Actual source code: ex43.c

petsc-3.7.5 2017-01-01
Report Typos and Errors
  1: static char help[] = "Solves the incompressible, variable viscosity Stokes equation in 2d on the unit domain \n\
  2: using Q1Q1 elements, stabilized with Bochev's polynomial projection method. \n\
  3: The models defined utilise free slip boundary conditions on all sides. \n\
  4: Options: \n"
  5: "\
  6:      -mx : Number of elements in the x-direction \n\
  7:      -my : Number of elements in the y-direction \n\
  8:      -o : Specify output filename for solution (will be petsc binary format or paraview format if the extension is .vts) \n\
  9:      -gnuplot : Output Gauss point coordinates, coefficients and u,p solution in gnuplot format \n\
 10:      -c_str : Indicates the structure of the coefficients to use \n"
 11: "\
 12:           -c_str 0 => Coefficient definition for an analytic solution with a vertical jump in viscosity at x = xc \n\
 13:                       This problem is driven by the forcing function f(x,y) = (0, sin(nz pi y)cos(pi x) \n\
 14:                          Parameters: \n\
 15:                               -solcx_eta0  : Viscosity to the left of the interface \n\
 16:                               -solcx_eta1  : Viscosity to the right of the interface \n\
 17:                               -solcx_xc    : Location of the interface \n\
 18:                               -solcx_nz    : Wavenumber in the y direction \n"
 19: "\
 20:           -c_str 1 => Coefficient definition for a dense rectangular blob located at the center of the domain \n\
 21:                          Parameters: \n\
 22:                               -sinker_eta0 : Viscosity of the background fluid \n\
 23:                               -sinker_eta1 : Viscosity of the blob \n\
 24:                               -sinker_dx   : Width of the blob \n\
 25:                               -sinker_dy   : Height of the blob \n"
 26: "\
 27:           -c_str 2 => Coefficient definition for a dense circular blob located at the center of the domain \n\
 28:                          Parameters: \n\
 29:                               -sinker_eta0 : Viscosity of the background fluid \n\
 30:                               -sinker_eta1 : Viscosity of the blob \n\
 31:                               -sinker_r    : Radius of the blob \n"
 32: "\
 33:           -c_str 3 => Coefficient definition for a dense circular and rectangular inclusion (located at the center of the domain) \n\
 34:                               -sinker_eta0 : Viscosity of the background fluid \n\
 35:                               -sinker_eta1 : Viscosity of the two inclusions \n\
 36:                               -sinker_r    : Radius of the circular inclusion \n\
 37:                               -sinker_c0x  : Origin (x-coord) of the circular inclusion \n\
 38:                               -sinker_c0y  : Origin (y-coord) of the circular inclusion \n\
 39:                               -sinker_dx   : Width of the rectangular inclusion \n\
 40:                               -sinker_dy   : Height of the rectangular inclusion \n\
 41:                               -sinker_phi  : Rotation angle of the rectangular inclusion \n\
 42:      -use_gp_coords : Evaluate the viscosity and force term at the global coordinates of each quadrature point \n\
 43:                       By default, the viscosity and force term are evaulated at the element center and applied as a constant over the entire element \n";

 45: /* Contributed by Dave May */

 47: #include <petscksp.h>
 48: #include <petscdm.h>
 49: #include <petscdmda.h>

 51: /* A Maple-generated exact solution created by Mirko Velic (mirko.velic@sci.monash.edu.au) */
 52: #include "ex43-solcx.h"

 54: static PetscErrorCode DMDABCApplyFreeSlip(DM,Mat,Vec);


 57: #define NSD            2 /* number of spatial dimensions */
 58: #define NODES_PER_EL   4 /* nodes per element */
 59: #define U_DOFS         2 /* degrees of freedom per velocity node */
 60: #define P_DOFS         1 /* degrees of freedom per pressure node */
 61: #define GAUSS_POINTS   4

 63: /* Gauss point based evaluation 8+4+4+4 = 20 */
 64: typedef struct {
 65:   PetscScalar gp_coords[2*GAUSS_POINTS];
 66:   PetscScalar eta[GAUSS_POINTS];
 67:   PetscScalar fx[GAUSS_POINTS];
 68:   PetscScalar fy[GAUSS_POINTS];
 69: } GaussPointCoefficients;

 71: typedef struct {
 72:   PetscScalar u_dof;
 73:   PetscScalar v_dof;
 74:   PetscScalar p_dof;
 75: } StokesDOF;


 78: /*
 79:  Element: Local basis function ordering
 80:  1-----2
 81:  |     |
 82:  |     |
 83:  0-----3
 84:  */
 85: static void ConstructQ12D_Ni(PetscScalar _xi[],PetscScalar Ni[])
 86: {
 87:   PetscScalar xi  = _xi[0];
 88:   PetscScalar eta = _xi[1];

 90:   Ni[0] = 0.25*(1.0-xi)*(1.0-eta);
 91:   Ni[1] = 0.25*(1.0-xi)*(1.0+eta);
 92:   Ni[2] = 0.25*(1.0+xi)*(1.0+eta);
 93:   Ni[3] = 0.25*(1.0+xi)*(1.0-eta);
 94: }

 96: static void ConstructQ12D_GNi(PetscScalar _xi[],PetscScalar GNi[][NODES_PER_EL])
 97: {
 98:   PetscScalar xi  = _xi[0];
 99:   PetscScalar eta = _xi[1];

101:   GNi[0][0] = -0.25*(1.0-eta);
102:   GNi[0][1] = -0.25*(1.0+eta);
103:   GNi[0][2] =   0.25*(1.0+eta);
104:   GNi[0][3] =   0.25*(1.0-eta);

106:   GNi[1][0] = -0.25*(1.0-xi);
107:   GNi[1][1] =   0.25*(1.0-xi);
108:   GNi[1][2] =   0.25*(1.0+xi);
109:   GNi[1][3] = -0.25*(1.0+xi);
110: }

112: static void ConstructQ12D_GNx(PetscScalar GNi[][NODES_PER_EL],PetscScalar GNx[][NODES_PER_EL],PetscScalar coords[],PetscScalar *det_J)
113: {
114:   PetscScalar J00,J01,J10,J11,J;
115:   PetscScalar iJ00,iJ01,iJ10,iJ11;
116:   PetscInt    i;

118:   J00 = J01 = J10 = J11 = 0.0;
119:   for (i = 0; i < NODES_PER_EL; i++) {
120:     PetscScalar cx = coords[2*i];
121:     PetscScalar cy = coords[2*i+1];

123:     J00 = J00+GNi[0][i]*cx;      /* J_xx = dx/dxi */
124:     J01 = J01+GNi[0][i]*cy;      /* J_xy = dy/dxi */
125:     J10 = J10+GNi[1][i]*cx;      /* J_yx = dx/deta */
126:     J11 = J11+GNi[1][i]*cy;      /* J_yy = dy/deta */
127:   }
128:   J = (J00*J11)-(J01*J10);

130:   iJ00 =  J11/J;
131:   iJ01 = -J01/J;
132:   iJ10 = -J10/J;
133:   iJ11 =  J00/J;

135:   for (i = 0; i < NODES_PER_EL; i++) {
136:     GNx[0][i] = GNi[0][i]*iJ00+GNi[1][i]*iJ01;
137:     GNx[1][i] = GNi[0][i]*iJ10+GNi[1][i]*iJ11;
138:   }

140:   if (det_J) *det_J = J;
141: }

143: static void ConstructGaussQuadrature(PetscInt *ngp,PetscScalar gp_xi[][2],PetscScalar gp_weight[])
144: {
145:   *ngp         = 4;
146:   gp_xi[0][0]  = -0.57735026919; gp_xi[0][1] = -0.57735026919;
147:   gp_xi[1][0]  = -0.57735026919; gp_xi[1][1] =  0.57735026919;
148:   gp_xi[2][0]  =  0.57735026919; gp_xi[2][1] =  0.57735026919;
149:   gp_xi[3][0]  =  0.57735026919; gp_xi[3][1] = -0.57735026919;
150:   gp_weight[0] = 1.0;
151:   gp_weight[1] = 1.0;
152:   gp_weight[2] = 1.0;
153:   gp_weight[3] = 1.0;
154: }

156: /* procs to the left claim the ghost node as their element */
159: static PetscErrorCode DMDAGetLocalElementSize(DM da,PetscInt *mxl,PetscInt *myl,PetscInt *mzl)
160: {
161:   PetscInt m,n,p,M,N,P;
162:   PetscInt sx,sy,sz;

165:   DMDAGetInfo(da,0,&M,&N,&P,0,0,0,0,0,0,0,0,0);
166:   DMDAGetCorners(da,&sx,&sy,&sz,&m,&n,&p);

168:   if (mxl) {
169:     *mxl = m;
170:     if ((sx+m) == M) *mxl = m-1;  /* last proc */
171:   }
172:   if (myl) {
173:     *myl = n;
174:     if ((sy+n) == N) *myl = n-1;  /* last proc */
175:   }
176:   if (mzl) {
177:     *mzl = p;
178:     if ((sz+p) == P) *mzl = p-1;  /* last proc */
179:   }
180:   return(0);
181: }

185: static PetscErrorCode DMDAGetElementCorners(DM da,PetscInt *sx,PetscInt *sy,PetscInt *sz,PetscInt *mx,PetscInt *my,PetscInt *mz)
186: {
187:   PetscInt si,sj,sk;

190:   DMDAGetGhostCorners(da,&si,&sj,&sk,0,0,0);

192:   *sx = si;
193:   if (si) *sx = si+1;

195:   *sy = sj;
196:   if (sj) *sy = sj+1;

198:   if (sk) {
199:     *sz = sk;
200:     if (sk != 0) *sz = sk+1;
201:   }

203:   DMDAGetLocalElementSize(da,mx,my,mz);
204:   return(0);
205: }

207: /*
208: i,j are the element indices
209: The unknown is a vector quantity.
210: The s[].c is used to indicate the degree of freedom.
211: */
214: static PetscErrorCode DMDAGetElementEqnums_up(MatStencil s_u[],MatStencil s_p[],PetscInt i,PetscInt j)
215: {
217:   /* velocity */
218:   /* node 0 */
219:   s_u[0].i = i; s_u[0].j = j; s_u[0].c = 0;       /* Vx0 */
220:   s_u[1].i = i; s_u[1].j = j; s_u[1].c = 1;       /* Vy0 */

222:   /* node 1 */
223:   s_u[2].i = i; s_u[2].j = j+1; s_u[2].c = 0;     /* Vx1 */
224:   s_u[3].i = i; s_u[3].j = j+1; s_u[3].c = 1;     /* Vy1 */

226:   /* node 2 */
227:   s_u[4].i = i+1; s_u[4].j = j+1; s_u[4].c = 0;   /* Vx2 */
228:   s_u[5].i = i+1; s_u[5].j = j+1; s_u[5].c = 1;   /* Vy2 */

230:   /* node 3 */
231:   s_u[6].i = i+1; s_u[6].j = j; s_u[6].c = 0;     /* Vx3 */
232:   s_u[7].i = i+1; s_u[7].j = j; s_u[7].c = 1;     /* Vy3 */

234:   /* pressure */
235:   s_p[0].i = i;   s_p[0].j = j;   s_p[0].c = 2; /* P0 */
236:   s_p[1].i = i;   s_p[1].j = j+1; s_p[1].c = 2; /* P1 */
237:   s_p[2].i = i+1; s_p[2].j = j+1; s_p[2].c = 2; /* P2 */
238:   s_p[3].i = i+1; s_p[3].j = j;   s_p[3].c = 2; /* P3 */
239:   return(0);
240: }

244: static PetscErrorCode DMDAGetElementOwnershipRanges2d(DM da,PetscInt **_lx,PetscInt **_ly)
245: {
247:   PetscMPIInt    rank;
248:   PetscInt       proc_I,proc_J;
249:   PetscInt       cpu_x,cpu_y;
250:   PetscInt       local_mx,local_my;
251:   Vec            vlx,vly;
252:   PetscInt       *LX,*LY,i;
253:   PetscScalar    *_a;
254:   Vec            V_SEQ;
255:   VecScatter     ctx;

258:   MPI_Comm_rank(PETSC_COMM_WORLD,&rank);

260:   DMDAGetInfo(da,0,0,0,0,&cpu_x,&cpu_y,0,0,0,0,0,0,0);

262:   proc_J = rank/cpu_x;
263:   proc_I = rank-cpu_x*proc_J;

265:   PetscMalloc1(cpu_x,&LX);
266:   PetscMalloc1(cpu_y,&LY);

268:   DMDAGetLocalElementSize(da,&local_mx,&local_my,NULL);
269:   VecCreate(PETSC_COMM_WORLD,&vlx);
270:   VecSetSizes(vlx,PETSC_DECIDE,cpu_x);
271:   VecSetFromOptions(vlx);

273:   VecCreate(PETSC_COMM_WORLD,&vly);
274:   VecSetSizes(vly,PETSC_DECIDE,cpu_y);
275:   VecSetFromOptions(vly);

277:   VecSetValue(vlx,proc_I,(PetscScalar)(local_mx+1.0e-9),INSERT_VALUES);
278:   VecSetValue(vly,proc_J,(PetscScalar)(local_my+1.0e-9),INSERT_VALUES);
279:   VecAssemblyBegin(vlx);VecAssemblyEnd(vlx);
280:   VecAssemblyBegin(vly);VecAssemblyEnd(vly);

282:   VecScatterCreateToAll(vlx,&ctx,&V_SEQ);
283:   VecScatterBegin(ctx,vlx,V_SEQ,INSERT_VALUES,SCATTER_FORWARD);
284:   VecScatterEnd(ctx,vlx,V_SEQ,INSERT_VALUES,SCATTER_FORWARD);
285:   VecGetArray(V_SEQ,&_a);
286:   for (i = 0; i < cpu_x; i++) LX[i] = (PetscInt)PetscRealPart(_a[i]);
287:   VecRestoreArray(V_SEQ,&_a);
288:   VecScatterDestroy(&ctx);
289:   VecDestroy(&V_SEQ);

291:   VecScatterCreateToAll(vly,&ctx,&V_SEQ);
292:   VecScatterBegin(ctx,vly,V_SEQ,INSERT_VALUES,SCATTER_FORWARD);
293:   VecScatterEnd(ctx,vly,V_SEQ,INSERT_VALUES,SCATTER_FORWARD);
294:   VecGetArray(V_SEQ,&_a);
295:   for (i = 0; i < cpu_y; i++) LY[i] = (PetscInt)PetscRealPart(_a[i]);
296:   VecRestoreArray(V_SEQ,&_a);
297:   VecScatterDestroy(&ctx);
298:   VecDestroy(&V_SEQ);

300:   *_lx = LX;
301:   *_ly = LY;

303:   VecDestroy(&vlx);
304:   VecDestroy(&vly);
305:   return(0);
306: }

310: static PetscErrorCode DMDACoordViewGnuplot2d(DM da,const char prefix[])
311: {
312:   DM             cda;
313:   Vec            coords;
314:   DMDACoor2d     **_coords;
315:   PetscInt       si,sj,nx,ny,i,j;
316:   FILE           *fp;
317:   char           fname[PETSC_MAX_PATH_LEN];
318:   PetscMPIInt    rank;

322:   MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
323:   PetscSNPrintf(fname,sizeof(fname),"%s-p%1.4d.dat",prefix,rank);
324:   PetscFOpen(PETSC_COMM_SELF,fname,"w",&fp);
325:   if (!fp) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_USER,"Cannot open file");

327:   PetscFPrintf(PETSC_COMM_SELF,fp,"### Element geometry for processor %1.4d ### \n",rank);

329:   DMGetCoordinateDM(da,&cda);
330:   DMGetCoordinatesLocal(da,&coords);
331:   DMDAVecGetArrayRead(cda,coords,&_coords);
332:   DMDAGetGhostCorners(cda,&si,&sj,0,&nx,&ny,0);
333:   for (j = sj; j < sj+ny-1; j++) {
334:     for (i = si; i < si+nx-1; i++) {
335:       PetscFPrintf(PETSC_COMM_SELF,fp,"%1.6e %1.6e \n",(double)PetscRealPart(_coords[j][i].x),(double)PetscRealPart(_coords[j][i].y));
336:       PetscFPrintf(PETSC_COMM_SELF,fp,"%1.6e %1.6e \n",(double)PetscRealPart(_coords[j+1][i].x),(double)PetscRealPart(_coords[j+1][i].y));
337:       PetscFPrintf(PETSC_COMM_SELF,fp,"%1.6e %1.6e \n",(double)PetscRealPart(_coords[j+1][i+1].x),(double)PetscRealPart(_coords[j+1][i+1].y));
338:       PetscFPrintf(PETSC_COMM_SELF,fp,"%1.6e %1.6e \n",(double)PetscRealPart(_coords[j][i+1].x),(double)PetscRealPart(_coords[j][i+1].y));
339:       PetscFPrintf(PETSC_COMM_SELF,fp,"%1.6e %1.6e \n\n",(double)PetscRealPart(_coords[j][i].x),(double)PetscRealPart(_coords[j][i].y));
340:     }
341:   }
342:   DMDAVecRestoreArrayRead(cda,coords,&_coords);

344:   PetscFClose(PETSC_COMM_SELF,fp);
345:   return(0);
346: }

350: static PetscErrorCode DMDAViewGnuplot2d(DM da,Vec fields,const char comment[],const char prefix[])
351: {
352:   DM             cda;
353:   Vec            coords,local_fields;
354:   DMDACoor2d     **_coords;
355:   FILE           *fp;
356:   char           fname[PETSC_MAX_PATH_LEN];
357:   PetscMPIInt    rank;
358:   PetscInt       si,sj,nx,ny,i,j;
359:   PetscInt       n_dofs,d;
360:   PetscScalar    *_fields;

364:   MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
365:   PetscSNPrintf(fname,sizeof(fname),"%s-p%1.4d.dat",prefix,rank);
366:   PetscFOpen(PETSC_COMM_SELF,fname,"w",&fp);
367:   if (!fp) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_USER,"Cannot open file");

369:   PetscFPrintf(PETSC_COMM_SELF,fp,"### %s (processor %1.4d) ### \n",comment,rank);
370:   DMDAGetInfo(da,0,0,0,0,0,0,0,&n_dofs,0,0,0,0,0);
371:   PetscFPrintf(PETSC_COMM_SELF,fp,"### x y ");
372:   for (d = 0; d < n_dofs; d++) {
373:     const char *field_name;
374:     DMDAGetFieldName(da,d,&field_name);
375:     PetscFPrintf(PETSC_COMM_SELF,fp,"%s ",field_name);
376:   }
377:   PetscFPrintf(PETSC_COMM_SELF,fp,"###\n");

379:   DMGetCoordinateDM(da,&cda);
380:   DMGetCoordinatesLocal(da,&coords);
381:   DMDAVecGetArray(cda,coords,&_coords);
382:   DMDAGetGhostCorners(cda,&si,&sj,0,&nx,&ny,0);

384:   DMCreateLocalVector(da,&local_fields);
385:   DMGlobalToLocalBegin(da,fields,INSERT_VALUES,local_fields);
386:   DMGlobalToLocalEnd(da,fields,INSERT_VALUES,local_fields);
387:   VecGetArray(local_fields,&_fields);

389:   for (j = sj; j < sj+ny; j++) {
390:     for (i = si; i < si+nx; i++) {
391:       PetscScalar coord_x,coord_y;
392:       PetscScalar field_d;

394:       coord_x = _coords[j][i].x;
395:       coord_y = _coords[j][i].y;

397:       PetscFPrintf(PETSC_COMM_SELF,fp,"%1.6e %1.6e ",(double)PetscRealPart(coord_x),(double)PetscRealPart(coord_y));
398:       for (d = 0; d < n_dofs; d++) {
399:         field_d = _fields[n_dofs*((i-si)+(j-sj)*(nx))+d];
400:         PetscFPrintf(PETSC_COMM_SELF,fp,"%1.6e ",(double)PetscRealPart(field_d));
401:       }
402:       PetscFPrintf(PETSC_COMM_SELF,fp,"\n");
403:     }
404:   }
405:   VecRestoreArray(local_fields,&_fields);
406:   VecDestroy(&local_fields);

408:   DMDAVecRestoreArray(cda,coords,&_coords);

410:   PetscFClose(PETSC_COMM_SELF,fp);
411:   return(0);
412: }

416: static PetscErrorCode DMDAViewCoefficientsGnuplot2d(DM da,Vec fields,const char comment[],const char prefix[])
417: {
418:   DM                     cda;
419:   Vec                    local_fields;
420:   FILE                   *fp;
421:   char                   fname[PETSC_MAX_PATH_LEN];
422:   PetscMPIInt            rank;
423:   PetscInt               si,sj,nx,ny,i,j,p;
424:   PetscInt               n_dofs,d;
425:   GaussPointCoefficients **_coefficients;
426:   PetscErrorCode         ierr;

429:   MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
430:   PetscSNPrintf(fname,sizeof(fname),"%s-p%1.4d.dat",prefix,rank);
431:   PetscFOpen(PETSC_COMM_SELF,fname,"w",&fp);
432:   if (!fp) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_USER,"Cannot open file");

434:   PetscFPrintf(PETSC_COMM_SELF,fp,"### %s (processor %1.4d) ### \n",comment,rank);
435:   DMDAGetInfo(da,0,0,0,0,0,0,0,&n_dofs,0,0,0,0,0);
436:   PetscFPrintf(PETSC_COMM_SELF,fp,"### x y ");
437:   for (d = 0; d < n_dofs; d++) {
438:     const char *field_name;
439:     DMDAGetFieldName(da,d,&field_name);
440:     PetscFPrintf(PETSC_COMM_SELF,fp,"%s ",field_name);
441:   }
442:   PetscFPrintf(PETSC_COMM_SELF,fp,"###\n");

444:   DMGetCoordinateDM(da,&cda);
445:   DMDAGetGhostCorners(cda,&si,&sj,0,&nx,&ny,0);

447:   DMCreateLocalVector(da,&local_fields);
448:   DMGlobalToLocalBegin(da,fields,INSERT_VALUES,local_fields);
449:   DMGlobalToLocalEnd(da,fields,INSERT_VALUES,local_fields);
450:   DMDAVecGetArray(da,local_fields,&_coefficients);

452:   for (j = sj; j < sj+ny; j++) {
453:     for (i = si; i < si+nx; i++) {
454:       PetscScalar coord_x,coord_y;

456:       for (p = 0; p < GAUSS_POINTS; p++) {
457:         coord_x = _coefficients[j][i].gp_coords[2*p];
458:         coord_y = _coefficients[j][i].gp_coords[2*p+1];

460:         PetscFPrintf(PETSC_COMM_SELF,fp,"%1.6e %1.6e ",(double)PetscRealPart(coord_x),(double)PetscRealPart(coord_y));

462:         PetscFPrintf(PETSC_COMM_SELF,fp,"%1.6e %1.6e %1.6e",(double)PetscRealPart(_coefficients[j][i].eta[p]),(double)PetscRealPart(_coefficients[j][i].fx[p]),(double)PetscRealPart(_coefficients[j][i].fy[p]));
463:         PetscFPrintf(PETSC_COMM_SELF,fp,"\n");
464:       }
465:     }
466:   }
467:   DMDAVecRestoreArray(da,local_fields,&_coefficients);
468:   VecDestroy(&local_fields);

470:   PetscFClose(PETSC_COMM_SELF,fp);
471:   return(0);
472: }

474: static PetscInt ASS_MAP_wIwDI_uJuDJ(PetscInt wi,PetscInt wd,PetscInt w_NPE,PetscInt w_dof,PetscInt ui,PetscInt ud,PetscInt u_NPE,PetscInt u_dof)
475: {
476:   PetscInt ij;
477:   PetscInt r,c,nc;

479:   nc = u_NPE*u_dof;

481:   r = w_dof*wi+wd;
482:   c = u_dof*ui+ud;

484:   ij = r*nc+c;

486:   return ij;
487: }

489: /*
490:  D = [ 2.eta   0   0   ]
491:      [   0   2.eta 0   ]
492:      [   0     0   eta ]
493:  
494:  B = [ d_dx   0   ]
495:      [  0    d_dy ]
496:      [ d_dy  d_dx ]
497: */
498: static void FormStressOperatorQ1(PetscScalar Ke[],PetscScalar coords[],PetscScalar eta[])
499: {
500:   PetscInt    ngp;
501:   PetscScalar gp_xi[GAUSS_POINTS][2];
502:   PetscScalar gp_weight[GAUSS_POINTS];
503:   PetscInt    p,i,j,k;
504:   PetscScalar GNi_p[NSD][NODES_PER_EL],GNx_p[NSD][NODES_PER_EL];
505:   PetscScalar J_p,tildeD[3];
506:   PetscScalar B[3][U_DOFS*NODES_PER_EL];

508:   /* define quadrature rule */
509:   ConstructGaussQuadrature(&ngp,gp_xi,gp_weight);

511:   /* evaluate integral */
512:   for (p = 0; p < ngp; p++) {
513:     ConstructQ12D_GNi(gp_xi[p],GNi_p);
514:     ConstructQ12D_GNx(GNi_p,GNx_p,coords,&J_p);

516:     for (i = 0; i < NODES_PER_EL; i++) {
517:       PetscScalar d_dx_i = GNx_p[0][i];
518:       PetscScalar d_dy_i = GNx_p[1][i];

520:       B[0][2*i] = d_dx_i;B[0][2*i+1] = 0.0;
521:       B[1][2*i] = 0.0;B[1][2*i+1] = d_dy_i;
522:       B[2][2*i] = d_dy_i;B[2][2*i+1] = d_dx_i;
523:     }

525:     tildeD[0] = 2.0*gp_weight[p]*J_p*eta[p];
526:     tildeD[1] = 2.0*gp_weight[p]*J_p*eta[p];
527:     tildeD[2] =       gp_weight[p]*J_p*eta[p];

529:     /* form Bt tildeD B */
530:     /*
531:     Ke_ij = Bt_ik . D_kl . B_lj
532:           = B_ki . D_kl . B_lj
533:           = B_ki . D_kk . B_kj
534:     */
535:     for (i = 0; i < 8; i++) {
536:       for (j = 0; j < 8; j++) {
537:         for (k = 0; k < 3; k++) { /* Note D is diagonal for stokes */
538:           Ke[i+8*j] = Ke[i+8*j]+B[k][i]*tildeD[k]*B[k][j];
539:         }
540:       }
541:     }
542:   }
543: }

545: static void FormGradientOperatorQ1(PetscScalar Ke[],PetscScalar coords[])
546: {
547:   PetscInt    ngp;
548:   PetscScalar gp_xi[GAUSS_POINTS][2];
549:   PetscScalar gp_weight[GAUSS_POINTS];
550:   PetscInt    p,i,j,di;
551:   PetscScalar Ni_p[NODES_PER_EL];
552:   PetscScalar GNi_p[NSD][NODES_PER_EL],GNx_p[NSD][NODES_PER_EL];
553:   PetscScalar J_p,fac;

555:   /* define quadrature rule */
556:   ConstructGaussQuadrature(&ngp,gp_xi,gp_weight);

558:   /* evaluate integral */
559:   for (p = 0; p < ngp; p++) {
560:     ConstructQ12D_Ni(gp_xi[p],Ni_p);
561:     ConstructQ12D_GNi(gp_xi[p],GNi_p);
562:     ConstructQ12D_GNx(GNi_p,GNx_p,coords,&J_p);
563:     fac = gp_weight[p]*J_p;

565:     for (i = 0; i < NODES_PER_EL; i++) { /* u nodes */
566:       for (di = 0; di < NSD; di++) { /* u dofs */
567:         for (j = 0; j < 4; j++) {  /* p nodes, p dofs = 1 (ie no loop) */
568:           PetscInt IJ;
569:           IJ = ASS_MAP_wIwDI_uJuDJ(i,di,NODES_PER_EL,2,j,0,NODES_PER_EL,1);

571:           Ke[IJ] = Ke[IJ]-GNx_p[di][i]*Ni_p[j]*fac;
572:         }
573:       }
574:     }
575:   }
576: }

578: static void FormDivergenceOperatorQ1(PetscScalar De[],PetscScalar coords[])
579: {
580:   PetscScalar Ge[U_DOFS*NODES_PER_EL*P_DOFS*NODES_PER_EL];
581:   PetscInt    i,j;
582:   PetscInt    nr_g,nc_g;

584:   PetscMemzero(Ge,sizeof(PetscScalar)*U_DOFS*NODES_PER_EL*P_DOFS*NODES_PER_EL);
585:   FormGradientOperatorQ1(Ge,coords);

587:   nr_g = U_DOFS*NODES_PER_EL;
588:   nc_g = P_DOFS*NODES_PER_EL;

590:   for (i = 0; i < nr_g; i++) {
591:     for (j = 0; j < nc_g; j++) {
592:       De[nr_g*j+i] = Ge[nc_g*i+j];
593:     }
594:   }
595: }

597: static void FormStabilisationOperatorQ1(PetscScalar Ke[],PetscScalar coords[],PetscScalar eta[])
598: {
599:   PetscInt    ngp;
600:   PetscScalar gp_xi[GAUSS_POINTS][2];
601:   PetscScalar gp_weight[GAUSS_POINTS];
602:   PetscInt    p,i,j;
603:   PetscScalar Ni_p[NODES_PER_EL];
604:   PetscScalar GNi_p[NSD][NODES_PER_EL],GNx_p[NSD][NODES_PER_EL];
605:   PetscScalar J_p,fac,eta_avg;

607:   /* define quadrature rule */
608:   ConstructGaussQuadrature(&ngp,gp_xi,gp_weight);

610:   /* evaluate integral */
611:   for (p = 0; p < ngp; p++) {
612:     ConstructQ12D_Ni(gp_xi[p],Ni_p);
613:     ConstructQ12D_GNi(gp_xi[p],GNi_p);
614:     ConstructQ12D_GNx(GNi_p,GNx_p,coords,&J_p);
615:     fac = gp_weight[p]*J_p;

617:     for (i = 0; i < NODES_PER_EL; i++) {
618:       for (j = 0; j < NODES_PER_EL; j++) {
619:         Ke[NODES_PER_EL*i+j] = Ke[NODES_PER_EL*i+j]-fac*(Ni_p[i]*Ni_p[j]-0.0625);
620:       }
621:     }
622:   }

624:   /* scale */
625:   eta_avg = 0.0;
626:   for (p = 0; p < ngp; p++) eta_avg += eta[p];
627:   eta_avg = (1.0/((PetscScalar)ngp))*eta_avg;
628:   fac     = 1.0/eta_avg;
629:   for (i = 0; i < NODES_PER_EL; i++) {
630:     for (j = 0; j < NODES_PER_EL; j++) {
631:       Ke[NODES_PER_EL*i+j] = fac*Ke[NODES_PER_EL*i+j];
632:     }
633:   }
634: }

636: static void FormScaledMassMatrixOperatorQ1(PetscScalar Ke[],PetscScalar coords[],PetscScalar eta[])
637: {
638:   PetscInt    ngp;
639:   PetscScalar gp_xi[GAUSS_POINTS][2];
640:   PetscScalar gp_weight[GAUSS_POINTS];
641:   PetscInt    p,i,j;
642:   PetscScalar Ni_p[NODES_PER_EL];
643:   PetscScalar GNi_p[NSD][NODES_PER_EL],GNx_p[NSD][NODES_PER_EL];
644:   PetscScalar J_p,fac,eta_avg;

646:   /* define quadrature rule */
647:   ConstructGaussQuadrature(&ngp,gp_xi,gp_weight);

649:   /* evaluate integral */
650:   for (p = 0; p < ngp; p++) {
651:     ConstructQ12D_Ni(gp_xi[p],Ni_p);
652:     ConstructQ12D_GNi(gp_xi[p],GNi_p);
653:     ConstructQ12D_GNx(GNi_p,GNx_p,coords,&J_p);
654:     fac = gp_weight[p]*J_p;

656:     for (i = 0; i < NODES_PER_EL; i++) {
657:       for (j = 0; j < NODES_PER_EL; j++) {
658:         Ke[NODES_PER_EL*i+j] = Ke[NODES_PER_EL*i+j]-fac*Ni_p[i]*Ni_p[j];
659:       }
660:     }
661:   }

663:   /* scale */
664:   eta_avg = 0.0;
665:   for (p = 0; p < ngp; p++) eta_avg += eta[p];
666:   eta_avg = (1.0/((PetscScalar)ngp))*eta_avg;
667:   fac     = 1.0/eta_avg;
668:   for (i = 0; i < NODES_PER_EL; i++) {
669:     for (j = 0; j < NODES_PER_EL; j++) {
670:       Ke[NODES_PER_EL*i+j] = fac*Ke[NODES_PER_EL*i+j];
671:     }
672:   }
673: }

675: static void FormMomentumRhsQ1(PetscScalar Fe[],PetscScalar coords[],PetscScalar fx[],PetscScalar fy[])
676: {
677:   PetscInt    ngp;
678:   PetscScalar gp_xi[GAUSS_POINTS][2];
679:   PetscScalar gp_weight[GAUSS_POINTS];
680:   PetscInt    p,i;
681:   PetscScalar Ni_p[NODES_PER_EL];
682:   PetscScalar GNi_p[NSD][NODES_PER_EL],GNx_p[NSD][NODES_PER_EL];
683:   PetscScalar J_p,fac;

685:   /* define quadrature rule */
686:   ConstructGaussQuadrature(&ngp,gp_xi,gp_weight);

688:   /* evaluate integral */
689:   for (p = 0; p < ngp; p++) {
690:     ConstructQ12D_Ni(gp_xi[p],Ni_p);
691:     ConstructQ12D_GNi(gp_xi[p],GNi_p);
692:     ConstructQ12D_GNx(GNi_p,GNx_p,coords,&J_p);
693:     fac = gp_weight[p]*J_p;

695:     for (i = 0; i < NODES_PER_EL; i++) {
696:       Fe[NSD*i]   += fac*Ni_p[i]*fx[p];
697:       Fe[NSD*i+1] += fac*Ni_p[i]*fy[p];
698:     }
699:   }
700: }

704: static PetscErrorCode GetElementCoords(DMDACoor2d **_coords,PetscInt ei,PetscInt ej,PetscScalar el_coords[])
705: {
707:   /* get coords for the element */
708:   el_coords[NSD*0] = _coords[ej][ei].x;     el_coords[NSD*0+1] = _coords[ej][ei].y;
709:   el_coords[NSD*1] = _coords[ej+1][ei].x;   el_coords[NSD*1+1] = _coords[ej+1][ei].y;
710:   el_coords[NSD*2] = _coords[ej+1][ei+1].x; el_coords[NSD*2+1] = _coords[ej+1][ei+1].y;
711:   el_coords[NSD*3] = _coords[ej][ei+1].x;   el_coords[NSD*3+1] = _coords[ej][ei+1].y;
712:   return(0);
713: }

717: static PetscErrorCode AssembleA_Stokes(Mat A,DM stokes_da,DM properties_da,Vec properties)
718: {
719:   DM                     cda;
720:   Vec                    coords;
721:   DMDACoor2d             **_coords;
722:   MatStencil             u_eqn[NODES_PER_EL*U_DOFS]; /* 2 degrees of freedom */
723:   MatStencil             p_eqn[NODES_PER_EL*P_DOFS]; /* 1 degrees of freedom */
724:   PetscInt               sex,sey,mx,my;
725:   PetscInt               ei,ej;
726:   PetscScalar            Ae[NODES_PER_EL*U_DOFS*NODES_PER_EL*U_DOFS];
727:   PetscScalar            Ge[NODES_PER_EL*U_DOFS*NODES_PER_EL*P_DOFS];
728:   PetscScalar            De[NODES_PER_EL*P_DOFS*NODES_PER_EL*U_DOFS];
729:   PetscScalar            Ce[NODES_PER_EL*P_DOFS*NODES_PER_EL*P_DOFS];
730:   PetscScalar            el_coords[NODES_PER_EL*NSD];
731:   Vec                    local_properties;
732:   GaussPointCoefficients **props;
733:   PetscScalar            *prop_eta;
734:   PetscErrorCode         ierr;

737:   /* setup for coords */
738:   DMGetCoordinateDM(stokes_da,&cda);
739:   DMGetCoordinatesLocal(stokes_da,&coords);
740:   DMDAVecGetArray(cda,coords,&_coords);

742:   /* setup for coefficients */
743:   DMCreateLocalVector(properties_da,&local_properties);
744:   DMGlobalToLocalBegin(properties_da,properties,INSERT_VALUES,local_properties);
745:   DMGlobalToLocalEnd(properties_da,properties,INSERT_VALUES,local_properties);
746:   DMDAVecGetArray(properties_da,local_properties,&props);

748:   DMDAGetElementCorners(stokes_da,&sex,&sey,0,&mx,&my,0);
749:   for (ej = sey; ej < sey+my; ej++) {
750:     for (ei = sex; ei < sex+mx; ei++) {
751:       /* get coords for the element */
752:       GetElementCoords(_coords,ei,ej,el_coords);

754:       /* get coefficients for the element */
755:       prop_eta = props[ej][ei].eta;

757:       /* initialise element stiffness matrix */
758:       PetscMemzero(Ae,sizeof(PetscScalar)*NODES_PER_EL*U_DOFS*NODES_PER_EL*U_DOFS);
759:       PetscMemzero(Ge,sizeof(PetscScalar)*NODES_PER_EL*U_DOFS*NODES_PER_EL*P_DOFS);
760:       PetscMemzero(De,sizeof(PetscScalar)*NODES_PER_EL*P_DOFS*NODES_PER_EL*U_DOFS);
761:       PetscMemzero(Ce,sizeof(PetscScalar)*NODES_PER_EL*P_DOFS*NODES_PER_EL*P_DOFS);

763:       /* form element stiffness matrix */
764:       FormStressOperatorQ1(Ae,el_coords,prop_eta);
765:       FormGradientOperatorQ1(Ge,el_coords);
766:       FormDivergenceOperatorQ1(De,el_coords);
767:       FormStabilisationOperatorQ1(Ce,el_coords,prop_eta);

769:       /* insert element matrix into global matrix */
770:       DMDAGetElementEqnums_up(u_eqn,p_eqn,ei,ej);
771:       MatSetValuesStencil(A,NODES_PER_EL*U_DOFS,u_eqn,NODES_PER_EL*U_DOFS,u_eqn,Ae,ADD_VALUES);
772:       MatSetValuesStencil(A,NODES_PER_EL*U_DOFS,u_eqn,NODES_PER_EL*P_DOFS,p_eqn,Ge,ADD_VALUES);
773:       MatSetValuesStencil(A,NODES_PER_EL*P_DOFS,p_eqn,NODES_PER_EL*U_DOFS,u_eqn,De,ADD_VALUES);
774:       MatSetValuesStencil(A,NODES_PER_EL*P_DOFS,p_eqn,NODES_PER_EL*P_DOFS,p_eqn,Ce,ADD_VALUES);
775:     }
776:   }
777:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
778:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

780:   DMDAVecRestoreArray(cda,coords,&_coords);

782:   DMDAVecRestoreArray(properties_da,local_properties,&props);
783:   VecDestroy(&local_properties);
784:   return(0);
785: }

789: static PetscErrorCode AssembleA_PCStokes(Mat A,DM stokes_da,DM properties_da,Vec properties)
790: {
791:   DM                     cda;
792:   Vec                    coords;
793:   DMDACoor2d             **_coords;
794:   MatStencil             u_eqn[NODES_PER_EL*U_DOFS]; /* 2 degrees of freedom */
795:   MatStencil             p_eqn[NODES_PER_EL*P_DOFS]; /* 1 degrees of freedom */
796:   PetscInt               sex,sey,mx,my;
797:   PetscInt               ei,ej;
798:   PetscScalar            Ae[NODES_PER_EL*U_DOFS*NODES_PER_EL*U_DOFS];
799:   PetscScalar            Ge[NODES_PER_EL*U_DOFS*NODES_PER_EL*P_DOFS];
800:   PetscScalar            De[NODES_PER_EL*P_DOFS*NODES_PER_EL*U_DOFS];
801:   PetscScalar            Ce[NODES_PER_EL*P_DOFS*NODES_PER_EL*P_DOFS];
802:   PetscScalar            el_coords[NODES_PER_EL*NSD];
803:   Vec                    local_properties;
804:   GaussPointCoefficients **props;
805:   PetscScalar            *prop_eta;
806:   PetscErrorCode         ierr;

809:   /* setup for coords */
810:   DMGetCoordinateDM(stokes_da,&cda);
811:   DMGetCoordinatesLocal(stokes_da,&coords);
812:   DMDAVecGetArray(cda,coords,&_coords);

814:   /* setup for coefficients */
815:   DMCreateLocalVector(properties_da,&local_properties);
816:   DMGlobalToLocalBegin(properties_da,properties,INSERT_VALUES,local_properties);
817:   DMGlobalToLocalEnd(properties_da,properties,INSERT_VALUES,local_properties);
818:   DMDAVecGetArray(properties_da,local_properties,&props);

820:   DMDAGetElementCorners(stokes_da,&sex,&sey,0,&mx,&my,0);
821:   for (ej = sey; ej < sey+my; ej++) {
822:     for (ei = sex; ei < sex+mx; ei++) {
823:       /* get coords for the element */
824:       GetElementCoords(_coords,ei,ej,el_coords);

826:       /* get coefficients for the element */
827:       prop_eta = props[ej][ei].eta;

829:       /* initialise element stiffness matrix */
830:       PetscMemzero(Ae,sizeof(PetscScalar)*NODES_PER_EL*U_DOFS*NODES_PER_EL*U_DOFS);
831:       PetscMemzero(Ge,sizeof(PetscScalar)*NODES_PER_EL*U_DOFS*NODES_PER_EL*P_DOFS);
832:       PetscMemzero(De,sizeof(PetscScalar)*NODES_PER_EL*P_DOFS*NODES_PER_EL*U_DOFS);
833:       PetscMemzero(Ce,sizeof(PetscScalar)*NODES_PER_EL*P_DOFS*NODES_PER_EL*P_DOFS);

835:       /* form element stiffness matrix */
836:       FormStressOperatorQ1(Ae,el_coords,prop_eta);
837:       FormGradientOperatorQ1(Ge,el_coords);
838:       FormScaledMassMatrixOperatorQ1(Ce,el_coords,prop_eta);

840:       /* insert element matrix into global matrix */
841:       DMDAGetElementEqnums_up(u_eqn,p_eqn,ei,ej);
842:       MatSetValuesStencil(A,NODES_PER_EL*U_DOFS,u_eqn,NODES_PER_EL*U_DOFS,u_eqn,Ae,ADD_VALUES);
843:       MatSetValuesStencil(A,NODES_PER_EL*U_DOFS,u_eqn,NODES_PER_EL*P_DOFS,p_eqn,Ge,ADD_VALUES);
844:       MatSetValuesStencil(A,NODES_PER_EL*P_DOFS,p_eqn,NODES_PER_EL*P_DOFS,p_eqn,Ce,ADD_VALUES);
845:     }
846:   }
847:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
848:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

850:   DMDAVecRestoreArray(cda,coords,&_coords);

852:   DMDAVecRestoreArray(properties_da,local_properties,&props);
853:   VecDestroy(&local_properties);
854:   return(0);
855: }

859: static PetscErrorCode DMDASetValuesLocalStencil_ADD_VALUES(StokesDOF **fields_F,MatStencil u_eqn[],MatStencil p_eqn[],PetscScalar Fe_u[],PetscScalar Fe_p[])
860: {
861:   PetscInt n;

864:   for (n = 0; n < 4; n++) {
865:     fields_F[u_eqn[2*n].j][u_eqn[2*n].i].u_dof     = fields_F[u_eqn[2*n].j][u_eqn[2*n].i].u_dof+Fe_u[2*n];
866:     fields_F[u_eqn[2*n+1].j][u_eqn[2*n+1].i].v_dof = fields_F[u_eqn[2*n+1].j][u_eqn[2*n+1].i].v_dof+Fe_u[2*n+1];
867:     fields_F[p_eqn[n].j][p_eqn[n].i].p_dof         = fields_F[p_eqn[n].j][p_eqn[n].i].p_dof+Fe_p[n];
868:   }
869:   return(0);
870: }

874: static PetscErrorCode AssembleF_Stokes(Vec F,DM stokes_da,DM properties_da,Vec properties)
875: {
876:   DM                     cda;
877:   Vec                    coords;
878:   DMDACoor2d             **_coords;
879:   MatStencil             u_eqn[NODES_PER_EL*U_DOFS]; /* 2 degrees of freedom */
880:   MatStencil             p_eqn[NODES_PER_EL*P_DOFS]; /* 1 degrees of freedom */
881:   PetscInt               sex,sey,mx,my;
882:   PetscInt               ei,ej;
883:   PetscScalar            Fe[NODES_PER_EL*U_DOFS];
884:   PetscScalar            He[NODES_PER_EL*P_DOFS];
885:   PetscScalar            el_coords[NODES_PER_EL*NSD];
886:   Vec                    local_properties;
887:   GaussPointCoefficients **props;
888:   PetscScalar            *prop_fx,*prop_fy;
889:   Vec                    local_F;
890:   StokesDOF              **ff;
891:   PetscErrorCode         ierr;

894:   /* setup for coords */
895:   DMGetCoordinateDM(stokes_da,&cda);
896:   DMGetCoordinatesLocal(stokes_da,&coords);
897:   DMDAVecGetArray(cda,coords,&_coords);

899:   /* setup for coefficients */
900:   DMGetLocalVector(properties_da,&local_properties);
901:   DMGlobalToLocalBegin(properties_da,properties,INSERT_VALUES,local_properties);
902:   DMGlobalToLocalEnd(properties_da,properties,INSERT_VALUES,local_properties);
903:   DMDAVecGetArray(properties_da,local_properties,&props);

905:   /* get acces to the vector */
906:   DMGetLocalVector(stokes_da,&local_F);
907:   VecZeroEntries(local_F);
908:   DMDAVecGetArray(stokes_da,local_F,&ff);

910:   DMDAGetElementCorners(stokes_da,&sex,&sey,0,&mx,&my,0);
911:   for (ej = sey; ej < sey+my; ej++) {
912:     for (ei = sex; ei < sex+mx; ei++) {
913:       /* get coords for the element */
914:       GetElementCoords(_coords,ei,ej,el_coords);

916:       /* get coefficients for the element */
917:       prop_fx = props[ej][ei].fx;
918:       prop_fy = props[ej][ei].fy;

920:       /* initialise element stiffness matrix */
921:       PetscMemzero(Fe,sizeof(PetscScalar)*NODES_PER_EL*U_DOFS);
922:       PetscMemzero(He,sizeof(PetscScalar)*NODES_PER_EL*P_DOFS);

924:       /* form element stiffness matrix */
925:       FormMomentumRhsQ1(Fe,el_coords,prop_fx,prop_fy);

927:       /* insert element matrix into global matrix */
928:       DMDAGetElementEqnums_up(u_eqn,p_eqn,ei,ej);

930:       DMDASetValuesLocalStencil_ADD_VALUES(ff,u_eqn,p_eqn,Fe,He);
931:     }
932:   }

934:   DMDAVecRestoreArray(stokes_da,local_F,&ff);
935:   DMLocalToGlobalBegin(stokes_da,local_F,ADD_VALUES,F);
936:   DMLocalToGlobalEnd(stokes_da,local_F,ADD_VALUES,F);
937:   DMRestoreLocalVector(stokes_da,&local_F);

939:   DMDAVecRestoreArray(cda,coords,&_coords);

941:   DMDAVecRestoreArray(properties_da,local_properties,&props);
942:   DMRestoreLocalVector(properties_da,&local_properties);
943:   return(0);
944: }

948: static PetscErrorCode DMDACreateSolCx(PetscReal eta0,PetscReal eta1,PetscReal xc,PetscInt nz,PetscInt mx,PetscInt my,DM *_da,Vec *_X)
949: {
950:   DM             da,cda;
951:   Vec            X;
952:   StokesDOF      **_stokes;
953:   Vec            coords;
954:   DMDACoor2d     **_coords;
955:   PetscInt       si,sj,ei,ej,i,j;

959:   DMDACreate2d(PETSC_COMM_WORLD, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE,DMDA_STENCIL_BOX,
960:                       mx+1,my+1,PETSC_DECIDE,PETSC_DECIDE,3,1,NULL,NULL,&da);
961:   DMDASetFieldName(da,0,"anlytic_Vx");
962:   DMDASetFieldName(da,1,"anlytic_Vy");
963:   DMDASetFieldName(da,2,"analytic_P");

965:   DMDASetUniformCoordinates(da,0.0,1.0,0.0,1.0,0.,0.);

967:   DMGetCoordinatesLocal(da,&coords);
968:   DMGetCoordinateDM(da,&cda);
969:   DMDAVecGetArray(cda,coords,&_coords);

971:   DMCreateGlobalVector(da,&X);
972:   DMDAVecGetArray(da,X,&_stokes);

974:   DMDAGetCorners(da,&si,&sj,0,&ei,&ej,0);
975:   for (j = sj; j < sj+ej; j++) {
976:     for (i = si; i < si+ei; i++) {
977:       PetscReal pos[2],pressure,vel[2],total_stress[3],strain_rate[3];

979:       pos[0] = PetscRealPart(_coords[j][i].x);
980:       pos[1] = PetscRealPart(_coords[j][i].y);

982:       evaluate_solCx(pos,eta0,eta1,xc,nz,vel,&pressure,total_stress,strain_rate);

984:       _stokes[j][i].u_dof = vel[0];
985:       _stokes[j][i].v_dof = vel[1];
986:       _stokes[j][i].p_dof = pressure;
987:     }
988:   }
989:   DMDAVecRestoreArray(da,X,&_stokes);
990:   DMDAVecRestoreArray(cda,coords,&_coords);

992:   *_da = da;
993:   *_X  = X;
994:   return(0);
995: }

999: static PetscErrorCode StokesDAGetNodalFields(StokesDOF **fields,PetscInt ei,PetscInt ej,StokesDOF nodal_fields[])
1000: {
1002:   /* get the nodal fields */
1003:   nodal_fields[0].u_dof = fields[ej][ei].u_dof;     nodal_fields[0].v_dof = fields[ej][ei].v_dof;     nodal_fields[0].p_dof = fields[ej][ei].p_dof;
1004:   nodal_fields[1].u_dof = fields[ej+1][ei].u_dof;   nodal_fields[1].v_dof = fields[ej+1][ei].v_dof;   nodal_fields[1].p_dof = fields[ej+1][ei].p_dof;
1005:   nodal_fields[2].u_dof = fields[ej+1][ei+1].u_dof; nodal_fields[2].v_dof = fields[ej+1][ei+1].v_dof; nodal_fields[2].p_dof = fields[ej+1][ei+1].p_dof;
1006:   nodal_fields[3].u_dof = fields[ej][ei+1].u_dof;   nodal_fields[3].v_dof = fields[ej][ei+1].v_dof;   nodal_fields[3].p_dof = fields[ej][ei+1].p_dof;
1007:   return(0);
1008: }

1012: static PetscErrorCode DMDAIntegrateErrors(DM stokes_da,Vec X,Vec X_analytic)
1013: {
1014:   DM          cda;
1015:   Vec         coords,X_analytic_local,X_local;
1016:   DMDACoor2d  **_coords;
1017:   PetscInt    sex,sey,mx,my;
1018:   PetscInt    ei,ej;
1019:   PetscScalar el_coords[NODES_PER_EL*NSD];
1020:   StokesDOF   **stokes_analytic,**stokes;
1021:   StokesDOF   stokes_analytic_e[4],stokes_e[4];

1023:   PetscScalar    GNi_p[NSD][NODES_PER_EL],GNx_p[NSD][NODES_PER_EL];
1024:   PetscScalar    Ni_p[NODES_PER_EL];
1025:   PetscInt       ngp;
1026:   PetscScalar    gp_xi[GAUSS_POINTS][2];
1027:   PetscScalar    gp_weight[GAUSS_POINTS];
1028:   PetscInt       p,i;
1029:   PetscScalar    J_p,fac;
1030:   PetscScalar    h,p_e_L2,u_e_L2,u_e_H1,p_L2,u_L2,u_H1,tp_L2,tu_L2,tu_H1;
1031:   PetscInt       M;
1032:   PetscReal      xymin[2],xymax[2];

1036:   /* define quadrature rule */
1037:   ConstructGaussQuadrature(&ngp,gp_xi,gp_weight);

1039:   /* setup for coords */
1040:   DMGetCoordinateDM(stokes_da,&cda);
1041:   DMGetCoordinatesLocal(stokes_da,&coords);
1042:   DMDAVecGetArray(cda,coords,&_coords);

1044:   /* setup for analytic */
1045:   DMCreateLocalVector(stokes_da,&X_analytic_local);
1046:   DMGlobalToLocalBegin(stokes_da,X_analytic,INSERT_VALUES,X_analytic_local);
1047:   DMGlobalToLocalEnd(stokes_da,X_analytic,INSERT_VALUES,X_analytic_local);
1048:   DMDAVecGetArray(stokes_da,X_analytic_local,&stokes_analytic);

1050:   /* setup for solution */
1051:   DMCreateLocalVector(stokes_da,&X_local);
1052:   DMGlobalToLocalBegin(stokes_da,X,INSERT_VALUES,X_local);
1053:   DMGlobalToLocalEnd(stokes_da,X,INSERT_VALUES,X_local);
1054:   DMDAVecGetArray(stokes_da,X_local,&stokes);

1056:   DMDAGetInfo(stokes_da,0,&M,0,0,0,0,0,0,0,0,0,0,0);
1057:   DMDAGetBoundingBox(stokes_da,xymin,xymax);

1059:   h = (xymax[0]-xymin[0])/((PetscReal)M);

1061:   tp_L2 = tu_L2 = tu_H1 = 0.0;

1063:   DMDAGetElementCorners(stokes_da,&sex,&sey,0,&mx,&my,0);
1064:   for (ej = sey; ej < sey+my; ej++) {
1065:     for (ei = sex; ei < sex+mx; ei++) {
1066:       /* get coords for the element */
1067:       GetElementCoords(_coords,ei,ej,el_coords);
1068:       StokesDAGetNodalFields(stokes,ei,ej,stokes_e);
1069:       StokesDAGetNodalFields(stokes_analytic,ei,ej,stokes_analytic_e);

1071:       /* evaluate integral */
1072:       p_e_L2 = 0.0;
1073:       u_e_L2 = 0.0;
1074:       u_e_H1 = 0.0;
1075:       for (p = 0; p < ngp; p++) {
1076:         ConstructQ12D_Ni(gp_xi[p],Ni_p);
1077:         ConstructQ12D_GNi(gp_xi[p],GNi_p);
1078:         ConstructQ12D_GNx(GNi_p,GNx_p,el_coords,&J_p);
1079:         fac = gp_weight[p]*J_p;

1081:         for (i = 0; i < NODES_PER_EL; i++) {
1082:           PetscScalar u_error,v_error;

1084:           p_e_L2 = p_e_L2+fac*Ni_p[i]*(stokes_e[i].p_dof-stokes_analytic_e[i].p_dof)*(stokes_e[i].p_dof-stokes_analytic_e[i].p_dof);

1086:           u_error = stokes_e[i].u_dof-stokes_analytic_e[i].u_dof;
1087:           v_error = stokes_e[i].v_dof-stokes_analytic_e[i].v_dof;
1088:           u_e_L2 += fac*Ni_p[i]*(u_error*u_error+v_error*v_error);

1090:           u_e_H1 = u_e_H1+fac*(GNx_p[0][i]*u_error*GNx_p[0][i]*u_error              /* du/dx */
1091:                                +GNx_p[1][i]*u_error*GNx_p[1][i]*u_error               /* du/dy */
1092:                                +GNx_p[0][i]*v_error*GNx_p[0][i]*v_error               /* dv/dx */
1093:                                +GNx_p[1][i]*v_error*GNx_p[1][i]*v_error);             /* dv/dy */
1094:         }
1095:       }

1097:       tp_L2 += p_e_L2;
1098:       tu_L2 += u_e_L2;
1099:       tu_H1 += u_e_H1;
1100:     }
1101:   }
1102:   MPI_Allreduce(&tp_L2,&p_L2,1,MPIU_SCALAR,MPIU_SUM,PETSC_COMM_WORLD);
1103:   MPI_Allreduce(&tu_L2,&u_L2,1,MPIU_SCALAR,MPIU_SUM,PETSC_COMM_WORLD);
1104:   MPI_Allreduce(&tu_H1,&u_H1,1,MPIU_SCALAR,MPIU_SUM,PETSC_COMM_WORLD);
1105:   p_L2 = PetscSqrtScalar(p_L2);
1106:   u_L2 = PetscSqrtScalar(u_L2);
1107:   u_H1 = PetscSqrtScalar(u_H1);

1109:   PetscPrintf(PETSC_COMM_WORLD,"%1.4e   %1.4e   %1.4e   %1.4e \n",(double)PetscRealPart(h),(double)PetscRealPart(p_L2),(double)PetscRealPart(u_L2),(double)PetscRealPart(u_H1));

1111:   DMDAVecRestoreArray(cda,coords,&_coords);

1113:   DMDAVecRestoreArray(stokes_da,X_analytic_local,&stokes_analytic);
1114:   VecDestroy(&X_analytic_local);
1115:   DMDAVecRestoreArray(stokes_da,X_local,&stokes);
1116:   VecDestroy(&X_local);
1117:   return(0);
1118: }

1122: static PetscErrorCode solve_stokes_2d_coupled(PetscInt mx,PetscInt my)
1123: {
1124:   DM                     da_Stokes,da_prop;
1125:   PetscInt               u_dof,p_dof,dof,stencil_width;
1126:   Mat                    A,B;
1127:   PetscInt               mxl,myl;
1128:   DM                     prop_cda,vel_cda;
1129:   Vec                    prop_coords,vel_coords;
1130:   PetscInt               si,sj,nx,ny,i,j,p;
1131:   Vec                    f,X;
1132:   PetscInt               prop_dof,prop_stencil_width;
1133:   Vec                    properties,l_properties;
1134:   PetscReal              dx,dy;
1135:   PetscInt               M,N;
1136:   DMDACoor2d             **_prop_coords,**_vel_coords;
1137:   GaussPointCoefficients **element_props;
1138:   PetscInt               its;
1139:   KSP                    ksp_S;
1140:   PetscInt               coefficient_structure = 0;
1141:   PetscInt               cpu_x,cpu_y,*lx = NULL,*ly = NULL;
1142:   PetscBool              use_gp_coords = PETSC_FALSE,set,output_gnuplot = PETSC_FALSE;
1143:   char                   filename[PETSC_MAX_PATH_LEN];
1144:   PetscErrorCode         ierr;


1148:   PetscOptionsGetBool(NULL,NULL,"-gnuplot",&output_gnuplot,NULL);
1149: 
1150:   /* Generate the da for velocity and pressure */
1151:   /*
1152:   We use Q1 elements for the temperature.
1153:   FEM has a 9-point stencil (BOX) or connectivity pattern
1154:   Num nodes in each direction is mx+1, my+1
1155:   */
1156:   u_dof         = U_DOFS; /* Vx, Vy - velocities */
1157:   p_dof         = P_DOFS; /* p - pressure */
1158:   dof           = u_dof+p_dof;
1159:   stencil_width = 1;
1160:   DMDACreate2d(PETSC_COMM_WORLD, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE,DMDA_STENCIL_BOX,
1161:                                mx+1,my+1,PETSC_DECIDE,PETSC_DECIDE,dof,stencil_width,NULL,NULL,&da_Stokes);
1162:   DMDASetFieldName(da_Stokes,0,"Vx");
1163:   DMDASetFieldName(da_Stokes,1,"Vy");
1164:   DMDASetFieldName(da_Stokes,2,"P");

1166:   /* unit box [0,1] x [0,1] */
1167:   DMDASetUniformCoordinates(da_Stokes,0.0,1.0,0.0,1.0,0.,0.);

1169:   /* Generate element properties, we will assume all material properties are constant over the element */
1170:   /* local number of elements */
1171:   DMDAGetLocalElementSize(da_Stokes,&mxl,&myl,NULL);

1173:   /* !!! IN PARALLEL WE MUST MAKE SURE THE TWO DMDA's ALIGN !!!  */
1174:   DMDAGetInfo(da_Stokes,0,0,0,0,&cpu_x,&cpu_y,0,0,0,0,0,0,0);
1175:   DMDAGetElementOwnershipRanges2d(da_Stokes,&lx,&ly);

1177:   prop_dof           = (int)(sizeof(GaussPointCoefficients)/sizeof(PetscScalar)); /* gauss point setup */
1178:   prop_stencil_width = 0;
1179:   DMDACreate2d(PETSC_COMM_WORLD, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE,DMDA_STENCIL_BOX,
1180:                                     mx,my,cpu_x,cpu_y,prop_dof,prop_stencil_width,lx,ly,&da_prop);
1181:   PetscFree(lx);
1182:   PetscFree(ly);

1184:   /* define centroid positions */
1185:   DMDAGetInfo(da_prop,0,&M,&N,0,0,0,0,0,0,0,0,0,0);
1186:   dx   = 1.0/((PetscReal)(M));
1187:   dy   = 1.0/((PetscReal)(N));

1189:   DMDASetUniformCoordinates(da_prop,0.0+0.5*dx,1.0-0.5*dx,0.0+0.5*dy,1.0-0.5*dy,0.,0);

1191:   /* define coefficients */
1192:   PetscOptionsGetInt(NULL,NULL,"-c_str",&coefficient_structure,NULL);

1194:   DMCreateGlobalVector(da_prop,&properties);
1195:   DMCreateLocalVector(da_prop,&l_properties);
1196:   DMDAVecGetArray(da_prop,l_properties,&element_props);

1198:   DMGetCoordinateDM(da_prop,&prop_cda);
1199:   DMGetCoordinatesLocal(da_prop,&prop_coords);
1200:   DMDAVecGetArray(prop_cda,prop_coords,&_prop_coords);

1202:   DMDAGetGhostCorners(prop_cda,&si,&sj,0,&nx,&ny,0);

1204:   DMGetCoordinateDM(da_Stokes,&vel_cda);
1205:   DMGetCoordinatesLocal(da_Stokes,&vel_coords);
1206:   DMDAVecGetArray(vel_cda,vel_coords,&_vel_coords);

1208:   /* interpolate the coordinates */
1209:   for (j = sj; j < sj+ny; j++) {
1210:     for (i = si; i < si+nx; i++) {
1211:       PetscInt    ngp;
1212:       PetscScalar gp_xi[GAUSS_POINTS][2],gp_weight[GAUSS_POINTS];
1213:       PetscScalar el_coords[8];

1215:       GetElementCoords(_vel_coords,i,j,el_coords);
1216:       ConstructGaussQuadrature(&ngp,gp_xi,gp_weight);

1218:       for (p = 0; p < GAUSS_POINTS; p++) {
1219:         PetscScalar gp_x,gp_y;
1220:         PetscInt    n;
1221:         PetscScalar xi_p[2],Ni_p[4];

1223:         xi_p[0] = gp_xi[p][0];
1224:         xi_p[1] = gp_xi[p][1];
1225:         ConstructQ12D_Ni(xi_p,Ni_p);

1227:         gp_x = 0.0;
1228:         gp_y = 0.0;
1229:         for (n = 0; n < NODES_PER_EL; n++) {
1230:           gp_x = gp_x+Ni_p[n]*el_coords[2*n];
1231:           gp_y = gp_y+Ni_p[n]*el_coords[2*n+1];
1232:         }
1233:         element_props[j][i].gp_coords[2*p]   = gp_x;
1234:         element_props[j][i].gp_coords[2*p+1] = gp_y;
1235:       }
1236:     }
1237:   }

1239:   /* define the coefficients */
1240:   PetscOptionsGetBool(NULL,NULL,"-use_gp_coords",&use_gp_coords,NULL);

1242:   for (j = sj; j < sj+ny; j++) {
1243:     for (i = si; i < si+nx; i++) {
1244:       PetscReal centroid_x = PetscRealPart(_prop_coords[j][i].x); /* centroids of cell */
1245:       PetscReal centroid_y = PetscRealPart(_prop_coords[j][i].y);
1246:       PetscReal coord_x,coord_y;

1248:       if (coefficient_structure == 0) {
1249:         PetscReal opts_eta0,opts_eta1,opts_xc;
1250:         PetscInt  opts_nz;

1252:         opts_eta0 = 1.0;
1253:         opts_eta1 = 1.0;
1254:         opts_xc   = 0.5;
1255:         opts_nz   = 1;

1257:         PetscOptionsGetReal(NULL,NULL,"-solcx_eta0",&opts_eta0,NULL);
1258:         PetscOptionsGetReal(NULL,NULL,"-solcx_eta1",&opts_eta1,NULL);
1259:         PetscOptionsGetReal(NULL,NULL,"-solcx_xc",&opts_xc,NULL);
1260:         PetscOptionsGetInt(NULL,NULL,"-solcx_nz",&opts_nz,NULL);

1262:         for (p = 0; p < GAUSS_POINTS; p++) {
1263:           coord_x = centroid_x;
1264:           coord_y = centroid_y;
1265:           if (use_gp_coords) {
1266:             coord_x = PetscRealPart(element_props[j][i].gp_coords[2*p]);
1267:             coord_y = PetscRealPart(element_props[j][i].gp_coords[2*p+1]);
1268:           }

1270:           element_props[j][i].eta[p] = opts_eta0;
1271:           if (coord_x > opts_xc) element_props[j][i].eta[p] = opts_eta1;

1273:           element_props[j][i].fx[p] = 0.0;
1274:           element_props[j][i].fy[p] = PetscSinReal(opts_nz*PETSC_PI*coord_y)*PetscCosReal(1.0*PETSC_PI*coord_x);
1275:         }
1276:       } else if (coefficient_structure == 1) { /* square sinker */
1277:         PetscReal opts_eta0,opts_eta1,opts_dx,opts_dy;

1279:         opts_eta0 = 1.0;
1280:         opts_eta1 = 1.0;
1281:         opts_dx   = 0.50;
1282:         opts_dy   = 0.50;

1284:         PetscOptionsGetReal(NULL,NULL,"-sinker_eta0",&opts_eta0,NULL);
1285:         PetscOptionsGetReal(NULL,NULL,"-sinker_eta1",&opts_eta1,NULL);
1286:         PetscOptionsGetReal(NULL,NULL,"-sinker_dx",&opts_dx,NULL);
1287:         PetscOptionsGetReal(NULL,NULL,"-sinker_dy",&opts_dy,NULL);

1289:         for (p = 0; p < GAUSS_POINTS; p++) {
1290:           coord_x = centroid_x;
1291:           coord_y = centroid_y;
1292:           if (use_gp_coords) {
1293:             coord_x = PetscRealPart(element_props[j][i].gp_coords[2*p]);
1294:             coord_y = PetscRealPart(element_props[j][i].gp_coords[2*p+1]);
1295:           }

1297:           element_props[j][i].eta[p] = opts_eta0;
1298:           element_props[j][i].fx[p]  = 0.0;
1299:           element_props[j][i].fy[p]  = 0.0;

1301:           if ((coord_x > -0.5*opts_dx+0.5) && (coord_x < 0.5*opts_dx+0.5)) {
1302:             if ((coord_y > -0.5*opts_dy+0.5) && (coord_y < 0.5*opts_dy+0.5)) {
1303:               element_props[j][i].eta[p] =  opts_eta1;
1304:               element_props[j][i].fx[p]  =  0.0;
1305:               element_props[j][i].fy[p]  = -1.0;
1306:             }
1307:           }
1308:         }
1309:       } else if (coefficient_structure == 2) { /* circular sinker */
1310:         PetscReal opts_eta0,opts_eta1,opts_r,radius2;

1312:         opts_eta0 = 1.0;
1313:         opts_eta1 = 1.0;
1314:         opts_r    = 0.25;

1316:         PetscOptionsGetReal(NULL,NULL,"-sinker_eta0",&opts_eta0,NULL);
1317:         PetscOptionsGetReal(NULL,NULL,"-sinker_eta1",&opts_eta1,NULL);
1318:         PetscOptionsGetReal(NULL,NULL,"-sinker_r",&opts_r,NULL);

1320:         for (p = 0; p < GAUSS_POINTS; p++) {
1321:           coord_x = centroid_x;
1322:           coord_y = centroid_y;
1323:           if (use_gp_coords) {
1324:             coord_x = PetscRealPart(element_props[j][i].gp_coords[2*p]);
1325:             coord_y = PetscRealPart(element_props[j][i].gp_coords[2*p+1]);
1326:           }

1328:           element_props[j][i].eta[p] = opts_eta0;
1329:           element_props[j][i].fx[p]  = 0.0;
1330:           element_props[j][i].fy[p]  = 0.0;

1332:           radius2 = (coord_x-0.5)*(coord_x-0.5)+(coord_y-0.5)*(coord_y-0.5);
1333:           if (radius2 < opts_r*opts_r) {
1334:             element_props[j][i].eta[p] =  opts_eta1;
1335:             element_props[j][i].fx[p]  =  0.0;
1336:             element_props[j][i].fy[p]  = -1.0;
1337:           }
1338:         }
1339:       } else if (coefficient_structure == 3) { /* circular and rectangular inclusion */
1340:         PetscReal opts_eta0,opts_eta1,opts_r,opts_dx,opts_dy,opts_c0x,opts_c0y,opts_s0x,opts_s0y,opts_phi,radius2;

1342:         opts_eta0 = 1.0;
1343:         opts_eta1 = 1.0;
1344:         opts_r    = 0.25;
1345:         opts_c0x  = 0.35;       /* circle center */
1346:         opts_c0y  = 0.35;
1347:         opts_s0x  = 0.7;       /* square center */
1348:         opts_s0y  = 0.7;
1349:         opts_dx   = 0.25;
1350:         opts_dy   = 0.25;
1351:         opts_phi  = 25;

1353:         PetscOptionsGetReal(NULL,NULL,"-sinker_eta0",&opts_eta0,NULL);
1354:         PetscOptionsGetReal(NULL,NULL,"-sinker_eta1",&opts_eta1,NULL);
1355:         PetscOptionsGetReal(NULL,NULL,"-sinker_r",&opts_r,NULL);
1356:         PetscOptionsGetReal(NULL,NULL,"-sinker_c0x",&opts_c0x,NULL);
1357:         PetscOptionsGetReal(NULL,NULL,"-sinker_c0y",&opts_c0y,NULL);
1358:         PetscOptionsGetReal(NULL,NULL,"-sinker_s0x",&opts_s0x,NULL);
1359:         PetscOptionsGetReal(NULL,NULL,"-sinker_s0y",&opts_s0y,NULL);
1360:         PetscOptionsGetReal(NULL,NULL,"-sinker_dx",&opts_dx,NULL);
1361:         PetscOptionsGetReal(NULL,NULL,"-sinker_dy",&opts_dy,NULL);
1362:         PetscOptionsGetReal(NULL,NULL,"-sinker_phi",&opts_phi,NULL);
1363:         opts_phi *= PETSC_PI / 180;

1365:         for (p = 0; p < GAUSS_POINTS; p++) {
1366:           coord_x = centroid_x;
1367:           coord_y = centroid_y;
1368:           if (use_gp_coords) {
1369:             coord_x = PetscRealPart(element_props[j][i].gp_coords[2*p]);
1370:             coord_y = PetscRealPart(element_props[j][i].gp_coords[2*p+1]);
1371:           }

1373:           element_props[j][i].eta[p] = opts_eta0;
1374:           element_props[j][i].fx[p]  = 0.0;
1375:           element_props[j][i].fy[p]  = -0.2;

1377:           radius2 = PetscSqr(coord_x - opts_c0x) + PetscSqr(coord_y - opts_c0y);
1378:           if (radius2 < opts_r*opts_r
1379:               || (PetscAbs(+(coord_x - opts_s0x)*PetscCosReal(opts_phi) + (coord_y - opts_s0y)*PetscSinReal(opts_phi)) < opts_dx/2
1380:                   && PetscAbs(-(coord_x - opts_s0x)*PetscSinReal(opts_phi) + (coord_y - opts_s0y)*PetscCosReal(opts_phi)) < opts_dy/2)) {
1381:             element_props[j][i].eta[p] =  opts_eta1;
1382:             element_props[j][i].fx[p]  =  0.0;
1383:             element_props[j][i].fy[p]  = -1.0;
1384:           }
1385:         }
1386:       } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_USER,"Unknown coefficient_structure");
1387:     }
1388:   }
1389:   DMDAVecRestoreArray(prop_cda,prop_coords,&_prop_coords);

1391:   DMDAVecRestoreArray(vel_cda,vel_coords,&_vel_coords);

1393:   DMDAVecRestoreArray(da_prop,l_properties,&element_props);
1394:   DMLocalToGlobalBegin(da_prop,l_properties,ADD_VALUES,properties);
1395:   DMLocalToGlobalEnd(da_prop,l_properties,ADD_VALUES,properties);

1397:   if (output_gnuplot) {
1398:     DMDACoordViewGnuplot2d(da_Stokes,"mesh");
1399:     DMDAViewCoefficientsGnuplot2d(da_prop,properties,"Coeffcients for Stokes eqn.","properties");
1400:   }

1402:   /* Generate a matrix with the correct non-zero pattern of type AIJ. This will work in parallel and serial */
1403:   DMSetMatType(da_Stokes,MATAIJ);
1404:   DMCreateMatrix(da_Stokes,&A);
1405:   DMCreateMatrix(da_Stokes,&B);
1406:   DMCreateGlobalVector(da_Stokes,&f);
1407:   DMCreateGlobalVector(da_Stokes,&X);

1409:   /* assemble A11 */
1410:   MatZeroEntries(A);
1411:   MatZeroEntries(B);
1412:   VecZeroEntries(f);

1414:   AssembleA_Stokes(A,da_Stokes,da_prop,properties);
1415:   AssembleA_PCStokes(B,da_Stokes,da_prop,properties);
1416:   /* build force vector */
1417:   AssembleF_Stokes(f,da_Stokes,da_prop,properties);

1419:   DMDABCApplyFreeSlip(da_Stokes,A,f);
1420:   DMDABCApplyFreeSlip(da_Stokes,B,NULL);

1422:   /* SOLVE */
1423:   KSPCreate(PETSC_COMM_WORLD,&ksp_S);
1424:   KSPSetOptionsPrefix(ksp_S,"stokes_");
1425:   KSPSetDM(ksp_S,da_Stokes);
1426:   KSPSetDMActive(ksp_S,PETSC_FALSE);
1427:   KSPSetOperators(ksp_S,A,B);
1428:   KSPSetFromOptions(ksp_S);
1429:   {
1430:     PC             pc;
1431:     const PetscInt ufields[] = {0,1},pfields[1] = {2};
1432:     KSPGetPC(ksp_S,&pc);
1433:     PCFieldSplitSetBlockSize(pc,3);
1434:     PCFieldSplitSetFields(pc,"u",2,ufields,ufields);
1435:     PCFieldSplitSetFields(pc,"p",1,pfields,pfields);
1436:   }

1438:   {
1439:     PC        pc_S;
1440:     KSP       *sub_ksp,ksp_U;
1441:     PetscInt  nsplits;
1442:     DM        da_U;
1443:     PetscBool is_pcfs;

1445:     KSPSetUp(ksp_S);
1446:     KSPGetPC(ksp_S,&pc_S);

1448:     is_pcfs = PETSC_FALSE;
1449:     PetscObjectTypeCompare((PetscObject)pc_S,PCFIELDSPLIT,&is_pcfs);

1451:     if (is_pcfs) {
1452:       PCFieldSplitGetSubKSP(pc_S,&nsplits,&sub_ksp);
1453:       ksp_U = sub_ksp[0];
1454:       PetscFree(sub_ksp);

1456:       if (nsplits == 2) {
1457:         DMDAGetReducedDMDA(da_Stokes,2,&da_U);

1459:         KSPSetDM(ksp_U,da_U);
1460:         KSPSetDMActive(ksp_U,PETSC_FALSE);
1461:         DMDestroy(&da_U);
1462:       }
1463:     }
1464:   }

1466:   KSPSolve(ksp_S,f,X);

1468:   PetscOptionsGetString(NULL,NULL,"-o",filename,sizeof(filename),&set);
1469:   if (set) {
1470:     char        *ext;
1471:     PetscViewer viewer;
1472:     PetscBool   flg;
1473:     PetscViewerCreate(PETSC_COMM_WORLD,&viewer);
1474:     PetscStrrchr(filename,'.',&ext);
1475:     PetscStrcmp("vts",ext,&flg);
1476:     if (flg) {
1477:       PetscViewerSetType(viewer,PETSCVIEWERVTK);
1478:     } else {
1479:       PetscViewerSetType(viewer,PETSCVIEWERBINARY);
1480:     }
1481:     PetscViewerFileSetMode(viewer,FILE_MODE_WRITE);
1482:     PetscViewerFileSetName(viewer,filename);
1483:     VecView(X,viewer);
1484:     PetscViewerDestroy(&viewer);
1485:   }
1486:   if (output_gnuplot) {
1487:     DMDAViewGnuplot2d(da_Stokes,X,"Velocity solution for Stokes eqn.","X");
1488:   }

1490:   KSPGetIterationNumber(ksp_S,&its);

1492:   if (coefficient_structure == 0) {
1493:     PetscReal opts_eta0,opts_eta1,opts_xc;
1494:     PetscInt  opts_nz,N;
1495:     DM        da_Stokes_analytic;
1496:     Vec       X_analytic;
1497:     PetscReal nrm1[3],nrm2[3],nrmI[3];

1499:     opts_eta0 = 1.0;
1500:     opts_eta1 = 1.0;
1501:     opts_xc   = 0.5;
1502:     opts_nz   = 1;

1504:     PetscOptionsGetReal(NULL,NULL,"-solcx_eta0",&opts_eta0,NULL);
1505:     PetscOptionsGetReal(NULL,NULL,"-solcx_eta1",&opts_eta1,NULL);
1506:     PetscOptionsGetReal(NULL,NULL,"-solcx_xc",&opts_xc,NULL);
1507:     PetscOptionsGetInt(NULL,NULL,"-solcx_nz",&opts_nz,NULL);

1509:     DMDACreateSolCx(opts_eta0,opts_eta1,opts_xc,opts_nz,mx,my,&da_Stokes_analytic,&X_analytic);
1510:     if (output_gnuplot) {
1511:       DMDAViewGnuplot2d(da_Stokes_analytic,X_analytic,"Analytic solution for Stokes eqn.","X_analytic");
1512:     }
1513:     DMDAIntegrateErrors(da_Stokes_analytic,X,X_analytic);

1515:     VecAXPY(X_analytic,-1.0,X);
1516:     VecGetSize(X_analytic,&N);
1517:     N    = N/3;

1519:     VecStrideNorm(X_analytic,0,NORM_1,&nrm1[0]);
1520:     VecStrideNorm(X_analytic,0,NORM_2,&nrm2[0]);
1521:     VecStrideNorm(X_analytic,0,NORM_INFINITY,&nrmI[0]);

1523:     VecStrideNorm(X_analytic,1,NORM_1,&nrm1[1]);
1524:     VecStrideNorm(X_analytic,1,NORM_2,&nrm2[1]);
1525:     VecStrideNorm(X_analytic,1,NORM_INFINITY,&nrmI[1]);

1527:     VecStrideNorm(X_analytic,2,NORM_1,&nrm1[2]);
1528:     VecStrideNorm(X_analytic,2,NORM_2,&nrm2[2]);
1529:     VecStrideNorm(X_analytic,2,NORM_INFINITY,&nrmI[2]);

1531:     DMDestroy(&da_Stokes_analytic);
1532:     VecDestroy(&X_analytic);
1533:   }

1535:   KSPDestroy(&ksp_S);
1536:   VecDestroy(&X);
1537:   VecDestroy(&f);
1538:   MatDestroy(&A);
1539:   MatDestroy(&B);

1541:   DMDestroy(&da_Stokes);
1542:   DMDestroy(&da_prop);

1544:   VecDestroy(&properties);
1545:   VecDestroy(&l_properties);
1546:   return(0);
1547: }

1551: int main(int argc,char **args)
1552: {
1554:   PetscInt       mx,my;

1556:   PetscInitialize(&argc,&args,(char*)0,help);

1558:   mx   = my = 10;
1559:   PetscOptionsGetInt(NULL,NULL,"-mx",&mx,NULL);
1560:   PetscOptionsGetInt(NULL,NULL,"-my",&my,NULL);

1562:   solve_stokes_2d_coupled(mx,my);

1564:   PetscFinalize();
1565:   return 0;
1566: }

1568: /* -------------------------- helpers for boundary conditions -------------------------------- */
1571: static PetscErrorCode BCApplyZero_EAST(DM da,PetscInt d_idx,Mat A,Vec b)
1572: {
1573:   DM                     cda;
1574:   Vec                    coords;
1575:   PetscInt               si,sj,nx,ny,i,j;
1576:   PetscInt               M,N;
1577:   DMDACoor2d             **_coords;
1578:   const PetscInt         *g_idx;
1579:   PetscInt               *bc_global_ids;
1580:   PetscScalar            *bc_vals;
1581:   PetscInt               nbcs;
1582:   PetscInt               n_dofs;
1583:   PetscErrorCode         ierr;
1584:   ISLocalToGlobalMapping ltogm;

1587:   DMGetLocalToGlobalMapping(da,&ltogm);
1588:   ISLocalToGlobalMappingGetIndices(ltogm,&g_idx);

1590:   DMGetCoordinateDM(da,&cda);
1591:   DMGetCoordinatesLocal(da,&coords);
1592:   DMDAVecGetArray(cda,coords,&_coords);
1593:   DMDAGetGhostCorners(cda,&si,&sj,0,&nx,&ny,0);
1594:   DMDAGetInfo(da,0,&M,&N,0,0,0,0,&n_dofs,0,0,0,0,0);

1596:   PetscMalloc1(ny*n_dofs,&bc_global_ids);
1597:   PetscMalloc1(ny*n_dofs,&bc_vals);

1599:   /* init the entries to -1 so VecSetValues will ignore them */
1600:   for (i = 0; i < ny*n_dofs; i++) bc_global_ids[i] = -1;

1602:   i = nx-1;
1603:   for (j = 0; j < ny; j++) {
1604:     PetscInt local_id;

1606:     local_id = i+j*nx;

1608:     bc_global_ids[j] = g_idx[n_dofs*local_id+d_idx];

1610:     bc_vals[j] =  0.0;
1611:   }
1612:   ISLocalToGlobalMappingRestoreIndices(ltogm,&g_idx);
1613:   nbcs = 0;
1614:   if ((si+nx) == (M)) nbcs = ny;

1616:   if (b) {
1617:     VecSetValues(b,nbcs,bc_global_ids,bc_vals,INSERT_VALUES);
1618:     VecAssemblyBegin(b);
1619:     VecAssemblyEnd(b);
1620:   }
1621:   if (A) {
1622:     MatZeroRowsColumns(A,nbcs,bc_global_ids,1.0,0,0);
1623:   }

1625:   PetscFree(bc_vals);
1626:   PetscFree(bc_global_ids);

1628:   DMDAVecRestoreArray(cda,coords,&_coords);
1629:   return(0);
1630: }

1634: static PetscErrorCode BCApplyZero_WEST(DM da,PetscInt d_idx,Mat A,Vec b)
1635: {
1636:   DM                     cda;
1637:   Vec                    coords;
1638:   PetscInt               si,sj,nx,ny,i,j;
1639:   PetscInt               M,N;
1640:   DMDACoor2d             **_coords;
1641:   const PetscInt         *g_idx;
1642:   PetscInt               *bc_global_ids;
1643:   PetscScalar            *bc_vals;
1644:   PetscInt               nbcs;
1645:   PetscInt               n_dofs;
1646:   PetscErrorCode         ierr;
1647:   ISLocalToGlobalMapping ltogm;

1650:   DMGetLocalToGlobalMapping(da,&ltogm);
1651:   ISLocalToGlobalMappingGetIndices(ltogm,&g_idx);

1653:   DMGetCoordinateDM(da,&cda);
1654:   DMGetCoordinatesLocal(da,&coords);
1655:   DMDAVecGetArray(cda,coords,&_coords);
1656:   DMDAGetGhostCorners(cda,&si,&sj,0,&nx,&ny,0);
1657:   DMDAGetInfo(da,0,&M,&N,0,0,0,0,&n_dofs,0,0,0,0,0);

1659:   PetscMalloc1(ny*n_dofs,&bc_global_ids);
1660:   PetscMalloc1(ny*n_dofs,&bc_vals);

1662:   /* init the entries to -1 so VecSetValues will ignore them */
1663:   for (i = 0; i < ny*n_dofs; i++) bc_global_ids[i] = -1;

1665:   i = 0;
1666:   for (j = 0; j < ny; j++) {
1667:     PetscInt local_id;

1669:     local_id = i+j*nx;

1671:     bc_global_ids[j] = g_idx[n_dofs*local_id+d_idx];

1673:     bc_vals[j] =  0.0;
1674:   }
1675:   ISLocalToGlobalMappingRestoreIndices(ltogm,&g_idx);
1676:   nbcs = 0;
1677:   if (si == 0) nbcs = ny;

1679:   if (b) {
1680:     VecSetValues(b,nbcs,bc_global_ids,bc_vals,INSERT_VALUES);
1681:     VecAssemblyBegin(b);
1682:     VecAssemblyEnd(b);
1683:   }

1685:   if (A) {
1686:     MatZeroRowsColumns(A,nbcs,bc_global_ids,1.0,0,0);
1687:   }

1689:   PetscFree(bc_vals);
1690:   PetscFree(bc_global_ids);

1692:   DMDAVecRestoreArray(cda,coords,&_coords);
1693:   return(0);
1694: }

1698: static PetscErrorCode BCApplyZero_NORTH(DM da,PetscInt d_idx,Mat A,Vec b)
1699: {
1700:   DM                     cda;
1701:   Vec                    coords;
1702:   PetscInt               si,sj,nx,ny,i,j;
1703:   PetscInt               M,N;
1704:   DMDACoor2d             **_coords;
1705:   const PetscInt         *g_idx;
1706:   PetscInt               *bc_global_ids;
1707:   PetscScalar            *bc_vals;
1708:   PetscInt               nbcs;
1709:   PetscInt               n_dofs;
1710:   PetscErrorCode         ierr;
1711:   ISLocalToGlobalMapping ltogm;

1714:   DMGetLocalToGlobalMapping(da,&ltogm);
1715:   ISLocalToGlobalMappingGetIndices(ltogm,&g_idx);

1717:   DMGetCoordinateDM(da,&cda);
1718:   DMGetCoordinatesLocal(da,&coords);
1719:   DMDAVecGetArray(cda,coords,&_coords);
1720:   DMDAGetGhostCorners(cda,&si,&sj,0,&nx,&ny,0);
1721:   DMDAGetInfo(da,0,&M,&N,0,0,0,0,&n_dofs,0,0,0,0,0);

1723:   PetscMalloc1(nx,&bc_global_ids);
1724:   PetscMalloc1(nx,&bc_vals);

1726:   /* init the entries to -1 so VecSetValues will ignore them */
1727:   for (i = 0; i < nx; i++) bc_global_ids[i] = -1;

1729:   j = ny-1;
1730:   for (i = 0; i < nx; i++) {
1731:     PetscInt local_id;

1733:     local_id = i+j*nx;

1735:     bc_global_ids[i] = g_idx[n_dofs*local_id+d_idx];

1737:     bc_vals[i] =  0.0;
1738:   }
1739:   ISLocalToGlobalMappingRestoreIndices(ltogm,&g_idx);
1740:   nbcs = 0;
1741:   if ((sj+ny) == (N)) nbcs = nx;

1743:   if (b) {
1744:     VecSetValues(b,nbcs,bc_global_ids,bc_vals,INSERT_VALUES);
1745:     VecAssemblyBegin(b);
1746:     VecAssemblyEnd(b);
1747:   }
1748:   if (A) {
1749:     MatZeroRowsColumns(A,nbcs,bc_global_ids,1.0,0,0);
1750:   }

1752:   PetscFree(bc_vals);
1753:   PetscFree(bc_global_ids);

1755:   DMDAVecRestoreArray(cda,coords,&_coords);
1756:   return(0);
1757: }

1761: static PetscErrorCode BCApplyZero_SOUTH(DM da,PetscInt d_idx,Mat A,Vec b)
1762: {
1763:   DM                     cda;
1764:   Vec                    coords;
1765:   PetscInt               si,sj,nx,ny,i,j;
1766:   PetscInt               M,N;
1767:   DMDACoor2d             **_coords;
1768:   const PetscInt         *g_idx;
1769:   PetscInt               *bc_global_ids;
1770:   PetscScalar            *bc_vals;
1771:   PetscInt               nbcs;
1772:   PetscInt               n_dofs;
1773:   PetscErrorCode         ierr;
1774:   ISLocalToGlobalMapping ltogm;

1777:   DMGetLocalToGlobalMapping(da,&ltogm);
1778:   ISLocalToGlobalMappingGetIndices(ltogm,&g_idx);

1780:   DMGetCoordinateDM(da,&cda);
1781:   DMGetCoordinatesLocal(da,&coords);
1782:   DMDAVecGetArray(cda,coords,&_coords);
1783:   DMDAGetGhostCorners(cda,&si,&sj,0,&nx,&ny,0);
1784:   DMDAGetInfo(da,0,&M,&N,0,0,0,0,&n_dofs,0,0,0,0,0);

1786:   PetscMalloc1(nx,&bc_global_ids);
1787:   PetscMalloc1(nx,&bc_vals);

1789:   /* init the entries to -1 so VecSetValues will ignore them */
1790:   for (i = 0; i < nx; i++) bc_global_ids[i] = -1;

1792:   j = 0;
1793:   for (i = 0; i < nx; i++) {
1794:     PetscInt local_id;

1796:     local_id = i+j*nx;

1798:     bc_global_ids[i] = g_idx[n_dofs*local_id+d_idx];

1800:     bc_vals[i] =  0.0;
1801:   }
1802:   ISLocalToGlobalMappingRestoreIndices(ltogm,&g_idx);
1803:   nbcs = 0;
1804:   if (sj == 0) nbcs = nx;

1806:   if (b) {
1807:     VecSetValues(b,nbcs,bc_global_ids,bc_vals,INSERT_VALUES);
1808:     VecAssemblyBegin(b);
1809:     VecAssemblyEnd(b);
1810:   }
1811:   if (A) {
1812:     MatZeroRowsColumns(A,nbcs,bc_global_ids,1.0,0,0);
1813:   }

1815:   PetscFree(bc_vals);
1816:   PetscFree(bc_global_ids);

1818:   DMDAVecRestoreArray(cda,coords,&_coords);
1819:   return(0);
1820: }

1822: /* Impose free slip boundary conditions; u_{i} n_{i} = 0, tau_{ij} t_j = 0 */
1825: static PetscErrorCode DMDABCApplyFreeSlip(DM da_Stokes,Mat A,Vec f)
1826: {

1830:   BCApplyZero_NORTH(da_Stokes,1,A,f);
1831:   BCApplyZero_EAST(da_Stokes,0,A,f);
1832:   BCApplyZero_SOUTH(da_Stokes,1,A,f);
1833:   BCApplyZero_WEST(da_Stokes,0,A,f);
1834:   return(0);
1835: }