Actual source code: umfpack.c

petsc-3.7.5 2017-01-01
Report Typos and Errors
  2: /*
  3:    Provides an interface to the UMFPACK sparse solver available through SuiteSparse version 4.2.1

  5:    When build with PETSC_USE_64BIT_INDICES this will use Suitesparse_long as the
  6:    integer type in UMFPACK, otherwise it will use int. This means
  7:    all integers in this file as simply declared as PetscInt. Also it means
  8:    that one cannot use 64BIT_INDICES on 32bit machines [as Suitesparse_long is 32bit only]

 10: */
 11: #include <../src/mat/impls/aij/seq/aij.h>

 13: #if defined(PETSC_USE_64BIT_INDICES)
 14: #if defined(PETSC_USE_COMPLEX)
 15: #define umfpack_UMF_free_symbolic                      umfpack_zl_free_symbolic
 16: #define umfpack_UMF_free_numeric                       umfpack_zl_free_numeric
 17: /* the type casts are needed because PetscInt is long long while SuiteSparse_long is long and compilers warn even when they are identical */
 18: #define umfpack_UMF_wsolve(a,b,c,d,e,f,g,h,i,j,k,l,m,n) umfpack_zl_wsolve(a,(SuiteSparse_long*)b,(SuiteSparse_long*)c,d,e,f,g,h,i,(SuiteSparse_long*)j,k,l,(SuiteSparse_long*)m,n)
 19: #define umfpack_UMF_numeric(a,b,c,d,e,f,g,h)          umfpack_zl_numeric((SuiteSparse_long*)a,(SuiteSparse_long*)b,c,d,e,f,g,h)
 20: #define umfpack_UMF_report_numeric                    umfpack_zl_report_numeric
 21: #define umfpack_UMF_report_control                    umfpack_zl_report_control
 22: #define umfpack_UMF_report_status                     umfpack_zl_report_status
 23: #define umfpack_UMF_report_info                       umfpack_zl_report_info
 24: #define umfpack_UMF_report_symbolic                   umfpack_zl_report_symbolic
 25: #define umfpack_UMF_qsymbolic(a,b,c,d,e,f,g,h,i,j)    umfpack_zl_qsymbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,f,(SuiteSparse_long*)g,h,i,j)
 26: #define umfpack_UMF_symbolic(a,b,c,d,e,f,g,h,i)       umfpack_zl_symbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,f,g,h,i)
 27: #define umfpack_UMF_defaults                          umfpack_zl_defaults

 29: #else
 30: #define umfpack_UMF_free_symbolic                  umfpack_dl_free_symbolic
 31: #define umfpack_UMF_free_numeric                   umfpack_dl_free_numeric
 32: #define umfpack_UMF_wsolve(a,b,c,d,e,f,g,h,i,j,k)  umfpack_dl_wsolve(a,(SuiteSparse_long*)b,(SuiteSparse_long*)c,d,e,f,g,h,i,(SuiteSparse_long*)j,k)
 33: #define umfpack_UMF_numeric(a,b,c,d,e,f,g)         umfpack_dl_numeric((SuiteSparse_long*)a,(SuiteSparse_long*)b,c,d,e,f,g)
 34: #define umfpack_UMF_report_numeric                 umfpack_dl_report_numeric
 35: #define umfpack_UMF_report_control                 umfpack_dl_report_control
 36: #define umfpack_UMF_report_status                  umfpack_dl_report_status
 37: #define umfpack_UMF_report_info                    umfpack_dl_report_info
 38: #define umfpack_UMF_report_symbolic                umfpack_dl_report_symbolic
 39: #define umfpack_UMF_qsymbolic(a,b,c,d,e,f,g,h,i)   umfpack_dl_qsymbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,(SuiteSparse_long*)f,g,h,i)
 40: #define umfpack_UMF_symbolic(a,b,c,d,e,f,g,h)      umfpack_dl_symbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,f,g,h)
 41: #define umfpack_UMF_defaults                       umfpack_dl_defaults
 42: #endif

 44: #else
 45: #if defined(PETSC_USE_COMPLEX)
 46: #define umfpack_UMF_free_symbolic   umfpack_zi_free_symbolic
 47: #define umfpack_UMF_free_numeric    umfpack_zi_free_numeric
 48: #define umfpack_UMF_wsolve          umfpack_zi_wsolve
 49: #define umfpack_UMF_numeric         umfpack_zi_numeric
 50: #define umfpack_UMF_report_numeric  umfpack_zi_report_numeric
 51: #define umfpack_UMF_report_control  umfpack_zi_report_control
 52: #define umfpack_UMF_report_status   umfpack_zi_report_status
 53: #define umfpack_UMF_report_info     umfpack_zi_report_info
 54: #define umfpack_UMF_report_symbolic umfpack_zi_report_symbolic
 55: #define umfpack_UMF_qsymbolic       umfpack_zi_qsymbolic
 56: #define umfpack_UMF_symbolic        umfpack_zi_symbolic
 57: #define umfpack_UMF_defaults        umfpack_zi_defaults

 59: #else
 60: #define umfpack_UMF_free_symbolic   umfpack_di_free_symbolic
 61: #define umfpack_UMF_free_numeric    umfpack_di_free_numeric
 62: #define umfpack_UMF_wsolve          umfpack_di_wsolve
 63: #define umfpack_UMF_numeric         umfpack_di_numeric
 64: #define umfpack_UMF_report_numeric  umfpack_di_report_numeric
 65: #define umfpack_UMF_report_control  umfpack_di_report_control
 66: #define umfpack_UMF_report_status   umfpack_di_report_status
 67: #define umfpack_UMF_report_info     umfpack_di_report_info
 68: #define umfpack_UMF_report_symbolic umfpack_di_report_symbolic
 69: #define umfpack_UMF_qsymbolic       umfpack_di_qsymbolic
 70: #define umfpack_UMF_symbolic        umfpack_di_symbolic
 71: #define umfpack_UMF_defaults        umfpack_di_defaults
 72: #endif
 73: #endif

 75: EXTERN_C_BEGIN
 76: #include <umfpack.h>
 77: EXTERN_C_END

 79: static const char *const UmfpackOrderingTypes[] = {"CHOLMOD","AMD","GIVEN","METIS","BEST","NONE","USER","UmfpackOrderingTypes","UMFPACK_ORDERING_",0};

 81: typedef struct {
 82:   void         *Symbolic, *Numeric;
 83:   double       Info[UMFPACK_INFO], Control[UMFPACK_CONTROL],*W;
 84:   PetscInt     *Wi,*perm_c;
 85:   Mat          A;               /* Matrix used for factorization */
 86:   MatStructure flg;
 87:   PetscBool    PetscMatOrdering;

 89:   /* Flag to clean up UMFPACK objects during Destroy */
 90:   PetscBool CleanUpUMFPACK;
 91: } Mat_UMFPACK;

 95: static PetscErrorCode MatDestroy_UMFPACK(Mat A)
 96: {
 98:   Mat_UMFPACK    *lu=(Mat_UMFPACK*)A->spptr;

101:   if (lu && lu->CleanUpUMFPACK) {
102:     umfpack_UMF_free_symbolic(&lu->Symbolic);
103:     umfpack_UMF_free_numeric(&lu->Numeric);
104:     PetscFree(lu->Wi);
105:     PetscFree(lu->W);
106:     PetscFree(lu->perm_c);
107:   }
108:   MatDestroy(&lu->A);
109:   PetscFree(A->spptr);
110:   MatDestroy_SeqAIJ(A);
111:   return(0);
112: }

116: static PetscErrorCode MatSolve_UMFPACK_Private(Mat A,Vec b,Vec x,int uflag)
117: {
118:   Mat_UMFPACK       *lu = (Mat_UMFPACK*)A->spptr;
119:   Mat_SeqAIJ        *a  = (Mat_SeqAIJ*)lu->A->data;
120:   PetscScalar       *av = a->a,*xa;
121:   const PetscScalar *ba;
122:   PetscErrorCode    ierr;
123:   PetscInt          *ai = a->i,*aj = a->j,status;
124:   static PetscBool  cite = PETSC_FALSE;

127:   PetscCitationsRegister("@article{davis2004algorithm,\n  title={Algorithm 832: {UMFPACK} V4.3---An Unsymmetric-Pattern Multifrontal Method},\n  author={Davis, Timothy A},\n  journal={ACM Transactions on Mathematical Software (TOMS)},\n  volume={30},\n  number={2},\n  pages={196--199},\n  year={2004},\n  publisher={ACM}\n}\n",&cite);
128:   /* solve Ax = b by umfpack_*_wsolve */
129:   /* ----------------------------------*/

131:   if (!lu->Wi) {  /* first time, allocate working space for wsolve */
132:     PetscMalloc1(A->rmap->n,&lu->Wi);
133:     PetscMalloc1(5*A->rmap->n,&lu->W);
134:   }

136:   VecGetArrayRead(b,&ba);
137:   VecGetArray(x,&xa);
138: #if defined(PETSC_USE_COMPLEX)
139:   status = umfpack_UMF_wsolve(uflag,ai,aj,(PetscReal*)av,NULL,(PetscReal*)xa,NULL,(PetscReal*)ba,NULL,lu->Numeric,lu->Control,lu->Info,lu->Wi,lu->W);
140: #else
141:   status = umfpack_UMF_wsolve(uflag,ai,aj,av,xa,ba,lu->Numeric,lu->Control,lu->Info,lu->Wi,lu->W);
142: #endif
143:   umfpack_UMF_report_info(lu->Control, lu->Info);
144:   if (status < 0) {
145:     umfpack_UMF_report_status(lu->Control, status);
146:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"umfpack_UMF_wsolve failed");
147:   }

149:   VecRestoreArrayRead(b,&ba);
150:   VecRestoreArray(x,&xa);
151:   return(0);
152: }

156: static PetscErrorCode MatSolve_UMFPACK(Mat A,Vec b,Vec x)
157: {

161:   /* We gave UMFPACK the algebraic transpose (because it assumes column alignment) */
162:   MatSolve_UMFPACK_Private(A,b,x,UMFPACK_Aat);
163:   return(0);
164: }

168: static PetscErrorCode MatSolveTranspose_UMFPACK(Mat A,Vec b,Vec x)
169: {

173:   /* We gave UMFPACK the algebraic transpose (because it assumes column alignment) */
174:   MatSolve_UMFPACK_Private(A,b,x,UMFPACK_A);
175:   return(0);
176: }

180: static PetscErrorCode MatLUFactorNumeric_UMFPACK(Mat F,Mat A,const MatFactorInfo *info)
181: {
182:   Mat_UMFPACK    *lu = (Mat_UMFPACK*)(F)->spptr;
183:   Mat_SeqAIJ     *a  = (Mat_SeqAIJ*)A->data;
184:   PetscInt       *ai = a->i,*aj=a->j,status;
185:   PetscScalar    *av = a->a;

189:   /* numeric factorization of A' */
190:   /* ----------------------------*/

192:   if (lu->flg == SAME_NONZERO_PATTERN && lu->Numeric) {
193:     umfpack_UMF_free_numeric(&lu->Numeric);
194:   }
195: #if defined(PETSC_USE_COMPLEX)
196:   status = umfpack_UMF_numeric(ai,aj,(double*)av,NULL,lu->Symbolic,&lu->Numeric,lu->Control,lu->Info);
197: #else
198:   status = umfpack_UMF_numeric(ai,aj,av,lu->Symbolic,&lu->Numeric,lu->Control,lu->Info);
199: #endif
200:   if (status < 0) {
201:     umfpack_UMF_report_status(lu->Control, status);
202:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"umfpack_UMF_numeric failed");
203:   }
204:   /* report numeric factorization of A' when Control[PRL] > 3 */
205:   (void) umfpack_UMF_report_numeric(lu->Numeric, lu->Control);

207:   PetscObjectReference((PetscObject)A);
208:   MatDestroy(&lu->A);

210:   lu->A                  = A;
211:   lu->flg                = SAME_NONZERO_PATTERN;
212:   lu->CleanUpUMFPACK     = PETSC_TRUE;
213:   F->ops->solve          = MatSolve_UMFPACK;
214:   F->ops->solvetranspose = MatSolveTranspose_UMFPACK;
215:   return(0);
216: }

218: /*
219:    Note the r permutation is ignored
220: */
223: static PetscErrorCode MatLUFactorSymbolic_UMFPACK(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
224: {
225:   Mat_SeqAIJ     *a  = (Mat_SeqAIJ*)A->data;
226:   Mat_UMFPACK    *lu = (Mat_UMFPACK*)(F->spptr);
228:   PetscInt       i,*ai = a->i,*aj = a->j,m=A->rmap->n,n=A->cmap->n;
229: #if !defined(PETSC_USE_COMPLEX)
230:   PetscScalar    *av = a->a;
231: #endif
232:   const PetscInt *ra;
233:   PetscInt       status;

236:   if (lu->PetscMatOrdering) {
237:     ISGetIndices(r,&ra);
238:     PetscMalloc1(m,&lu->perm_c);
239:     /* we cannot simply memcpy on 64 bit archs */
240:     for (i = 0; i < m; i++) lu->perm_c[i] = ra[i];
241:     ISRestoreIndices(r,&ra);
242:   }

244:   /* print the control parameters */
245:   if (lu->Control[UMFPACK_PRL] > 1) umfpack_UMF_report_control(lu->Control);

247:   /* symbolic factorization of A' */
248:   /* ---------------------------------------------------------------------- */
249:   if (lu->PetscMatOrdering) { /* use Petsc row ordering */
250: #if !defined(PETSC_USE_COMPLEX)
251:     status = umfpack_UMF_qsymbolic(n,m,ai,aj,av,lu->perm_c,&lu->Symbolic,lu->Control,lu->Info);
252: #else
253:     status = umfpack_UMF_qsymbolic(n,m,ai,aj,NULL,NULL,lu->perm_c,&lu->Symbolic,lu->Control,lu->Info);
254: #endif
255:   } else { /* use Umfpack col ordering */
256: #if !defined(PETSC_USE_COMPLEX)
257:     status = umfpack_UMF_symbolic(n,m,ai,aj,av,&lu->Symbolic,lu->Control,lu->Info);
258: #else
259:     status = umfpack_UMF_symbolic(n,m,ai,aj,NULL,NULL,&lu->Symbolic,lu->Control,lu->Info);
260: #endif
261:   }
262:   if (status < 0) {
263:     umfpack_UMF_report_info(lu->Control, lu->Info);
264:     umfpack_UMF_report_status(lu->Control, status);
265:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"umfpack_UMF_symbolic failed");
266:   }
267:   /* report sumbolic factorization of A' when Control[PRL] > 3 */
268:   (void) umfpack_UMF_report_symbolic(lu->Symbolic, lu->Control);

270:   lu->flg                   = DIFFERENT_NONZERO_PATTERN;
271:   lu->CleanUpUMFPACK        = PETSC_TRUE;
272:   (F)->ops->lufactornumeric = MatLUFactorNumeric_UMFPACK;
273:   return(0);
274: }

278: static PetscErrorCode MatFactorInfo_UMFPACK(Mat A,PetscViewer viewer)
279: {
280:   Mat_UMFPACK    *lu= (Mat_UMFPACK*)A->spptr;

284:   /* check if matrix is UMFPACK type */
285:   if (A->ops->solve != MatSolve_UMFPACK) return(0);

287:   PetscViewerASCIIPrintf(viewer,"UMFPACK run parameters:\n");
288:   /* Control parameters used by reporting routiones */
289:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_PRL]: %g\n",lu->Control[UMFPACK_PRL]);

291:   /* Control parameters used by symbolic factorization */
292:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_STRATEGY]: %g\n",lu->Control[UMFPACK_STRATEGY]);
293:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_DENSE_COL]: %g\n",lu->Control[UMFPACK_DENSE_COL]);
294:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_DENSE_ROW]: %g\n",lu->Control[UMFPACK_DENSE_ROW]);
295:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_AMD_DENSE]: %g\n",lu->Control[UMFPACK_AMD_DENSE]);
296:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_BLOCK_SIZE]: %g\n",lu->Control[UMFPACK_BLOCK_SIZE]);
297:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_FIXQ]: %g\n",lu->Control[UMFPACK_FIXQ]);
298:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_AGGRESSIVE]: %g\n",lu->Control[UMFPACK_AGGRESSIVE]);

300:   /* Control parameters used by numeric factorization */
301:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_PIVOT_TOLERANCE]: %g\n",lu->Control[UMFPACK_PIVOT_TOLERANCE]);
302:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_SYM_PIVOT_TOLERANCE]: %g\n",lu->Control[UMFPACK_SYM_PIVOT_TOLERANCE]);
303:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_SCALE]: %g\n",lu->Control[UMFPACK_SCALE]);
304:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_ALLOC_INIT]: %g\n",lu->Control[UMFPACK_ALLOC_INIT]);
305:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_DROPTOL]: %g\n",lu->Control[UMFPACK_DROPTOL]);

307:   /* Control parameters used by solve */
308:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_IRSTEP]: %g\n",lu->Control[UMFPACK_IRSTEP]);

310:   /* mat ordering */
311:   if (!lu->PetscMatOrdering) {
312:     PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_ORDERING]: %s (not using the PETSc ordering)\n",UmfpackOrderingTypes[(int)lu->Control[UMFPACK_ORDERING]]);
313:   }
314:   return(0);
315: }

319: static PetscErrorCode MatView_UMFPACK(Mat A,PetscViewer viewer)
320: {
321:   PetscErrorCode    ierr;
322:   PetscBool         iascii;
323:   PetscViewerFormat format;

326:   MatView_SeqAIJ(A,viewer);

328:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
329:   if (iascii) {
330:     PetscViewerGetFormat(viewer,&format);
331:     if (format == PETSC_VIEWER_ASCII_INFO) {
332:       MatFactorInfo_UMFPACK(A,viewer);
333:     }
334:   }
335:   return(0);
336: }

340: PetscErrorCode MatFactorGetSolverPackage_seqaij_umfpack(Mat A,const MatSolverPackage *type)
341: {
343:   *type = MATSOLVERUMFPACK;
344:   return(0);
345: }


348: /*MC
349:   MATSOLVERUMFPACK = "umfpack" - A matrix type providing direct solvers (LU) for sequential matrices
350:   via the external package UMFPACK.

352:   Use ./configure --download-suitesparse to install PETSc to use UMFPACK

354:   Use -pc_type lu -pc_factor_mat_solver_package umfpack to us this direct solver

356:   Consult UMFPACK documentation for more information about the Control parameters
357:   which correspond to the options database keys below.

359:   Options Database Keys:
360: + -mat_umfpack_ordering                - CHOLMOD, AMD, GIVEN, METIS, BEST, NONE
361: . -mat_umfpack_prl                     - UMFPACK print level: Control[UMFPACK_PRL]
362: . -mat_umfpack_strategy <AUTO>         - (choose one of) AUTO UNSYMMETRIC SYMMETRIC 2BY2
363: . -mat_umfpack_dense_col <alpha_c>     - UMFPACK dense column threshold: Control[UMFPACK_DENSE_COL]
364: . -mat_umfpack_dense_row <0.2>         - Control[UMFPACK_DENSE_ROW]
365: . -mat_umfpack_amd_dense <10>          - Control[UMFPACK_AMD_DENSE]
366: . -mat_umfpack_block_size <bs>         - UMFPACK block size for BLAS-Level 3 calls: Control[UMFPACK_BLOCK_SIZE]
367: . -mat_umfpack_2by2_tolerance <0.01>   - Control[UMFPACK_2BY2_TOLERANCE]
368: . -mat_umfpack_fixq <0>                - Control[UMFPACK_FIXQ]
369: . -mat_umfpack_aggressive <1>          - Control[UMFPACK_AGGRESSIVE]
370: . -mat_umfpack_pivot_tolerance <delta> - UMFPACK partial pivot tolerance: Control[UMFPACK_PIVOT_TOLERANCE]
371: . -mat_umfpack_sym_pivot_tolerance <0.001> - Control[UMFPACK_SYM_PIVOT_TOLERANCE]
372: . -mat_umfpack_scale <NONE>           - (choose one of) NONE SUM MAX
373: . -mat_umfpack_alloc_init <delta>      - UMFPACK factorized matrix allocation modifier: Control[UMFPACK_ALLOC_INIT]
374: . -mat_umfpack_droptol <0>            - Control[UMFPACK_DROPTOL]
375: - -mat_umfpack_irstep <maxit>          - UMFPACK maximum number of iterative refinement steps: Control[UMFPACK_IRSTEP]

377:    Level: beginner

379:    Note: UMFPACK is part of SuiteSparse http://faculty.cse.tamu.edu/davis/suitesparse.html

381: .seealso: PCLU, MATSOLVERSUPERLU, MATSOLVERMUMPS, PCFactorSetMatSolverPackage(), MatSolverPackage
382: M*/

386: PETSC_EXTERN PetscErrorCode MatGetFactor_seqaij_umfpack(Mat A,MatFactorType ftype,Mat *F)
387: {
388:   Mat            B;
389:   Mat_UMFPACK    *lu;
391:   PetscInt       m=A->rmap->n,n=A->cmap->n,idx;

393:   const char *strategy[]={"AUTO","UNSYMMETRIC","SYMMETRIC"};
394:   const char *scale[]   ={"NONE","SUM","MAX"};
395:   PetscBool  flg;

398:   /* Create the factorization matrix F */
399:   MatCreate(PetscObjectComm((PetscObject)A),&B);
400:   MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,m,n);
401:   MatSetType(B,((PetscObject)A)->type_name);
402:   MatSeqAIJSetPreallocation(B,0,NULL);
403:   PetscNewLog(B,&lu);

405:   B->spptr                 = lu;
406:   B->ops->lufactorsymbolic = MatLUFactorSymbolic_UMFPACK;
407:   B->ops->destroy          = MatDestroy_UMFPACK;
408:   B->ops->view             = MatView_UMFPACK;
409:   B->ops->matsolve         = NULL;

411:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverPackage_C",MatFactorGetSolverPackage_seqaij_umfpack);

413:   B->factortype   = MAT_FACTOR_LU;
414:   B->assembled    = PETSC_TRUE;           /* required by -ksp_view */
415:   B->preallocated = PETSC_TRUE;

417:   PetscFree(B->solvertype);
418:   PetscStrallocpy(MATSOLVERUMFPACK,&B->solvertype);

420:   /* initializations */
421:   /* ------------------------------------------------*/
422:   /* get the default control parameters */
423:   umfpack_UMF_defaults(lu->Control);
424:   lu->perm_c                  = NULL; /* use defaul UMFPACK col permutation */
425:   lu->Control[UMFPACK_IRSTEP] = 0;          /* max num of iterative refinement steps to attempt */

427:   PetscOptionsBegin(PetscObjectComm((PetscObject)A),((PetscObject)A)->prefix,"UMFPACK Options","Mat");
428:   /* Control parameters used by reporting routiones */
429:   PetscOptionsReal("-mat_umfpack_prl","Control[UMFPACK_PRL]","None",lu->Control[UMFPACK_PRL],&lu->Control[UMFPACK_PRL],NULL);

431:   /* Control parameters for symbolic factorization */
432:   PetscOptionsEList("-mat_umfpack_strategy","ordering and pivoting strategy","None",strategy,3,strategy[0],&idx,&flg);
433:   if (flg) {
434:     switch (idx) {
435:     case 0: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_AUTO; break;
436:     case 1: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_UNSYMMETRIC; break;
437:     case 2: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_SYMMETRIC; break;
438:     }
439:   }
440:   PetscOptionsEList("-mat_umfpack_ordering","Internal ordering method","None",UmfpackOrderingTypes,sizeof(UmfpackOrderingTypes)/sizeof(UmfpackOrderingTypes[0]),UmfpackOrderingTypes[(int)lu->Control[UMFPACK_ORDERING]],&idx,&flg);
441:   if (flg) lu->Control[UMFPACK_ORDERING] = (int)idx;
442:   PetscOptionsReal("-mat_umfpack_dense_col","Control[UMFPACK_DENSE_COL]","None",lu->Control[UMFPACK_DENSE_COL],&lu->Control[UMFPACK_DENSE_COL],NULL);
443:   PetscOptionsReal("-mat_umfpack_dense_row","Control[UMFPACK_DENSE_ROW]","None",lu->Control[UMFPACK_DENSE_ROW],&lu->Control[UMFPACK_DENSE_ROW],NULL);
444:   PetscOptionsReal("-mat_umfpack_amd_dense","Control[UMFPACK_AMD_DENSE]","None",lu->Control[UMFPACK_AMD_DENSE],&lu->Control[UMFPACK_AMD_DENSE],NULL);
445:   PetscOptionsReal("-mat_umfpack_block_size","Control[UMFPACK_BLOCK_SIZE]","None",lu->Control[UMFPACK_BLOCK_SIZE],&lu->Control[UMFPACK_BLOCK_SIZE],NULL);
446:   PetscOptionsReal("-mat_umfpack_fixq","Control[UMFPACK_FIXQ]","None",lu->Control[UMFPACK_FIXQ],&lu->Control[UMFPACK_FIXQ],NULL);
447:   PetscOptionsReal("-mat_umfpack_aggressive","Control[UMFPACK_AGGRESSIVE]","None",lu->Control[UMFPACK_AGGRESSIVE],&lu->Control[UMFPACK_AGGRESSIVE],NULL);

449:   /* Control parameters used by numeric factorization */
450:   PetscOptionsReal("-mat_umfpack_pivot_tolerance","Control[UMFPACK_PIVOT_TOLERANCE]","None",lu->Control[UMFPACK_PIVOT_TOLERANCE],&lu->Control[UMFPACK_PIVOT_TOLERANCE],NULL);
451:   PetscOptionsReal("-mat_umfpack_sym_pivot_tolerance","Control[UMFPACK_SYM_PIVOT_TOLERANCE]","None",lu->Control[UMFPACK_SYM_PIVOT_TOLERANCE],&lu->Control[UMFPACK_SYM_PIVOT_TOLERANCE],NULL);
452:   PetscOptionsEList("-mat_umfpack_scale","Control[UMFPACK_SCALE]","None",scale,3,scale[0],&idx,&flg);
453:   if (flg) {
454:     switch (idx) {
455:     case 0: lu->Control[UMFPACK_SCALE] = UMFPACK_SCALE_NONE; break;
456:     case 1: lu->Control[UMFPACK_SCALE] = UMFPACK_SCALE_SUM; break;
457:     case 2: lu->Control[UMFPACK_SCALE] = UMFPACK_SCALE_MAX; break;
458:     }
459:   }
460:   PetscOptionsReal("-mat_umfpack_alloc_init","Control[UMFPACK_ALLOC_INIT]","None",lu->Control[UMFPACK_ALLOC_INIT],&lu->Control[UMFPACK_ALLOC_INIT],NULL);
461:   PetscOptionsReal("-mat_umfpack_front_alloc_init","Control[UMFPACK_FRONT_ALLOC_INIT]","None",lu->Control[UMFPACK_FRONT_ALLOC_INIT],&lu->Control[UMFPACK_ALLOC_INIT],NULL);
462:   PetscOptionsReal("-mat_umfpack_droptol","Control[UMFPACK_DROPTOL]","None",lu->Control[UMFPACK_DROPTOL],&lu->Control[UMFPACK_DROPTOL],NULL);

464:   /* Control parameters used by solve */
465:   PetscOptionsReal("-mat_umfpack_irstep","Control[UMFPACK_IRSTEP]","None",lu->Control[UMFPACK_IRSTEP],&lu->Control[UMFPACK_IRSTEP],NULL);

467:   /* use Petsc mat ordering (note: size is for the transpose, and PETSc r = Umfpack perm_c) */
468:   PetscOptionsName("-pc_factor_mat_ordering_type","Ordering to do factorization in","MatGetOrdering",&lu->PetscMatOrdering);
469:   PetscOptionsEnd();
470:   *F = B;
471:   return(0);
472: }

474: PETSC_INTERN PetscErrorCode MatGetFactor_seqaij_cholmod(Mat,MatFactorType,Mat*);
475: PETSC_INTERN PetscErrorCode MatGetFactor_seqsbaij_cholmod(Mat,MatFactorType,Mat*);
476: PETSC_INTERN PetscErrorCode MatGetFactor_seqaij_klu(Mat,MatFactorType,Mat*);

480: PETSC_EXTERN PetscErrorCode MatSolverPackageRegister_SuiteSparse(void)
481: {

485:   MatSolverPackageRegister(MATSOLVERUMFPACK,MATSEQAIJ,      MAT_FACTOR_LU,MatGetFactor_seqaij_umfpack);
486:   MatSolverPackageRegister(MATSOLVERCHOLMOD,MATSEQAIJ,      MAT_FACTOR_CHOLESKY,MatGetFactor_seqaij_cholmod);
487:   MatSolverPackageRegister(MATSOLVERCHOLMOD,MATSEQSBAIJ,     MAT_FACTOR_CHOLESKY,MatGetFactor_seqsbaij_cholmod);
488:   MatSolverPackageRegister(MATSOLVERKLU,MATSEQAIJ,          MAT_FACTOR_LU,MatGetFactor_seqaij_klu);
489:   return(0);
490: }