounded region of a half-plane

is contained in some vertical strip containing the boundary of the half-plane. Thus L and

H are constructible.

For both LL and LH , the projection forgetting M is forgetting the middle vertex of hook

OMA. Because no configuration of either linkage has this hook touch the boundary of the

annulus, by Proposition 2.15, the projection forgetting M is a covering space map. Given

M , N is the reflection of M across OA.

Line L is nicely constructible, because the projection forgetting O and B is a homeo-

morphism (B is the inversion of A about O with some fixed radius, and O is fixed), so L is

nicely constructible.

Half-plane H is continuously and rigidly constructible by a similar argument, but the

projection from Conf(LH) to H also forgets about the middle vertex of the hook XY B. Since

this hook’s annulus has nonzero inner radius, this projection has the path-lifting property

and has finite fibres, and H is continuously and rigidly constructible.

Linkage LH does not nicely construct H , because the hook connecting X to B does not

nicely construct the annulus.
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Chapter 4

Proof of Kempe’s Theorem

We now have the tools needed to prove Kempe’s Universality Theorem (Theorem 1.1). By

Proposition 2.16, Theorem 1.1 is equivalent to showing that, for any closed disk B = { (x, y) :

(x − a)2 + (y − b)2 ≤ R} and any f ∈ R[x, y] of degree n, S = B ∩ { (x, y) : f(x, y) = 0}
is constructible. We prove that S is in fact continuously and rigidly constructible. Further,

because it adds no new techniques to the argument, we prove the natural generalization to

m output points:

Theorem 4.1. Let f ∈ R[x1, y1, . . . , xm, ym] be a polynomial of total degree n, and let

B be a closed disk in the plane. Then S = Bm ∩ { ((x1, y1), . . . , (xm, ym)) ∈ (R2)m :

f(x1, y1, . . . , xm, ym) = 0 } is continuously and rigidly constructible using O
((

n+2m

2m

))

bars.

Theorem 1.1 clearly follows from Theorem 4.1. In order to prove Theorem 4.1, we first

prove a version that replaces B with an annulus:

Theorem 4.2. Let f ∈ R[x1, y1, . . . , xm, ym] be a polynomial of total degree n, and let

A be a closed annulus in the plane. Then S = Am ∩ { ((x1, y1), . . . , (xm, ym)) ∈ (R2)m :

f(x1, y1, . . . , xm, ym) ≥ 0 } is continuously and rigidly constructible using O
((

n+2m

2m

))

bars.

Further, T = Am ∩ { ((x1, y1), . . . , (xm, ym)) ∈ (R2)m : f(x1, y1, . . . , xm, ym) = 0 } is nicely

constructible using O
((

n+2m

2m

))

bars.

Lemma 4.3. Theorems 4.1 and Theorem 1.3 follow from Theorem 4.2.

Proof. Theorem 1.3 follows immediately from the case m = 1 of the second part of

Theorem 4.2; simply pick an annulus A containing the desired bounded open set U .
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To prove Theorem 4.1, pick A to be an annulus containing B. Then by Theorem 4.2,

the linkage defined by gluing the output points of the linkages for f(x1, y1, . . . , xm, ym) ≥ 0,

f(x1, y1, . . . , xm, ym) ≤ 0, and (xk − a)2 + (yk − b)2 ≤ R for each 1 ≤ k ≤ m continuously

and rigidly constructs S. This construction uses O
((

n+2m

2m

)

+ m
(

4
2

))

= O
((

n+2m

2m

))

bars.

To prove Theorem 4.2, we first convert f into a trigonometric expression. Without loss

of generality, assume that A is centered at the origin. Let R1 + R2 and R1 − R2 be the

radii of A. We begin by gluing together (braced) parallelogram linkages OMkukNk with

|OMk| = R1 and |ONk| = R2 for each k along common vertex O, which is fixed at the

origin. Define angles αk and βk as in Figure 4-1. Set each output vertex uk = (xk, yk). Each

vertex uk can trace out the entire annulus A. Kempe’s original construction used a rhombus

rather than a parallelogram. We cannot do this, because with one vertex O of a rhombus

fixed, the opposite vertex uk does not rigidly construct the disk (the projection forgetting

M and N has an infinite fibre over the degenerate configuration where uk = O). So we use

a parallelogram.

αk

βk

O
Mk

Nk

vk

Figure 4-1: The initial parallelogram.

4.1 Trigonometric Algebra

We use i, j to denote vectors in Zm
≥0, r, s to denote vectors in Zm, and α, β to denote vectors

in (R/(2πZ))m. For brevity of notation, we often write sums of the form:

∑

|r|+|s|≤n

g(r, s)
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where the sum is taken to be over all pairs of index vectors (r, s) ∈ (Zm)2 satisfying the

stated constraint.

The following lemma shows how inside A we can transform the polynomial f into a

trigonometric function of the angles αk and βk defined as in Figure 4-1.

Lemma 4.4. Given a polynomial f ∈ R[x1, y1, . . . , xm, ym] and an annulus A of radii R1−R2

and R1 + R2 centered at the origin, there exist constants fr,s, γr,s such that inside A,

xk = R1 cos αk + R2 cos βk. (4.1)

yk = R1 sin αk + R2 sin βk. (4.2)

f(x1, y1, . . . , xm, ym) =
∑

|r|+|s|≤n

fr,s cos(r · α + s · β + γr,s). (4.3)

Proof. The x- and y-coordinates of uk satisfy equations (4.1) and (4.2). Substitute these

expressions into the polynomial f(x1, y1, . . . , xm, ym) to obtain a trigonometric expression of

the form

f(x1, y1, . . . , xm, ym) =

∑

|i|+|j|≤n

ci,j

m
∏

k=1

(R1 cos αk + R2 cos βk)
ik(R1 sin αk + R2 sin βk)

jk (4.4)

where ci,j is the coefficient of
∏m

k=1 xikyjk in f . After expanding and repeated use of the

trigonometric product-to-sum formulas

cos A cos B =
cos(A + B) + cos(A − B)

2
,

cos A sin B =
sin(A + B) − sin(A − B)

2
,

sin A sin B =
cos(A − B) − cos(A + B)

2
,

we obtain an equation of the form

f(x1, y1, . . . , xm, ym) =
∑

|r|+|s|≤n

dr,s cos(r · α + s · β) + er,s sin(r · α + s · β).
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Finally, for each i and j, choose fr,s and γr,s such that, for all θ,

fr,s cos(θ + γr,s) = dr,s cos(θ) + er,s sin(θ).

Then, inside A,

f(x1, y1, . . . , xm, ym) =
∑

|r|+|s|≤n

fr,s cos(r · α + s · β + γr,s) (4.5)

as desired.

4.2 Constructing the Angles

We now show how to construct vertices vr,s whose x-coordinates are the terms fr,s cos(r ·
α + s · β + γr,s).

Lemma 4.5. For any R1 > R2 > 0, and polynomial f ∈ R[x1, y1, . . . , xm, ym] of total degree

n, define fr,s, γr,s as in Lemma 4.4. Then

S = {O = (0, 0), {Mk}m
k=1, {Nk}m

k=1, {uk}m
k=1, {vr,s}|r|+|s|≤n : there exist αk, βk ∈ R

m satisfying

Mk = (R1 cos αk, R1 sin αk), Nk = (R2 cos βk, R2 sin βk), uk = Mk + Nk (4.6)

vr,s = (fr,s cos θr,s, fr,s sin θr,s), where θr,s = r · α + s · β + γr,s}

is nicely constructible using O
((

n+2m

2m

))

bars.

Proof. Construct the linkage L as follows. Start with a (braced) parallelogram OMkukNk

for each output vertex uk, which by Corollary 3.2 nicely constructs vertices (O, Mk, Nk, uk)

satisfying equations (4.6). Let αk be the angle from the x-axis to
−−−→
OMk, and βk be the angle

from the x-axis to
−−→
ONk. Glue these parallelograms together at the common vertex O.

Use O
((

n

m

))

additors (detailed in Proposition 3.7) and reversors (detailed in Proposi-

tion 3.6) to iteratively construct points Ar with |OAr| = 1 at angles from the x-axis of r ·α
for all r ∈ Zm satisfying |r| ≤ n. Similarly, construct points Bs with |OBs| = 1 at angles

from the x-axis of s · β for all s ∈ Zm satisfying |s| ≤ n. Now use O
((

n+2m

2m

))

additors
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adding the angles of each pair Ar, Bs, to construct points Qr,s with |OQr,s| = 1 at angles

r · α + s · β for all |r| + |s| ≤ n. For each pair (r, s), include a fixed point Pr,s such that

OPr,s has angle γr,s from the x-axis. Finally, use O
((

n+2m

2m

))

additors to construct bars of

length fr,s at angles r ·α + s · β + γr,s for all r, s satisfying |r|+ |s| ≤ n. Since additors and

reversors take O(1) bars each, we have used a total of O
((

n+2m

2m

))

bars.

This construction is a mass gluing of nicely constructible components, followed by a

projection that forgets about the Ar’s, Bs’s, Pr,s’s, and Qr,s’s. All the vertices being forgotten

in this projection are continuous functions of the αk’s and βk’s, which are in turn continuous

functions of the coordinates of the Mk’s and Nk’s, so this projection is a homeomorphism.

Thus S is nicely constructible using O
((

n+2m

2m

))

bars, as desired.

4.3 Proving Kempe’s Theorem

We are now ready to prove Theorem 4.2. Let L′ be the linkage of Lemma 4.5.

Order the set of points vr,s into a list P1, P2, . . . , PN . Write Pi = (ui, wi). Let W0 = (a, b)

be a fixed point further from the origin than the sum of the lengths of all bars used in

constructing L′. For each 1 ≤ i ≤ N , connect a translator (detailed in Proposition 3.8)

enforcing for the pair (r, s) corresponding to i that |OPi| = fr,s and
−−→
OPi +

−−−−→
OWi−1 =

−−→
OWi.

Then the x-coordinate of WN is

a +
N
∑

i=1

ui = a +
∑

|r|+|s|≤n

fr,s cos(r · α + s · β + γr,s) = a + f(x1, y1, . . . , xm, ym).

by Lemma 4.4.

Now finish the construction of LS by attaching to WN a sufficiently large modified Peau-

cellier linkage (detailed in Proposition 3.9) that constrains it to the half-plane x ≥ a. By

“sufficiently large” we mean that its U should contain the disk centered at W0 = (a, b) of ra-

dius equal to the sum of the lengths of all bars used so far. The output vertices uk = (xk, yk)

are then constrained by f(x1, y1, . . . , xm, ym) ≥ 0, as desired. Moreover, for any configuration

of the uk’s inside A satisfying f(x1, y1, . . . , xm, ym) = 0, there is at least one corresponding

configuration of LS. By projecting from Conf(LS) down to just the uk’s, we see that LS
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constructs the desired set Am ∩ { (x1, y1, . . . , xm, ym) ∈ R
2 : f(x1, y1, . . . , xm, ym) ≥ 0 } using

O
((

n+2m

2m

))

bars.

The construction before adding the Peaucellier linkage is nicely constructible, because

for each i, |−−→OPi| is bounded away from 0, and by Proposition 3.8, this is the property needed

for gluing a translator to another set to produce a nicely constructible set. Attaching the

modified Peaucellier linkage leaves us with a continuously and rigidly constructible set.

The Wi’s are continuous functions of the αk’s and βk’s, which are in turn a continuous

function of the locations of the Mk’s and Nk’s, so the projection that forgets about all the

Wi’s is a homeomorphism.

Finally, because O is fixed and, for each k, there are at most two choices for which side

of
−−→
Ouk vertices Mk and Nk are on in the initial parallelogram, projecting down to just the

trace of uk is a covering space map to a closed set. Applying Proposition 2.14, we find that

S is continuously and rigidly constructible using O
((

n+2m

2m

))

bars, as desired.

Linkage LT is the same as LS, except we use a standard Peaucellier inversor instead of

a modified Peaucellier inversor. Because the standard Peaucellier inversor nicely constructs

the line, the argument for LS shows that LT nicely constructs T using O
((

n+2m

2m

))

bars.

4.4 Computational Issues

In this section, we give an algorithm for computing a complete configuration of a linkage

that is necessary for proving the coNP-hardness of rigidity testing.

Theorem 4.6. Let f ∈ R[x1, y1, . . . , xm, ym] be a polynomial of total degree n, and let A be a

closed annulus in the plane with integral radii. Let S = Am ∩{ (x1, y1, . . . , xm, ym) ∈ (R2)m :

f(x1, y1, . . . , xm, ym) = 0 }. Then there is an algorithm running in time polynomial in
(

n+2m

2m

)

that given a point P ∈ S such that the vectors of angles α and β defined by Equation 4.6

have the property that cos(αk

2
), cos(βk

2
), sin(αk

2
), sin(βk

2
) are all rational, computes a linkage

L that continuously and rigidly constructing S, and a configuration C ∈ Conf(L) such that

p(C) = P .

Proof. We start from the linkage L′ defined in Theorem 4.2, and then show how to adjust
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it so that all vertices have rational coordinates and so that we can compute a configuration

C in time polynomial in
(

n+2m

n

)

.

By the trigonometric sum-to-product formulas, a polynomial in sin αk, sin βk, cos αk, cos βk

can be efficiently converted into a polynomial in cos αk

2
, cos βk

2
, sin αk

2
, sin βk

2
of twice the orig-

inal degree. Thus, all of the vertices in the constructions of Lemma 4.5 and Theorem 4.2

are a polynomial function of the variables cos αk

2
, cos βk

2
, sin αk

2
, sin βk

2
of degree polynomial in

(

n+2m

n

)

.

Given the point P = {x1, y1, . . . , xm, ym}, set uk = (xk, yk). Then we can compute a set

of coordinates for each point Mk defined in Equation 4.6 by solving the quadratic equation

defined by the intersection of the circles of radius R1 about O and R2 about uk. Because each

Mk must have rational coefficients, both solutions have rational coordinates. Now, given the

point Mk, we can compute Nk = uk − Mk.

Now, the Ar’s, Bs’s, Qr,s’s, and Pr,s’s have coordinates

Ar = (cos(r · α), sin(r · α))

Bs = (cos(s · β), sin(s · β))

Qr,s = (cos(r · α + s · β), sin(r · α + s · β))

Pr,s = (fr,s cos(r · α + s · β + γr,s), fr,s sin(r · α + s · β + γr,s))

= (dr,s cos(r · α + s · β) + er,s sin(r · α + s · β),

dr,s sin(r · α + s · β) − er,s cos(r · α + s · β))

Wi = Wi−1 + Pi, for i > 0; W0 = (a, b)

where the dr,s’s and er,s’s are as defined in Lemma 4.4.

We now show how to compute the dr,s’s and er,s’s. These are a function of only the
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coefficients of f . Then by applying the Binomial Theorem to Equation 4.4, we obtain

f(α, β) =
∑

|i|+|j|≤n

ci,j

m
∏

k=1

(R1 cos αk + R2 cos βk)
ik(R1 sin αk + R2 sin βk)

jk

=
∑

|a|+|b|+|c|+|d|≤n

ca+b,c+d

(

ak + bk

ak

)(

ck + dk

ck

)

×

m
∏

k=1

(R1 cos αk)
ak(R2 cos βk)

bk(R1 sin αk)
ck(R2 sin βk)

dk

where the vectors i, j, a,b, c,d are all vectors in Zm
≥0. Let B1 be the basis of terms the form

∏m

k=1(cos αk)
ak(cos βk)

bk(sin αk)
ck(sin βk)

dk such that |b|+ |c|+ |d|+ |a| ≤ n. This expansion

allows us to efficiently compute the coefficients of f in the basis B1. Basis B1 contains
(

n+4m

n

)

basis vectors because it is the space of all polynomials in 4m variables of total degree

at most n.

To compute the dr,s’s and er,s’s, we need to express f in the basis B2 generated by

cos(r · α + s · β) and sin(r · α + s · β), where r and s vary, as usual, over integer vectors

satisfying r, s such that |r| + |s| ≤ n. Basis B2 contains one basis vector for each 2m-

dimensional vector over Z with L1 norm at most n. Because this is at most the number of

4m-dimensional vectors over Z≥0 with L1 norm at most n, basis B2 has at most O
((

n+4m

n

))

basis vectors.

To do this, we compute the matrix M defining the transformation from B2 to B1. We

can then invert the matrix, and multiply it with the coefficients of f in the basis B1 to obtain

an expansion of f in the basis B2.

We can efficiently compute the expansions of each term cos(α·r+β ·s) (or sin(α·r+β ·s))
using dynamic programming. We first compute the coefficients of each term where |r|+ |s| ≤
t − 1, and then from that compute the coefficients of each term where |r| + |s| = t, using a

single application of the trigonometric product-to-sum formulas. The total time consumed

for each element at level t is the cost of adding two coefficients at level t−1. Thus, computing

M requires performing

O

(

n
∑

t=0

(

t + 4m

n

)

)

= O

(

n

(

n + 4m

n

))

.
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rational addition operations.

Since M is a matrix with each dimension at most O
((

n+4m

n

))

, we can solve an equation of

the form Mx = b in time O
(

(

n+4m

n

)3
)

using Gaussian elimination. By construction, M has

integer entries, and one can also verify using the trigonometric product-to-sum formulas that

each dr,s and er,s is an integer multiple of 1
2nRn

1
Rn

2

. Remember that R1 and R2 are integers,

so that these have rational denominators.

Thus, we can compute all the coefficients dr,s and er,s needed to compute the coordi-

nates of the Pr,s’s in time polynomial in O
((

n+4m

n

))

. Further, these coefficients are rational

numbers, with denominators containing only polynomially many bits.

We can also use the matrix M to compute the coordinates of the points Ar, Bs, and Qr,s.

To evaluate cos(α · r + β · s), we convert it to the basis B1 by extracting the corresponding

column c of M . Since each element of the basis B1 is a product of at most n terms of

the form cos αk, cos βk, sin αk, sin βk, and we know all these rational numbers in our target

configuration C, we can simply evaluate each element of B1 and sum them up to obtain

cos(α·r+β·s). A similar technique can be used for computing those of the form sin(α·r+β·s).
Each of these computations takes time polynomial in

(

n+4m

n

)

, and there are
(

n+4m

n

)

basis

elements, so in total computing the coordinates of these points consumes time polynomial

in
(

n+4m

n

)

, as desired.

We can now compute the coordinates of the Pr,s’s from the coordinates of the Qr,s’s,

along with the values dr,s and er,s that we have already obtained.

Given the coordinates of the Pr,s’s, one can add up the partial sums to compute the

coordinates of all the Wi’s. We have now shown how to compute coordinates for all the

vertices projected away in the proofs of Lemma 4.5 and Theorem 4.2.

Thus, it now suffices to, for each of the additors, reversors, translators, and peaucellier

linkages used in our construction (and the reversors, parallelograms, and contraparallelo-

grams used in building them), we can efficiently compute some set of rational coordinates

for all of the vertices projected away in those constructions. This process may involve mod-

ifying the linkage L′ in order to ensure the rationality of the relevant coordinates, so long as

we do not change the structure of S in the process.

1. For each translator enforcing
−−→
OPi +

−−−−→
OWi−1 =

−−→
OWi, we compute a location for point N
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by computing the perpendicular bisector of OY , and picking a point N with rational

coordinates along it such that |ON | > R; then we compute M = N +
−−→
OX. Note that

this transformation does not necessarily preserve the size of the translator, but that

the new translator with a slightly different radius greater than R constructs the same

set as the original translator. The new translator has the advantage that all its points

have rational coordinates in the configuration that are constructing.

2. For the Peaucellier linkage, we choose an origin O for our new Peaucellier linkage that

has the same x-coordinate as the point A = WN . Then pick B to be any point between

O and A, and X = O +
−−→
OB
2

. Finally, choose M and N sufficiently far from the origin

using the same trick used to compute points M and N for the translator, so that we

draw a sufficiently large line segment, as desired.

3. For the additors adding two angles, the only vertex of the construction we forget is

the angle bisector M . This point is on the unit circle at an angle that is a half-

integer linear combination of the αk’s and βk’s. It follows that it can be expressed as

polynomial with rational coefficients in the cos αk

2
, sin αk

2
, cos βk

2
, and sin βk

2
, and thus

it has rational coordinates. We can efficiently compute those coordinates using the

trigonometric half-angle formulas.

4. For the reversors, the vertices W and P that are forgotten are the reflection of vertex

O across the perpendicular bisectors of ZY and Y X, respectively. These forgotten

vertices are easily computed, and clearly have rational coordinates if the coordinates

of points O,X,Y and Z are rational.

5. For the parallelograms, we simply need to compute coordinates M and N , which is

trivial since they are the at the midpoints of existing bars. These coordinates are

rational if the coordinates of the vertices are rational.

6. For the contraparallelograms, we must find a location for vertices K, L, M, N, X. Ver-

tices K, L, M, N are simply the midpoints of existing bars. For vertex X, we compute

the perpendicular bisector of DB, and pick X with rational coordinates sufficiently far

along this line to satisfy our radii constraints.
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Given the coordinates of all the vertices of a configuration, we can represent the lengths

of all the bars in the configuration in terms of the distances between the relevant pairs of

vertices in the configuration we have constructed.

Thus we have shown how to compute a linkage L such that p(Conf(L))∩UN = p(Conf(L′))∩
UN = S ∩ UN , along with a configuration C ∈ Conf(L) such that p(C) = P .

This computation runs in time polynomial in O
((

n+2m

n

))

because

(

n+4m

n

)

(

n+2m

n

)2 =
n
∏

i=1

i + 4m

i

i2

(i + 2m)2
=

n
∏

i=1

i(4m + i)

(2m + i)2
≤ 1

so that
(

n+4m

n

)

= O
(

(

n+2m

n

)2
)

.
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Chapter 5

Rigidity2 is coNP-hard

Definition 5.1. A configuration C of a linkage L is rigid if C is an isolated point of Conf(L),

modulo rigid motions of L.

Definition 5.2. Rigidityd is the problem of deciding whether a given configuration of a

linkage in d-dimensional space is rigid.

The universality theorems of Kempe and Kapovich and Millson relate the configuration

spaces of linkages to real algebraic varieties. Combined with the NPR-hardness of the real

Nullstellensatz [BCSS], one might conjecture that Rigidityd is computationally intractable.

In this chapter, we prove that this intuition is correct. There are two challenges in this

approach. One is that the Nullstellensatz is fundamentally a question about the existence of

a solution, while rigidity is a question about (local) uniqueness of a solution. We solve this

problem by using a certain NP-hardness result of Koiran for testing whether a point on an

algebraic variety defined by homogeneous equations has a nontrivial point.

The other challenge is that one needs to efficiently compute a configuration of a con-

tinuously and rigidly constructible linkage given by one of the universality theorems. This

challenge is somewhat subtle, because we would like to avoid having to use the real algebraic

computation model [BCSS]. Theorem 4.6 provides the necessary algorithm.

In rigidity theory, fixed vertices are typically not allowed, whereas in the setting of

Kempe’s Universality Theorem, they are. The following proposition shows that this distinc-

tion is not important.
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Proposition 5.3. Given a configuration C of a linkage L with fixed vertices, one can effi-

ciently construct a configuration C ′ of a linkage L′ with no fixed vertices that is rigid if and

only if L is rigid.

Proof. We construct L′ from L as follows. Place a nondegenerate d-dimensional simplex

linkage with vertices Y1Y2 . . . Yd+1 anywhere. For any vertex Q that was fixed in L, add bars

YiQ, and replace Q with an unpinned vertex. Because distances from d + 1 points not lying

in a d − 1-dimensional hyperplane determine a point in d-dimensional space, none of the

previously pinned vertices Q can move relative to the simplex Yi. Thus the configurations of

linkage L′ differs from those of linkage L only in the rigid motions of the simplex Y1Y2 . . . Yd+1.

It follows that configurations of L′ are rigid if and only if the corresponding configurations of

L′ is rigid. This construction takes at most (k + d)(d+ 1) extra bars, where k is the number

of fixed points in L, and runs in time linear in the number of bars of L′.

To show that Rigidity2 is coNP-hard, we reduce from ISO(R), a problem closely related

to the problem H2N(R) [Koiran].

Definition 5.4. ISO(R) is the problem of deciding whether a system of s homogeneous

polynomials of total degree 2 in m variables with coefficients in Z (given the in dense rep-

resentation), have an isolated point over R. H2N(R) is the problem of deciding whether a a

system of s homogeneous polynomials of total degree 2 in m variables with coefficients in Z

(given in the dense representation) has a nontrivial solution.

We use the following result from [Koiran].

Theorem 5.5 (Koiran). H2N(R) is NP-hard.

Corollary 5.6. ISO(R) is coNP-hard.

Proof. A system of homogeneous polynomials is in ISO(R) if and only if it is not in

H2N(R). If 0 is not isolated, then there must be a nontrivial solution. Conversely, if there is

a nontrivial solution x, the line between 0 and x is in V by homogeneity, so 0 is not isolated.

Thus ISO(R) is coNP-hard.

Theorem 5.7. Rigidity2 is coNP-hard.
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For polynomials f1, . . . , fs, let Z(f1, . . . , fj) be the variety of common zeroes of the fjs.

Proof. Without loss of generality, we may assume that instances of ISO(R) have an even

number of variables, because xm = 0 is a homogeneous equation.

Let {fj(x1, y1, . . . , xm, ym)}j=1,...,s be an instance of ISO(R). Pick U any neighborhood of

0. For each fj, compute a linkage Lj as follows. Set R1 = 1 and R2 = 2. Let θ be any angle

with rational sine and cosine (e.g. an acute angle of a 3-4-5 right triangle). Set αk

2
= βk

2
= θ

for all k. Let (x0, y0) = (3 cos(2θ), 3 sin(2θ)) be the point defined by these choices of α, β,

R1, and R2. Let L′
j be the linkage obtained by running the algorithm of Theorem 4.6 on

the polynomial f ′
j = fj(x1 − x0, y1 − y0, . . . , xm − x0, ym − y0) and the point (x0, y0) with the

above choices. Let Lj be the result of translating L′
j by (−x0,−y0, . . . ,−x0,−y0). It is easy

to check that Lj continuously and rigidly constructs Z(fj).

We construct the linkage L by gluing together the output vertices of the Ljs. Each

Lj continuously and rigidly constructs Am ∩Z(fj), so L continuously and rigidly constructs

S = Am∩⋂s

j=1 Z(fj) = Am∩Z(f1, . . . , fj) (and thus the projection p : Conf(L)∩p−1(U r) →
S ∩ U r has the path-lifting property and finite fibres). By Theorem 4.6, we can compute a

configuration C of L satisfying p(C) = 0 in O
(

(

n+2m

n

)k
)

= O(m2k) time, since n = 2. We

claim C is rigid if and only if 0 is an isolated point of Z(f1, . . . , fj).

First suppose 0 is not an isolated point of Z(f1, . . . , fj). Then there is a path in

Z(f1, . . . , fj) starting at 0. As 0 is in the interior of U , there is a path in Z(f1, . . . , fj)∩Um

starting at 0. By the path lifting property of p, there is a path in Conf(L) ∩ p−1(U r) about

C ∈ p−1(0) as well. Then C is not rigid.

Conversely, suppose that C is not rigid. Then there is a nontrivial path in Conf(L)

starting at C. Because C is in the interior of p−1(Um), this implies Conf(L) ∩ p−1(Um) is

infinite. Then Conf(L) ∩ p−1(U r) is infinite. Because p has finite fibers, p(Conf(L)) ∩ U r ⊂
Z(f1, . . . , fj) is also infinite. But then Z(f1, . . . , fj) has a point P other than 0. The fj’s

are homogeneous, so the line from 0 to P is in Z(f1, . . . , fj). Thus 0 is not an isolated point

on Z(f1, . . . , fj).

Thus given an instance of ISO(R), we can efficiently construct a configuration C of a

linkage L that is rigid if and only if Z(f1, . . . , fs) has an isolated point at x = 0. It follows

that Rigidity2 is coNP-hard.
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We are now ready to prove Theorem 1.2.

Theorem 1.2. Rigidityd is coNP-hard for all d ≥ 2.

Proof. The case d = 2 was Theorem 5.7. For d > 2, we reduce from Rigidityd−1. Let

C be a configuration of a (connected) d − 1-dimensional linkage L. Create a new linkage L′

by replacing each edge in L with a rectangular degenerate tetrahedron with height 1 and

width equal to the length of the edge (replacing each vertex v with two vertices v1 and v2),

as shown in Figure 5-1. Construct a configuration C ′ of L′ as follows. If vertex v was at

(x1, . . . , xd−1) in C, in C ′ we place the v1 at (x1, . . . , xd−1, 0) and v2 at (x1, . . . , xd−1, 1). This

transformation runs in linear time. We claim that that C ′ is rigid if and only if C is.

Figure 5-1: Reduction from Rigidity2 to Rigidity3.

If C is not rigid, then C ′ is not either, because any path in Conf(L) can be lifted to a

path in Conf(L′) by maintaining v2 − v1 = (0, . . . , 0, 1). To show the converse, we use the

following lemma.

Lemma 5.8. If L is connected, then in every configuration of L′, −−→v1v2 is the same for all

vertices v of L.

Proof. Consider an edge (u, v) in L. Since the rectangular degenerate tetrahedron u1u2v2v1

is rigid (simplices are rigid in any number of dimensions) and opposite edges of a rectangle

are parallel, −−→u1u2 = −−→v1v2 in any configuration of L′. Since L is connected, the result follows

by transitivity.
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From Lemma 5.8, it follows that configurations of L′ are always two copies of a (d − 1)-

dimensional configuration of L, spaced by 1 unit in some direction that is perpendicular to

all the edges of L. If C is not contained entirely in a (d − 2)-dimensional hyperplane, then

the only direction perpendicular to all the edges is the normal direction. If C is contained

entirely in a (d − 2)-dimensional hyperplane, then the additional motions available to C ′

of varying the direction −−→v1v2 are rotations, hence rigid motions. In either case, if C is a

rigid configuration of Conf(L), then C ′ must be a rigid configuration of Conf(L′). Thus

Rigidityd is coNP-hard.

Rigidity1 is trivial because configuration spaces of 1-dimensional linkages are discrete

modulo rigid motions, and thus any connected linkage in 1-dimensional space is rigid.
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Chapter 6

Higher Dimensions

A natural question is whether the results of Chapter 4 generalize to d dimensions. Namely,

consider the problem of drawing a portion of the surface f(x1, . . . , xd) = 0 where f is a

polynomial in d variables.

In this chapter, we extend Kempe’s Universality Theorem to linkages in d dimensions for

any d ≥ 2 (at the end of this chapter, we treat the special case d = 1). We first construct

a d-dimensional analogue of the Peaucellier linkage that constrains a vertex to a (d − 1)-

dimensional hyperplane. We may then restrict a vertex to a plane or a line by attaching

multiple such linkages. This allows us to re-use most of the proof of the two-dimensional

Kempe’s theorem for the general case.

In constructing the d-dimensional Peaucellier linkages, we need to deal with spheres of

various dimensions in various ambient spaces. We set the following convention.

Definition 6.1. A d-sphere of radius r ≥ 0 is the set of points in Rd+1 at distance r from

the origin, or any isometric subset of Rm for m ≥ d + 1. In particular, a 0-sphere is a one-

or two-point set, and a (−1)-sphere is a zero- or one-point set.

6.1 d-dimensional Peaucellier linkages

We need some technical lemmas in order to construct linkages that avoid degeneracies.

61



Lemma 6.2. Let d ≥ 2 and let S be a unit (d − 2)-sphere. There exist reals 0 < α < β

such that there exist d points on S with any two points at distance at least β, but there do

not exist d points on S in a (d − 2)-dimensional hyperplane with any two points at distance

at least α.

Proof. First consider the d points v1, . . . , vd on S that form the vertices of a regular

(d − 1)-dimensional simplex. Then ||vi − vj|| =
√

2 − 2vi · vj is constant for all i 6= j so

vi · vj = c for all i 6= j for some constant c. By symmetry
∑d

i=1 vi = 0 so

0 =
(

d
∑

i=1

vi

)

·
(

d
∑

i=1

vi

)

=

d
∑

i=1

vi · vi +
∑

i6=j

vi · vj = d + d(d − 1)c.

Hence c = −1/(d−1) and thus ||vi−vj || =
√

2 + 2/(d − 1). Now suppose {v1, . . . , vd} is any

set of d points on S such that for all i 6= j, ||vi−vj || ≥
√

2 + 2/(d − 1), so vi ·vj ≤ −1/(d−1).

Now

0 ≤
(

d
∑

i=1

vi

)

·
(

d
∑

i=1

vi

)

=
d
∑

i=1

vi · vi +
∑

i6=j

vi · vj ≤ d + d(d − 1)
−1

d − 1
= 0.

Thus equality must hold and vi · vj = −1/(d − 1). Hence the distances between vi and vj

are all
√

2 + 2/(d − 1) so the vi are the vertices of a regular (d − 1)-dimensional simplex.

Thus we have shown that the minimum distance between any pair of d points on S is at

most
√

2 + 2/(d − 1), with equality if and only if the d points are the vertices of a regular

(d − 1)-dimensional simplex.

Now the set of d-tuples of points on S that lie in a (d − 2)-dimensional hyperplane is a

closed set, because it is given by the condition that the volume of the simplex they define is 0.

It is also bounded so the minimum distance between two of these points takes on a maximum

value α′ on this set. By the above result, this maximum value is less than
√

2 + 2/(d − 1).

Set β =
√

2 + 2/(d − 1) and choose α′ < α < β.

Lemma 6.3. Let d ≥ 2. Suppose w1, . . . , wd are d points that do not lie in a common

(d − 2)-hyperplane. Suppose v1, v2, v3 are three points such that the distances d(vi, wj) are

equal for all i and j. Then at least two of the points v1, v2, v3 coincide.

Proof. Suppose not; then v1, v2, v3 form a triangle. Consider the projection of Rd onto
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the plane of this triangle. The vertices wi are equidistant from v1, v2, v3, so they must all

project onto the circumcenter of this triangle. But by assumption they do not all lie on a

common (d − 2)-hyperplane, a contradiction.

Proposition 6.4. For any d ≥ 2 and any 0 < r < R there exists a C > 0 and a linkage L
containing vertices v1, v2 and w1, . . . , wd (and others) such that

(i) vi is connected by a bar of length C to wj for i = 1, 2, j = 1, . . . , d;

(ii) there exists a configuration of L with d(v1, v2) = d if and only if r ≤ d ≤ R;

(iii) in any configuration of L, the vertices w1, . . . , wd do not lie in any (d−2)-dimensional

hyperplane.

Proof. Join v1 to v2 with a hook with minimum length r and maximum length R. Let α

and β be as in the result of Lemma 6.2. Since

lim
C→∞

√
C2 − r2

√
C2 − R2

= 1 we can choose C > 0 such that

√
C2 − r2

√
C2 − R2

<
β

α
.

Join vertices w1, . . . , wd to v1 and v2 by bars of length C, and join wi, wj by a hook

constraining their distance to be at least α
√

C2 − r2 for all i and j (and at most 2C). This

is our linkage L.

For any r ≤ D ≤ R, we can place v1 and v2 to lie at distance D; then the (d−1)-spheres of

radius C centered at v1 and v2 intersect in a (d−2)-sphere of radius
√

C2 − D2 ≥
√

C2 − R2.

By Lemma 6.2 we can find locations for w1, . . . , wd on this (d−2)-sphere of radius
√

C2 − D2

with any two at distance at least

β
√

C2 − D2 ≥ β
√

C2 − R2 > α
√

C2 − r2.

Conversely, for any configuration of this linkage, the vertices v1 and v2 lie at least r apart, so

w1, . . . , wd lie on a (d− 2)-sphere of radius at most
√

C2 − r2. Since their mutual distances

are all at least α
√

C2 − r2, we conclude from Lemma 6.2 that the vertices w1, . . . , wd cannot

lie in a (d − 2)-dimensional hyperplane.
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Theorem 6.5. Let d ≥ 2. There exists a linkage L with vertices O, v1, v2 (among others)

such that

(i) O is fixed at the origin;

(ii) vertex v1 draws a set with nonempty interior, not containing O; and

(iii) in any configuration of L, v1 and v2 lie on a common ray through the origin and

Ov1 · Ov2 is a constant.

Proof. Let L′ be the linkage from Proposition 6.4 with r = 1, R = 2. Construct L
from L′ by fixing a vertex O at the origin and join O to w1, . . . , wd by bars of length D

for some D > C. It is easy to see that this linkage has configurations with v1 any point

between two distinct (d − 1)-spheres centered at O (i.e. any point in a shell centered at

O). Thus it suffices to check condition (iii). In any configuration of L the points w1, . . . ,

wd lie in the intersection of the spheres of radius C centered at v1 and v2, which lies in a

(d − 1)-dimensional hyperplane, but they do not lie in a (d− 2)-dimensional hyperplane, so

they lie in a unique (d− 1)-dimensional hyperplane. Consider v′
1, the reflection of v1 in this

hyperplane; it also lies at distance C from each of the wi, so by Lemma 6.3, v′
1 = v2. There

exist two distinct points O′, O′′ on the line through v1 and v2 and not between v1 and v2

that are each distance D from each of the wi. By Lemma 6.3 again O coincides with O′ or

O′′, hence v1 and v2 lie on a common ray through O. It remains to show that Ov1 ·Ov2 is a

constant. Consider the plane through O, v1, v2, and w1. Let v be the midpoint of v1v2, that

is also the foot of the perpendicular from w1 to the line Ov1v2, because |v1w1| = C = |v2w1|.
Let h = |vw1|. Assume without loss of generality that v1 lies between O and v2. Now

|Ov1| · |Ov2| = (|Ov|−|v1v|)(|Ov|+ |vv2|) = |Ov|2−|v1v|2 = (D2−h2)−(C2−h2) = D2−C2.

This is a constant, so we are done.

Corollary 6.6. Let d ≥ 2, and let P be a (d− 1)-dimensional hyperplane in Rd. Then P is

continuously constructible using O(d3) bars. If H is a d-dimensional half-space in Rd, then

H is continuously constructible.
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Figure 6-1: A 3-dimensional Peaucellier linkage.

Proof. We prove the result for some specific P and U ; the result follows by translating,

rotating, and scaling the linkage. Take the linkage L of Theorem 6.5 and let U ′ be an open

ball contained in the trace of v1. Let v be the center of this ball and let b be the distance

from O to v. Fix a vertex v′ at the midpoint of Ov and add a bar of length b/2 connecting

v′ to v1. Then v1 is constrained to a sphere S through O so by properties of inversion v2 is

constrained to a plane P . Moreover, the trace of v1 contains the intersection of S with the

open ball U ′, so the trace of v2 contains the intersection of P with an open ball. Let U be

this open ball and let x = v2. Then because v1 and v2 are related by geometric inversion

(Theorem 6.5(iii)), x is constrained to the plane P . Conversely, by the construction of U ,

any point of U lifts to a configuration of L. Thus P is constructible.

That P is continuously constructible follows from the fact that L is constructed from

a number of hook linkages with nonzero inner radii, and by Proposition 2.10, such hooks

continuously constructs their traces.

To construct H , we modify linkage the linkage for P by replacing the bar v′v1 of length b/2

with a hook of inner radius 0 and outer radius b/2. By geometric inversion, this constrains

x = v2 to H , with configurations within an open subset of that half-space containing a point

of the boundary. Again by scaling, translating, and rotating, we extend the result to all U .

Because the configurations of the Peaucellier linkage are such that |v′ − v1| is bounded from

below, the relevant hook is continuously constructible (see the nicely constructible part of

65



the proof of Proposition 3.8 for an argument); it follows that H is continuously constructible.

Both constructions require O(d2) bars, with the cost dominated by the hooks connecting

each pair of wis.

By choosing the set U sufficiently large, we may effectively constrain a vertex v to a fixed

hyperplane of any desired dimension by attaching up to d of these linkages to v.

Corollary 6.7. Any vector subspace H of R
d is continuously constructible using O(d3) bars.

6.2 Bracing the Translators

Lemma 6.8. For any a, b > 0, the parallelogram configuration space embedded in d dimen-

sions

S =
{

(A, B, C, D) ∈ (Rd)4 : |AB| = |CD| = a, |BC| = |AD| = b, AB ‖ CD, BC ‖ AD
}

is nicely constructible using O(1) bars.

Proof. It suffices to show that every configuration of the braced parallelogram of Propo-

sition 3.1 is planar in any number of dimensions; the result then follows by Proposition 3.1.

The degenerate triangles AMB and DNC are simplices, and thus are rigid in any number

of dimensions. Thus ABCD is planar if
−→
AB is parallel to

−−→
DC. This follows from |AD| =

|MN | = |BC| = b via a simple coordinates analysis.

Proposition 6.9. Let a > 0. Then the translation by a bar OX,

S =
{

(O, X, Y, Z) ∈ (Rd)4 : |OX| = |Y Z| = a,
−−→
OX +

−−→
OY =

−→
OZ
}

is constructible using O(1) bars. If T ⊂ (Rd)k is a continuously constructible set containing

vertices O, X, and Y such that inside T , |C(O) − C(Y )| is bounded away from zero, then

the set obtained by gluing S and T along vertices O, X, and Y is continuously constructible.

Proof. We use the construction of 3.8. The proof in Proposition 3.8 that S is constructible

for the case d = 2 relied only on the fact that opposite edges of a parallelogram are parallel,

which is true here by Lemma 6.8. Thus, S is constructible.
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If additionally S is glued along vertices O, X, and Y to a set T nicely constructed by a

linkage LT where, within T , d(O, Y ) is bounded from below, then N is the vertex projected

away from hook ONY which is glued to a set on which 2R > |OY | > 0. By Proposition 2.15,

the projection forgetting N has the path-lifting property. Given N , M = N +
−−→
OX. It follows

that the set obtained by gluing S and T is continuously constructible.

6.3 Kempe’s Theorem

For j = 1, . . . , m, let xj ∈ Rd, so that we have O(dm) variables xj,i over R.

Theorem 6.10. Let d ≥ 2. Let f ∈ R[{xj,i}] be a polynomial with real coefficients in dm

variables of total degree n, and let A be a closed shell in R
d. Then there exists a linkage

over Rd that draws and continuously constructs the set Am ∩ Z(f). Moreover, this linkage

contains O
(

d3
(

n+dm

n

))

bars.

Theorems 1.4 and 1.6 follow from Theorem 6.10 using an argument similar to that of

Lemma 4.3 (we treat d as a constant in this asymptotic analysis). We now prove Theo-

rem 6.10.

Proof. Assume without loss of generality that B is centered at the origin. Let R be

the radius of the ball. For each vertex j and each dimension xi, construct a vertex wj,i

that is constrained to lie in the intersection of the xi axis with the ball B, using d − 1 d-

dimensional Peaucellier linkages. Now, construct the output vertex uj, by using translators

to add together the vectors for these wj,i, so that wj,i is the projection of uj onto the xi axis.

Constrain uj to lie in the ball B using a pair of bars of length R
2
. Now, it suffices to implement

the constraint f(x1,1, . . . , xm,d) = 0. We do this by first moving the lengths wj,i onto the x1

axis, and then using the 2-dimensional Kempe construction (with all vertices constrained to

lie in that plane with d − 2 d-dimensional Peaucellier linkages) on the resultant md angles

to construct a point with x1 coordinate f(x1,1, . . . , xm,d), that we then set to zero using a

Peaucellier linkage. The construction so far has used O(dm) d-dimensional translators, for

a total of O(dm) bars.

First, we show how to move the length wj,i onto the x1-axis, giving vertices zj,i = (wj,i, 0)
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in the x1x2-plane. If i = 1 then there is nothing to do, so assume i > 1. Consider for a

moment the x1xi-plane. The vertex with coordinates in the x1xi plane (0, wj,i) lies between

−R and R on the xi-axis, so we can build a braced rhombus with bars of length R/2 with one

vertex at the origin and opposite vertex at (0, wj,i) and with its other vertices constrained

to lie in the x1xi-plane. Fix a bar along the negative xi-axis, so it makes a −π/2 angle with

the x1-axis. Using Kempe’s additor (still constraining vertices to the x1xi-plane) we can

add −π/2 to the angles of the bars of this rhombus and construct a braced rhombus with

two of its edges along these rotated edges. Then its fourth vertex lies at distance wj,i along

the x1-axis, as desired. This construction uses O(dm) additors, each constrained by d − 2

d-dimensional Peaucellier linkages, for a total of O(md4) bars.

Now we restrict our attention, and our vertices, to the x1x2-plane. We can construct

bars of length R/2 forming a braced rhombus with opposite endpoints at the origin O and

at zj,i, so that the angles θj,i from the x-axis formed by the bars out of the origin would have

cosine
wj,i

R
. (Note that we might get either the positive or the negative form of the angle, but

this is fine, because cosine is an even function). The trigonometric algebra from Lemma 4.4

generalizes to a polynomial of total degree n in dm variables in a straightforward fashion,

giving

f(x1,1, . . . , xm,d) =
∑

|δ|≤n

m
∑

j=1

fj,δ cos

(

d
∑

i=1

δj,iθj,i + γj,δ

)

for some constants fj,δ, γj,δ, where the sum is over all vectors δ ∈ Zdm with L1 norm at most

n. There are at most O
((

n+md

n

))

terms in this sum. Following Lemma 4.4, we construct

from the angles θj,i all the angles
∑d

i=1 δj,iθj,i +γj,i for |δ| ≤ n using O
((

n+dm

n

))

additors and

reversors. Following the proof of Theorem 4.2, we use O
((

n+dm

n

))

planar translators to create

a linkage with a vertex w such that the x1-coordinate of w is f(x1,1, . . . , xm,d). As in Theo-

rem 4.2, we then use a sufficiently large 2-dimensional modified Peaucellier linkage to force

the x1-coordinate of w to be nonnegative. Thus, in any configuration of this linkage, we have

that f(x1,1, . . . , xm,d) ≥ 0. Conversely, for any (x1,1, . . . , xm,d) ∈ A with f(x1,1, . . . , xm,d) ≥ 0

there is a configuration of the linkage where uj is located at (xj,1, . . . , xj,d). We need d − 2

d-dimensional Peaucellier linkages on each vertex to keep them in the plane, and we need

O
((

n+dm

n

))

bars in the plane, so the total cost of this construction is O
(

d3
(

n+dm

n

))

bars.
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Because n ≥ 1, this constribution dominates the number bars used earlier in this argument.

This is continuously constructible because the individual gadgets are continuously con-

structible, along with an argument analogous to the continuity argument in Theorem 4.2,

replacing the phrase “nicely constructible” with “continuously constructible” (the individual

arguments for the various classes of points are quite similar, so we do not repeat them).

Open Question 1. Which drawable sets in d dimensions are rigidly constructible?

Both the work of King [King3] and our d-dimensional Peaucellier inversor are not rigid

constructions. It is not obvious whether either set of gadgets can be modified to be rigidly

constructible.

6.4 Lower Dimensions

Lemma 6.11. Let S ⊂ R1 be a finite set and let r > 0. Then there is a one-dimensional

linkage L that draws a finite set S ′ ⊂ R1 such that S ′ contains S and every element of S ′

not in S is at distance more than r from any point of S.

Proof. Write S = {s1, s2, . . . , sn}, and let y be a large real number to be determined later,

but in particular greater than −si for every i. Let L be a linkage consisting of a vertex v0

fixed at a point x0 (also to be determined later) and a chain of bars v0v1, v1v2, . . . , vn−1vn,

with the length of bar vi−1vi equal to y+si

2
. Then the trace of vertex vn is the set S ′ of values

of the form

x0 ±
y + s1

2
± y + s2

2
± · · · ± y + sn

2
.

Let m be the minimum value attained by such an expression, that is, the value of the

expression when all ± signs are replaced by −. Then m + y + si is in the trace of L; choose

x0 so that m + y = 0 and thus S is contained in the trace of L. Every element of S ′ not of

the form m + y + si either is m or has at least two ± signs replaced by +, and thus differs

from every element of S by at least y−2 max{|s1|, . . . , |sn|}. By choosing y sufficiently large

we can ensure that all of these differences are greater than r.

Lemma 6.12. Let S ⊂ R1 be a finite subset. Then there is a linkage L that draws S.
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Proof. We use Lemma 6.11 twice. First, let r1 > 0 be arbitrary and apply Lemma 6.11

to construct a linkage L1 with a vertex v1 whose trace is a set S1 containing S. Then let

r2 be larger than the maximum distance between a point of S and a point of S1, and apply

Lemma 6.11 again to construct a linkage L2 with a vertex v2 whose trace is a set S2, also

containing S, and such that every point of S2 not in S is at distance at least r2 from S.

Then S1 ∩S2 = S, so letting L be the linkage formed from L1 and L2 by gluing v1 to v2, the

trace of the vertex v1 = v2 of L is exactly S.

Theorem 6.13. Let S ⊂ R1. Then S is drawable if and only if S is either finite or S = R1.

Proof. Suppose the trace of vertex v of L is S. If the connected component of L containing

v does not contain a fixed vertex, then either S = ∅ or S = R1. Otherwise, the location of v

in any configuration of L is determined by the directions of the n bars in that component.

Because there are only 2n choices, the trace of v must be finite in this case. The interesting

case of the converse is Lemma 6.12.
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Chapter 7

Characterization of Drawable Sets

In Section 6.4, we characterized the drawable sets in R1. Thus, let d ≥ 2.

We have shown that there exist linkages drawing any set defined by a single polynomial

equation or inequality. A natural question is what other sets can be drawn by linkages.

The main result of this section is that the drawable sets in Rd are precisely the compact

semi-algebraic sets in Rd, along with Rd itself. This theorem was previously shown by Henry

C. King in [King2] and [King3]. We obtain a slightly stronger result than King, proving that

the compact semi-algebraic sets in Rd are continuously constructible as well.

Theorem 7.1. Let S1 and S2 be drawable sets in Rd. Then S1 ∩ S2 is also drawable. If S1

and S2 are also continuously constructible, so is S1 ∩ S2.

Proof. Let L1 be a linkage with a vertex v1 whose trace is S1 and let L2 be a linkage with a

vertex v2 whose trace is S2. Let L be the union of L1 and L2, identifying vertices v1 and v2.

Then it is easy to see that this vertex of L draws S1 ∩ S2.

Theorem 7.2. Let S1 and S2 be drawable sets in R
d. Then S1 ∪ S2 is also drawable. If S1

and S2 are also continuously constructible, so is S1 ∪ S2.

Proof. If x, y, z ∈ R
d, define f(x, y, z) to be

f(x, y, z) =

(

n
∑

i=1

(zi − xi)
2

)(

n
∑

i=1

(zi − yi)
2

)

.
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Now, f is a polynomial in 3d variables of total degree 2, and thus by Theorem 6.10, we

can construct a multi-input continuously constructible Kempe linkage L for the set T =

{x, y, z|f(x, y, z) = 0}. Let L1 be the linkage drawing S1 and L2 be the linkage drawing S2.

Construct a new linkage L′ from L,L1, and L2 by gluing the output vertex of L1 to x from

L, and the output vertex of L2 to y from L. We now project to the locations of vertex z.

By inspecting f , we see that in every configuration of L, either z = x or z = y, and thus

in every configuration of L′, z = x ∈ S1 or z = y ∈ S2. Conversely, for any u ∈ S1, there

is a configuration of L with u = z = x and y an arbitrary element of S2 (and similarly for

u ∈ S2). Thus L′ draws S1 ∪ S2.

Suppose S1 and S2 are continuously constructible. Let g : [0, 1] → S1 ∪ S2 be a path

in S1 ∪ S2. We construct a continuous map g′ : [0, 1] → Conf(L) lifting g as follows. If

g(t) ∈ Si, then lift g(t) to Li continuously using the lift guaranteed to exist by the fact that

Si is continuously constructible. Set Si is closed, so if g(t) 6∈ Si, there is a neighborhood U

of S1 ∪ S2 such that g(t) ∈ U and U ∩ Si = ∅. Pick any closed subset [t0, t1] of the open

interval g−1(U). In the interval [t0, t1], rearrange Li to a configuration consistent with the

next entry of path g into Si. At all points t that we have not defined the life of g to Li for,

lift g(t) into Li with to a locally constant function. The resulting lifted function is piecewise

continuous, and is continuous at the transition points, hence it is continuous.

Note that this construction does not preserve the property of being rigidly constructible.

Corollary 7.3. Any finite union of bounded sets of the form

{

(x1, x2, . . . , xd) ∈ R
d : f1(x1, x2, . . . , xd) ≥ 0, . . . , fs(x1, x2, . . . , xd) ≥ 0

}

is drawable and continuously constructible.

Proof. Let S be a bounded set of the form

S =
{

(x1, x2, . . . , xd) ∈ R
d : f1(x1, x2, . . . , xd) ≥ 0, . . . , fs(x1, x2, . . . , xd) ≥ 0

}

.

Let B be a closed ball containing S. Then the sets B∩{ (x1, x2, . . . , xd) ∈ Rd : fi(x1, x2, . . . , xd) ≥
0 } are drawable and continuously constructible by Theorem 1.4 and their intersection
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B ∩ S = S is drawable and continuously constructible by Theorem 7.1. A finite union

of such sets is then drawable and continuously constructible by Theorem 7.2.

It turns out that the above sets, together with Rd, are all of the drawable sets. To prove

this, we need some results from real algebraic geometry.

Definition 7.4. An algebraic subset of Rn is one of the form { x ∈ Rn : f(x) = 0 } for some

polynomial f .

Definition 7.5. A semi-algebraic subset of Rn is one formed from algebraic sets by the

operations of intersection, union, and complement.

Proposition 7.6. The intersection of two algebraic subsets of Rn is algebraic.

Proof. If V1 is defined by f1 = 0 and V2 is defined by f2 = 0 then V1 ∩ V2 is defined by

f 2
1 + f 2

2 = 0.

We are now ready to prove Theorem 1.5:

Theorem 1.5. A set S ⊂ R
d is drawable if and only if S is compact and semi-algebraic or

S = Rd.

Proof. By Theorem 2.7.2 of [BCR], any compact semi-algebraic set is a finite union of

bounded sets defined by a finite number of non-strict polynomial inequalities, hence drawable

by Corollary 7.3. Conversely, suppose S is a set drawn by a vertex v of some linkage L.

Assume that S 6= Rd; then we must show that S is compact and semi-algebraic. Further

assume that S is nonempty; then S is also drawn by the connected component of L containing

v, hence we may assume L is connected. Linkage L has at least one configuration, but

S 6= Rd, so by the proof of Proposition 2.5, it must have at least one fixed vertex. Then in

any configuration of L each vertex lies in the closed ball of radius R about the location of this

fixed vertex, where R is the sum of the lengths of all bars of L. Hence Conf(L) is bounded.

Moreover Conf(L) is defined by the polynomial equations |C(v)−C(w)|2 = ℓ(v, w)2 for each

edge (v, w) in L, so Conf(L) is an algebraic subset of Map(V (L), Rd). In particular, Conf(L)

is closed, hence compact. Now S is the projection of Conf(L) to Rd, so S is compact and

semi-algebraic by Theorem 2.2.1 of [BCR].
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Chapter 8

Optimality

In this chapter, we address the question of how many bars are needed to build linkages

constructing desired sets in Rd for a fixed dimension d ≥ 2. We first show that the bound

on the number of bars used in Theorem 1.4 to draw the zero set of a polynomial cannot be

reduced. Later, we consider the problem of drawing sets of n points in Rd; we show that

the minimum number of bars needed to draw a given n-point set lies between Θ(log n) and

Θ(n), and that both these bounds are asymptotically optimal.

The arguments in this chapter use more technical tools from real algebraic geometry

than the previous chapters. Refer to Appendix A for the statements of the various results

from [BCR] that we use throughout this chapter.

8.1 Varieties Defined by a Single Equation

Fix d ≥ 2. In this section, we show that our construction of a linkage constructing the zero

set in Rd of a polynomial of total degree n using O(nd) bars is asymptotically optimal: there

exist polynomials of degree n whose zero sets cannot be drawn with fewer than Ω(nd) bars.

Our argument is a dimension count; roughly speaking, there are Θ(nd) different zero sets of

degree n polynomials, and so we need a space of linkages of dimension Ω(nd) to be able to

draw all of them. To make this precise, we need some tools from real algebraic geometry.
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Definition 8.1. An ideal of R[x1, . . . , xd] is real if for any sequence a1, . . . , ar ∈ R[x1, . . . , xd],

a2
1 + · · ·+ a2

r ∈ I =⇒ ai ∈ I for each i.

Lemma 8.2. Identify the set of polynomials in R[x1, . . . , xd] of total degree n and constant

term 1 with R(n+d

d )−1. Let Yn be the subset of R(n+d

d )−1 consisting of irreducible polynomials f

such that f(1, 0, . . . , 0) < 0. Then Yn is a semi-algebraic set that is Zariski dense in R(n+d

d )−1.

In particular, dim Yn =
(

n+d

d

)

− 1.

Proof. Let Zn be the subset of R(n+d

d )−1 consisting of reducible polynomials. A polynomial

f ∈ Zn can be factored into two polynomials of total degree summing to n and each with

constant term 1, so there is a surjective algebraic map

∐

1≤k≤n−1

R(k+d

d )−1 × R(n−k+d

d )−1 → Zn.

Therefore Zn is a semi-algebraic subset of R(n+d

d )−1 of dimension at most

max
1≤k≤n−1

(

k + d

d

)

− 1 +

(

n − k + d

d

)

− 1 =

(

d + 1

d

)

− 1 +

(

n − 1 + d

d

)

− 1 <

(

n + d

d

)

− 1.

because
(

k+d

d

)

+
(

(n−k)+d

d

)

is a convex function of k, and n ≥ 2.

Its closure then has dimension less than
(

n+d

d

)

− 1, by Theorem 2.8.2 of [BCR]. Thus the

complement of its closure is an open dense set in the norm topology, by Theorem 2.8.5(i)

of [BCR]. This set is clearly nonempty, so dim({f ∈ R(n+d

d )−1 : f(1, 0, . . . , 0) < 0}) =
(

n+d

d

)

− 1, by Theorem 2.8.4 of [BCR]. Hence by Theorem 2.8.5(i) of [BCR], the intersection

of these open dense sets,

Yn =
{

f ∈ R(n+d

d )−1 : f /∈ Zn, f(1, 0, . . . , 0) < 0
}

has dimension
(

n+d

d

)

− 1.

We next describe how to reconstruct an element of Yn from the intersection of its zero

set with the closed unit ball.
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Lemma 8.3. Let f 6= g ∈ Yn. Then the intersections of the zero sets of f and g with the

closed unit ball are distinct.

Proof. Let f ∈ Yn. Denote its zero set by Z(f) and the closed unit ball by B. It suffices

to show that f is the unique nonzero polynomial of minimum degree and constant term 1

that vanishes on Z(f) ∩ B.

As f(0, 0, . . . , 0) = 1 and f(1, 0, . . . , 0) < 0, the sets U1 = B ∩ {x ∈ Rd : f(x) < 0} and

U2 = B ∩ {x ∈ Rd : f(x) > 0} are disjoint, nonempty, open semi-algebraic subsets of B.

Thus by Theorem 4.5.2 of [BCR], dim(B \ U1 \ U2) = dim(Z(f) ∩ B) = d − 1. It follows by

Theorems 2.8.2 and 2.8.3(i) of [BCR] that the Zariski closure of Z(f)∩B is all of Z(f). As

the ideal (f) is real, we conclude by the Real Nullstellensatz that the ideal of polynomials

vanishing on Z(f) ∩ B is (f). The unique nonzero polynomial in (f) of minimum degree

and constant term 1 is f itself.

Theorem 8.4. For every n, there exists a polynomial f(x1, . . . , xd) of total degree n such

that any linkage that has a vertex whose trace is the intersection of the zero set of f with the

closed unit ball in Rd contains at least Ω(nd) bars.

Proof. Without loss of generality, we may consider only connected linkages. Let k be such

that for any polynomial f of total degree n, there is a connected linkage with a vertex whose

trace is the intersection of the zero-set of f with the closed unit ball in R
d using at most k

bars. We now show that k ≥ Ω(nd).

Let Pk be the “parameter space” of connected marked linkages with at most k bars.

Informally, a point of Pk describes a choice of a graph G, a marked vertex v ∈ G, a set of

fixed vertices W ⊂ V (G), a choice of locations f : W → Rd, and a choice of bar lengths

ℓ : E(G) → R≥0. We are interested in the trace of the vertex v in the linkage defined by these

data. There are only a finite number N of choices of the triple (G, v, W ) up to isomorphism,

and for each such choice a space of dimension

d|W | + |E| ≤ d|V | + |E| ≤ d(|E| + 1) + |E| ≤ (2d + 1)k,

as G is a connected graph with at most k edges. So we may view Pk as a semi-algebraic set of
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dimension at most (2d + 1)k, living inside {1, 2, . . . , N} ×R
(2d+1)k . We identify a connected

marked linkage L with at most k bars with the point of Pk that represents it.

There is a logical formula in Pk × Rd that describes whether the trace of the marked

vertex in a linkage L ∈ Pk contains a point x ∈ Rd. Write L in the form

(g, f(vi1), . . . , f(viw), ℓ(e1), . . . , ℓ(ej)),

where g encodes the choice of (G, v, W ), the vertices of G are labeled v1, . . . , uk, the edges

of G are labeled e1, . . . , ej , where ei connects si and ti, the indices of the vertices in W are

i1, . . . , iw, and the index of the marked vertex v is m. Then this formula has the form

(g = 1 ∧ ∃x1, . . . , xk ∈ R
d : xm = x ∧ xi1 = f(vi1) ∧ · · · ∧ ||xs1

− xt1 ||2 = ℓ(e1)
2 ∧ · · · )

∨ (g = 2 ∧ · · · ) ∨ · · · . (8.1)

Denote this formula by D(L, x). We can use it to define an incidence graph

Q = { (L, f) : L ∈ Pk, f ∈ Yn, and L draws Z(f) ∩ B }

by a logical formula:

Q =
{

(L, f) | L ∈ Pk, f ∈ Yn, ∀x ∈ R
d : D(L, x) ⇐⇒ (||x|| ≤ 1 ∧ f(x) = 0)

}

.

Here of course Z(f) denotes the zero-set of f and B the closed unit ball as in the proof of

Lemma 8.3. Thus Q is a semi-algebraic set by Tarski’s theorem (Theorem 2.2.4 in [BCR]).

The projections Q → Pk and Q → Yn are semi-algebraic maps; Q → Pk is injective by

Lemma 8.3, as a linkage only draws one set, but Q → Yn is surjective by the definition of k.

Then by Theorem 2.8.8 of [BCR],

dim Yn ≤ dim Q ≤ dimPk ≤ (2d + 1)k.

As dim Yn =
(

n+d

d

)

− 1, we conclude that k ≥ 1
2d+1

(
(

n+d

d

)

− 1), or k ≥ Ω(nd).
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Theorem 1.7. Drawing the zero-set of a polynomial function of total degree n in d variables

requires Ω(nd) bars in the worse case.

Proof. Follows from Theorems 1.4 and 8.4.

8.2 Finite sets

For a finite subset S of Rd, define β(S) to be the minimum number of bars of a linkage that

has a vertex whose trace is S. We study the range of β, showing that for a set S of n points,

Θ(log n) ≤ β(S) ≤ Θ(n), and that both of these bounds are asymptotically tight.

The upper bound can be handled by arguments similar to those from the previous section.

Theorem 8.5. max { β(S) : S ⊂ Rd, |S| = n } = Θ(n).

Proof. First we must show that every set S of size n can be drawn by a linkage with at

most Θ(n) bars. Let S = {P1, . . . , Pn}, and let Li be the linkage with a single vertex fixed at

Pi for i = 1, . . . , n. Then Li draws {Pi}, so applying Theorem 7.2 n − 1 times, we can find

a linkage L that draws S. Moreover, the construction of Theorem 7.2 requires O(1) bars in

addition to the bars used to draw the two sets, so L contains Θ(n) bars in total.

To prove that some n-point set requires Θ(n) bars we imitate the proof of Theorem 8.4,

replacing Yn by the space Y ′
n of all n-tuples of points (y1, y2, . . . , ym), yi ∈ Rd, such that

π1(y1) < π1(y2) < . . . < π1(yn) where π1 denotes the value of the first coordinate. Then Y ′
n

is semi-algebraic of dimension dn. Replace Q by the set of pairs (L, y) such that the trace

of the marked vertex of L is exactly the set of points of y. Then again each linkage in Pk

corresponds to at most one point of Q, so if every finite set of n points can be drawn by a

linkage with at most k bars, dimPk ≥ dim Q ≥ dim Y ′
n = dn. As dimPk ≤ (2d + 1)k, this

entails k ≥ Ω(n).

We now treat the lower bound.

Theorem 8.6. For every n, there exists a linkage with Θ(log n) bars that draws a finite set

of size n.

Proof. We use Kempe’s multiplicator and additor (with braced contraparallelograms) to

construct a linkage L that multiplies an angle in the x1x2-plane by n. With the “double and

79



optionally add 1” algorithm, we can achieve this construction with Θ(log n) bars. Fix the

output vertex of L; then there are n possible locations for the input vertex. In other words,

the trace of the input vertex is an n-point set.

Theorem 8.7. A linkage with a vertex that draws an n-point set in Rd must contain at least

Θ(log n) bars.

Proof. Suppose L is such a linkage with V vertices and E edges. We may assume without

loss of generality that L is connected. Because L has a vertex that draws an n-point set, the

configuration space of L must have at least n path-connected components. But Conf(L) is

a real algebraic subset of RdV defined by equations of degree at most 2. Thus by Theorem

11.5.3 of [BCR], the sum of the Betti numbers of Conf(L) (in singular homology) is at

most 2 · 3dV −1. The sum of these Betti numbers is at least the number of path-connected

components of Conf(L), hence 2 · 3dV −1 ≥ n so V ≥ Θ(log n). Because L is connected,

E ≥ V − 1 = Θ(log n).

Corollary 8.8. For a set S of n points in the plane, Θ(log n) ≤ β(S) ≤ Θ(n), and both of

these bounds are asymptotically tight.

Proof. Theorems 8.6 and 8.7 show that min { β(S) : S ⊂ Rd, |S| = n } = Θ(log n).

Together with Theorem 8.5, this implies the result.

Open Question 2. Can one exhibit an explicit family of sets Sn, |Sn| = n, such that

β(Sn) = Θ(n)?

One might expect for instance that a set S = {x1, . . . , xn} with d(xi, xj) ≈ 22j

for i < j

satisfies β(S) = Θ(n), but we have no proof of this claim.
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Appendix A

Results from Real Algebraic

Geometry

The following results are proved in [BCR]. We have compiled them here for convenience.

We have preserved the numbering from that book.

Theorem ([BCR], 2.2.1). Let S be a semi-algebraic subset of Rn = Rk × Rn−k and let

π : Rn → Rk be the projection onto the first factor. Then π(S) is a semi-algebraic subset

of Rk.

Theorem ([BCR], 2.2.4, Tarski’s Theorem). Let φ(x1, . . . , xn) be a first-order formula of

the language of ordered fields, with parameters in R, with free variables x1, . . . , xn. Then

{x ∈ Rn : φ(x)} is a semi-algebraic set.

Theorem ([BCR], 2.2.6 (i)). The composition g ◦ f of semi-algebraic mappings f : A → B

and g : B → C is semi-algebraic.

Theorem ([BCR], 2.4.5). A semi-algebraic subset A of Rn is semi-algebraically connected

if and only if it is connected. Every semi-algebraic set (and in particular, every algebraic

subset of Rn) has a finite number of connected components, which are semi-algebraic.

Theorem ([BCR], 2.7.2). Let V ⊂ Rn be a closed semi-algebraic set. Then V is a fi-

nite union of sets of the form { x ∈ Rn : f1(x) ≥ 0, . . . , fs(x) ≥ 0 } where f1, . . . ,

fs ∈ R[X1, . . . , Xn].
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Theorem ([BCR], 2.8.2). Let A ⊂ R
n be a semi-algebraic set. Then

dim(A) = dim(clos(A)) = dim(closZar(A)),

where closZar(A) = Z(I(A)) is the Zariski closure of A.

Theorem ([BCR], 2.8.3(i)). An algebraic set V ⊂ Rn is said to be irreducible, if, whenever

V = F1∪F2, where F1 and F2 are algebraic sets, then V = F1 or V = F2. Every algebraic set

V is the union – in a unique way – of a finite number of irreducible algebraic sets V1, . . . , Vp,

such that Vi 6⊂ ⋃

j 6=i Vj for i = 1, . . . , p, are the irreducible components of V . We have

dim(V ) = max(dim(V1), . . . , dim(Vp)).

Theorem ([BCR], 2.8.4). Let U by a nonempty open semi-algebraic subset of Rn. Then

dim(U) = n.

Theorem ([BCR], 2.8.5 (i)). Let A =
⋃p

i=1 Ai be a finite union of semi-algebraic sets. Then

dim(A) = max(dim(A1), . . . , dim(Ap)).

Theorem ([BCR], 2.8.8). Let A be a semi-algebraic set and f : A → Rp a semi-algebraic

mapping. Then dim(A) ≥ dim(f(A)). If f is a bijection from A onto f(A), then dim(A) =

dim(f(A)).

Theorem ([BCR], 4.1.4, Real Nullstellensatz). Let I be an ideal of R[X1, . . . , Xn]. Then

I = I(Z(I)) if and only if I is real.

Theorem ([BCR], 4.5.1). Let f be an irreducible polynomial in R[X1, . . . , Xn]. Then the

following properties are equivalent:

(i) The ideal (f) is real.

(ii) (f) = I(Z(f)).

(iii) The polynomial f has a nonsingular zero in Rn (i.e. there is an x ∈ Rn such that

f(x) = 0 and ∂f

∂Xi
(x) 6= 0 for some i ∈ {1, . . . , n}).
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(iv) The sign of the polynomial f changes on R
n (i.e. f(x)f(y) < 0 for some x, y in R

n).

(v) dim(Z(f)) = n − 1.

Theorem ([BCR], 4.5.2). Let B be an open ball of Rn (or B = Rn) and U1 and U2 two

disjoint nonempty semi-algebraic open subsets of B. Then

dim(B \ (U1 ∪ U2)) ≥ n − 1.

Theorem ([BCR], 11.5.3). Let V ⊂ Rn be an algebraic set defined by equations of degree

less than or equal to d. Then the sum of the Betti numbers of V is less than or equal to

d(2d − 1)n−1.
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