Actual source code: chaco.c

petsc-3.7.5 2017-01-01
Report Typos and Errors
  2: #include <../src/mat/impls/adj/mpi/mpiadj.h>       /*I "petscmat.h" I*/

  4: #if defined(PETSC_HAVE_UNISTD_H)
  5: #include <unistd.h>
  6: #endif

  8: /* Chaco does not have an include file */
  9: PETSC_EXTERN int interface(int nvtxs, int *start, int *adjacency, int *vwgts,
 10:                      float *ewgts, float *x, float *y, float *z, char *outassignname,
 11:                      char *outfilename, short *assignment, int architecture, int ndims_tot,
 12:                      int mesh_dims[3], double *goal, int global_method, int local_method,
 13:                      int rqi_flag, int vmax, int ndims, double eigtol, long seed);

 15: extern int FREE_GRAPH;

 17: /*
 18: int       nvtxs;                number of vertices in full graph
 19: int      *start;                start of edge list for each vertex
 20: int      *adjacency;            edge list data
 21: int      *vwgts;                weights for all vertices
 22: float    *ewgts;                weights for all edges
 23: float    *x, *y, *z;            coordinates for inertial method
 24: char     *outassignname;        name of assignment output file
 25: char     *outfilename;          output file name
 26: short    *assignment;           set number of each vtx (length n)
 27: int       architecture;         0 => hypercube, d => d-dimensional mesh
 28: int       ndims_tot;            total number of cube dimensions to divide
 29: int       mesh_dims[3];         dimensions of mesh of processors
 30: double   *goal;                 desired set sizes for each set
 31: int       global_method;        global partitioning algorithm
 32: int       local_method;         local partitioning algorithm
 33: int       rqi_flag;             should I use RQI/Symmlq eigensolver?
 34: int       vmax;                 how many vertices to coarsen down to?
 35: int       ndims;                number of eigenvectors (2^d sets)
 36: double    eigtol;               tolerance on eigenvectors
 37: long      seed;                 for random graph mutations
 38: */

 40: typedef struct {
 41:   PetscBool         verbose;
 42:   PetscInt          eignum;
 43:   PetscReal         eigtol;
 44:   MPChacoGlobalType global_method;          /* global method */
 45:   MPChacoLocalType  local_method;           /* local method */
 46:   MPChacoEigenType  eigen_method;           /* eigensolver */
 47:   PetscInt          nbvtxcoarsed;           /* number of vertices for the coarse graph */
 48: } MatPartitioning_Chaco;

 50: #define SIZE_LOG 10000          /* size of buffer for mesg_log */

 54: static PetscErrorCode MatPartitioningApply_Chaco(MatPartitioning part,IS *partitioning)
 55: {
 56:   PetscErrorCode        ierr;
 57:   PetscInt              *parttab,*locals,i,nb_locals,M,N;
 58:   PetscMPIInt           size,rank;
 59:   Mat                   mat = part->adj,matAdj,matSeq,*A;
 60:   Mat_MPIAdj            *adj;
 61:   MatPartitioning_Chaco *chaco = (MatPartitioning_Chaco*)part->data;
 62:   PetscBool             flg;
 63:   IS                    isrow, iscol;
 64:   int                   nvtxs,*start,*adjacency,*vwgts,architecture,ndims_tot;
 65:   int                   mesh_dims[3],global_method,local_method,rqi_flag,vmax,ndims;
 66:   short                 *assignment;
 67:   double                eigtol;
 68:   long                  seed;
 69:   char                  *mesg_log;
 70: #if defined(PETSC_HAVE_UNISTD_H)
 71:   int                   fd_stdout,fd_pipe[2],count,err;
 72: #endif

 75:   FREE_GRAPH = 0; /* otherwise Chaco will attempt to free memory for adjacency graph */
 76:   MPI_Comm_size(PetscObjectComm((PetscObject)mat),&size);
 77:   MPI_Comm_rank(PetscObjectComm((PetscObject)mat),&rank);
 78:   PetscObjectTypeCompare((PetscObject)mat,MATMPIADJ,&flg);
 79:   if (size>1) {
 80:     if (flg) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Distributed matrix format MPIAdj is not supported for sequential partitioners");
 81:     PetscInfo(part,"Converting distributed matrix to sequential: this could be a performance loss\n");
 82:     MatGetSize(mat,&M,&N);
 83:     ISCreateStride(PETSC_COMM_SELF,M,0,1,&isrow);
 84:     ISCreateStride(PETSC_COMM_SELF,N,0,1,&iscol);
 85:     MatGetSubMatrices(mat,1,&isrow,&iscol,MAT_INITIAL_MATRIX,&A);
 86:     ISDestroy(&isrow);
 87:     ISDestroy(&iscol);
 88:     matSeq = *A;
 89:     PetscFree(A);
 90:   } else {
 91:     PetscObjectReference((PetscObject)mat);
 92:     matSeq = mat;
 93:   }

 95:   if (!flg) { /* convert regular matrix to MPIADJ */
 96:     MatConvert(matSeq,MATMPIADJ,MAT_INITIAL_MATRIX,&matAdj);
 97:   } else {
 98:     PetscObjectReference((PetscObject)matSeq);
 99:     matAdj = matSeq;
100:   }

102:   adj = (Mat_MPIAdj*)matAdj->data;  /* finaly adj contains adjacency graph */

104:   /* arguments for Chaco library */
105:   nvtxs         = mat->rmap->N;           /* number of vertices in full graph */
106:   start         = adj->i;                 /* start of edge list for each vertex */
107:   vwgts         = part->vertex_weights;   /* weights for all vertices */
108:   architecture  = 1;                      /* 0 => hypercube, d => d-dimensional mesh */
109:   ndims_tot     = 0;                      /* total number of cube dimensions to divide */
110:   mesh_dims[0]  = part->n;                /* dimensions of mesh of processors */
111:   global_method = chaco->global_method;   /* global partitioning algorithm */
112:   local_method  = chaco->local_method;    /* local partitioning algorithm */
113:   rqi_flag      = chaco->eigen_method;    /* should I use RQI/Symmlq eigensolver? */
114:   vmax          = chaco->nbvtxcoarsed;    /* how many vertices to coarsen down to? */
115:   ndims         = chaco->eignum;          /* number of eigenvectors (2^d sets) */
116:   eigtol        = chaco->eigtol;          /* tolerance on eigenvectors */
117:   seed          = 123636512;              /* for random graph mutations */

119:   PetscMalloc1(mat->rmap->N,&assignment);
120:   PetscMalloc1(start[nvtxs],&adjacency);
121:   for (i=0; i<start[nvtxs]; i++) adjacency[i] = (adj->j)[i] + 1; /* 1-based indexing */

123:   /* redirect output to buffer */
124: #if defined(PETSC_HAVE_UNISTD_H)
125:   fd_stdout = dup(1);
126:   if (pipe(fd_pipe)) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SYS,"Could not open pipe");
127:   close(1);
128:   dup2(fd_pipe[1],1);
129:   PetscMalloc1(SIZE_LOG,&mesg_log);
130: #endif

132:   /* library call */
133:   interface(nvtxs,start,adjacency,vwgts,NULL,NULL,NULL,NULL,
134:                    NULL,NULL,assignment,architecture,ndims_tot,mesh_dims,
135:                    NULL,global_method,local_method,rqi_flag,vmax,ndims,eigtol,seed);

137: #if defined(PETSC_HAVE_UNISTD_H)
138:   err = fflush(stdout);
139:   if (err) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SYS,"fflush() failed on stdout");
140:   count = read(fd_pipe[0],mesg_log,(SIZE_LOG-1)*sizeof(char));
141:   if (count<0) count = 0;
142:   mesg_log[count] = 0;
143:   close(1);
144:   dup2(fd_stdout,1);
145:   close(fd_stdout);
146:   close(fd_pipe[0]);
147:   close(fd_pipe[1]);
148:   if (chaco->verbose) {
149:     PetscPrintf(PetscObjectComm((PetscObject)mat),mesg_log);
150:   }
151:   PetscFree(mesg_log);
152: #endif
153:   if (ierr) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"Chaco failed");

155:   PetscMalloc1(mat->rmap->N,&parttab);
156:   for (i=0; i<nvtxs; i++) parttab[i] = assignment[i];

158:   /* creation of the index set */
159:   nb_locals = mat->rmap->N / size;
160:   locals    = parttab + rank*nb_locals;
161:   if (rank < mat->rmap->N % size) {
162:     nb_locals++;
163:     locals += rank;
164:   } else locals += mat->rmap->N % size;

166:   ISCreateGeneral(PetscObjectComm((PetscObject)part),nb_locals,locals,PETSC_COPY_VALUES,partitioning);

168:   /* clean up */
169:   PetscFree(parttab);
170:   PetscFree(adjacency);
171:   PetscFree(assignment);
172:   MatDestroy(&matSeq);
173:   MatDestroy(&matAdj);
174:   return(0);
175: }

179: PetscErrorCode MatPartitioningView_Chaco(MatPartitioning part, PetscViewer viewer)
180: {
181:   MatPartitioning_Chaco *chaco = (MatPartitioning_Chaco*)part->data;
182:   PetscErrorCode        ierr;
183:   PetscBool             isascii;

186:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii);
187:   if (isascii) {
188:     PetscViewerASCIIPrintf(viewer,"  Global method: %s\n",MPChacoGlobalTypes[chaco->global_method]);
189:     PetscViewerASCIIPrintf(viewer,"  Local method: %s\n",MPChacoLocalTypes[chaco->local_method]);
190:     PetscViewerASCIIPrintf(viewer,"  Number of vertices for the coarse graph: %d\n",chaco->nbvtxcoarsed);
191:     PetscViewerASCIIPrintf(viewer,"  Eigensolver: %s\n",MPChacoEigenTypes[chaco->eigen_method]);
192:     PetscViewerASCIIPrintf(viewer,"  Tolerance for eigensolver: %g\n",chaco->eigtol);
193:     PetscViewerASCIIPrintf(viewer,"  Number of eigenvectors: %d\n",chaco->eignum);
194:   }
195:   return(0);
196: }

200: /*@
201:    MatPartitioningChacoSetGlobal - Set global method for Chaco partitioner.

203:    Collective on MatPartitioning

205:    Input Parameters:
206: +  part - the partitioning context
207: -  method - one of MP_CHACO_MULTILEVEL, MP_CHACO_SPECTRAL, MP_CHACO_LINEAR,
208:             MP_CHACO_RANDOM or MP_CHACO_SCATTERED

210:    Options Database:
211: .  -mat_partitioning_chaco_global <method> - the global method

213:    Level: advanced

215:    Notes:
216:    The default is the multi-level method. See Chaco documentation for
217:    additional details.

219: .seealso: MatPartitioningChacoSetLocal(),MatPartitioningChacoGetGlobal()
220: @*/
221: PetscErrorCode MatPartitioningChacoSetGlobal(MatPartitioning part,MPChacoGlobalType method)
222: {

228:   PetscTryMethod(part,"MatPartitioningChacoSetGlobal_C",(MatPartitioning,MPChacoGlobalType),(part,method));
229:   return(0);
230: }

234: PetscErrorCode MatPartitioningChacoSetGlobal_Chaco(MatPartitioning part,MPChacoGlobalType method)
235: {
236:   MatPartitioning_Chaco *chaco = (MatPartitioning_Chaco*)part->data;

239:   switch (method) {
240:   case MP_CHACO_MULTILEVEL:
241:   case MP_CHACO_SPECTRAL:
242:   case MP_CHACO_LINEAR:
243:   case MP_CHACO_RANDOM:
244:   case MP_CHACO_SCATTERED:
245:     chaco->global_method = method; break;
246:   default:
247:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Chaco: Unknown or unsupported option");
248:   }
249:   return(0);
250: }

254: /*@
255:    MatPartitioningChacoGetGlobal - Get global method for Chaco partitioner.

257:    Not Collective

259:    Input Parameter:
260: .  part - the partitioning context

262:    Output Parameter:
263: .  method - the method

265:    Level: advanced

267: .seealso: MatPartitioningChacoSetGlobal()
268: @*/
269: PetscErrorCode MatPartitioningChacoGetGlobal(MatPartitioning part,MPChacoGlobalType *method)
270: {

276:   PetscTryMethod(part,"MatPartitioningChacoGetGlobal_C",(MatPartitioning,MPChacoGlobalType*),(part,method));
277:   return(0);
278: }

282: PetscErrorCode MatPartitioningChacoGetGlobal_Chaco(MatPartitioning part,MPChacoGlobalType *method)
283: {
284:   MatPartitioning_Chaco *chaco = (MatPartitioning_Chaco*)part->data;

287:   *method = chaco->global_method;
288:   return(0);
289: }

293: /*@
294:    MatPartitioningChacoSetLocal - Set local method for Chaco partitioner.

296:    Collective on MatPartitioning

298:    Input Parameters:
299: +  part - the partitioning context
300: -  method - one of MP_CHACO_KERNIGHAN or MP_CHACO_NONE

302:    Options Database:
303: .  -mat_partitioning_chaco_local <method> - the local method

305:    Level: advanced

307:    Notes:
308:    The default is to apply the Kernighan-Lin heuristic. See Chaco documentation
309:    for additional details.

311: .seealso: MatPartitioningChacoSetGlobal(),MatPartitioningChacoGetLocal()
312: @*/
313: PetscErrorCode MatPartitioningChacoSetLocal(MatPartitioning part,MPChacoLocalType method)
314: {

320:   PetscTryMethod(part,"MatPartitioningChacoSetLocal_C",(MatPartitioning,MPChacoLocalType),(part,method));
321:   return(0);
322: }

326: PetscErrorCode MatPartitioningChacoSetLocal_Chaco(MatPartitioning part,MPChacoLocalType method)
327: {
328:   MatPartitioning_Chaco *chaco = (MatPartitioning_Chaco*)part->data;

331:   switch (method) {
332:   case MP_CHACO_KERNIGHAN:
333:   case MP_CHACO_NONE:
334:     chaco->local_method = method; break;
335:   default:
336:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Chaco: Unknown or unsupported option");
337:   }
338:   return(0);
339: }

343: /*@
344:    MatPartitioningChacoGetLocal - Get local method for Chaco partitioner.

346:    Not Collective

348:    Input Parameter:
349: .  part - the partitioning context

351:    Output Parameter:
352: .  method - the method

354:    Level: advanced

356: .seealso: MatPartitioningChacoSetLocal()
357: @*/
358: PetscErrorCode MatPartitioningChacoGetLocal(MatPartitioning part,MPChacoLocalType *method)
359: {

365:   PetscUseMethod(part,"MatPartitioningChacoGetLocal_C",(MatPartitioning,MPChacoLocalType*),(part,method));
366:   return(0);
367: }

371: PetscErrorCode MatPartitioningChacoGetLocal_Chaco(MatPartitioning part,MPChacoLocalType *method)
372: {
373:   MatPartitioning_Chaco *chaco = (MatPartitioning_Chaco*)part->data;

376:   *method = chaco->local_method;
377:   return(0);
378: }

382: /*@
383:    MatPartitioningChacoSetCoarseLevel - Set the coarse level parameter for the
384:    Chaco partitioner.

386:    Collective on MatPartitioning

388:    Input Parameters:
389: +  part - the partitioning context
390: -  level - the coarse level in range [0.0,1.0]

392:    Options Database:
393: .  -mat_partitioning_chaco_coarse <l> - Coarse level

395:    Level: advanced
396: @*/
397: PetscErrorCode MatPartitioningChacoSetCoarseLevel(MatPartitioning part,PetscReal level)
398: {

404:   PetscTryMethod(part,"MatPartitioningChacoSetCoarseLevel_C",(MatPartitioning,PetscReal),(part,level));
405:   return(0);
406: }

410: PetscErrorCode MatPartitioningChacoSetCoarseLevel_Chaco(MatPartitioning part,PetscReal level)
411: {
412:   MatPartitioning_Chaco *chaco = (MatPartitioning_Chaco*)part->data;

415:   if (level<0.0 || level>1.0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Chaco: level of coarsening out of range [0.0-1.0]");
416:   chaco->nbvtxcoarsed = (PetscInt)(part->adj->cmap->N * level);
417:   if (chaco->nbvtxcoarsed < 20) chaco->nbvtxcoarsed = 20;
418:   return(0);
419: }

423: /*@
424:    MatPartitioningChacoSetEigenSolver - Set eigensolver method for Chaco partitioner.

426:    Collective on MatPartitioning

428:    Input Parameters:
429: +  part - the partitioning context
430: -  method - one of MP_CHACO_LANCZOS or MP_CHACO_RQI

432:    Options Database:
433: .  -mat_partitioning_chaco_eigen_solver <method> - the eigensolver

435:    Level: advanced

437:    Notes:
438:    The default is to use a Lanczos method. See Chaco documentation for details.

440: .seealso: MatPartitioningChacoSetEigenTol(),MatPartitioningChacoSetEigenNumber(),
441:           MatPartitioningChacoGetEigenSolver()
442: @*/
443: PetscErrorCode MatPartitioningChacoSetEigenSolver(MatPartitioning part,MPChacoEigenType method)
444: {

450:   PetscTryMethod(part,"MatPartitioningChacoSetEigenSolver_C",(MatPartitioning,MPChacoEigenType),(part,method));
451:   return(0);
452: }

456: PetscErrorCode MatPartitioningChacoSetEigenSolver_Chaco(MatPartitioning part,MPChacoEigenType method)
457: {
458:   MatPartitioning_Chaco *chaco = (MatPartitioning_Chaco*)part->data;

461:   switch (method) {
462:   case MP_CHACO_LANCZOS:
463:   case MP_CHACO_RQI:
464:     chaco->eigen_method = method; break;
465:   default:
466:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Chaco: Unknown or unsupported option");
467:   }
468:   return(0);
469: }

473: /*@
474:    MatPartitioningChacoGetEigenSolver - Get local method for Chaco partitioner.

476:    Not Collective

478:    Input Parameter:
479: .  part - the partitioning context

481:    Output Parameter:
482: .  method - the method

484:    Level: advanced

486: .seealso: MatPartitioningChacoSetEigenSolver()
487: @*/
488: PetscErrorCode MatPartitioningChacoGetEigenSolver(MatPartitioning part,MPChacoEigenType *method)
489: {

495:   PetscUseMethod(part,"MatPartitioningChacoGetEigenSolver_C",(MatPartitioning,MPChacoEigenType*),(part,method));
496:   return(0);
497: }

501: PetscErrorCode MatPartitioningChacoGetEigenSolver_Chaco(MatPartitioning part,MPChacoEigenType *method)
502: {
503:   MatPartitioning_Chaco *chaco = (MatPartitioning_Chaco*)part->data;

506:   *method = chaco->eigen_method;
507:   return(0);
508: }

512: /*@
513:    MatPartitioningChacoSetEigenTol - Sets the tolerance for the eigensolver.

515:    Collective on MatPartitioning

517:    Input Parameters:
518: +  part - the partitioning context
519: -  tol  - the tolerance

521:    Options Database:
522: .  -mat_partitioning_chaco_eigen_tol <tol>: Tolerance for eigensolver

524:    Note:
525:    Must be positive. The default value is 0.001.

527:    Level: advanced

529: .seealso: MatPartitioningChacoSetEigenSolver(), MatPartitioningChacoGetEigenTol()
530: @*/
531: PetscErrorCode MatPartitioningChacoSetEigenTol(MatPartitioning part,PetscReal tol)
532: {

538:   PetscTryMethod(part,"MatPartitioningChacoSetEigenTol_C",(MatPartitioning,PetscReal),(part,tol));
539:   return(0);
540: }

544: PetscErrorCode MatPartitioningChacoSetEigenTol_Chaco(MatPartitioning part,PetscReal tol)
545: {
546:   MatPartitioning_Chaco *chaco = (MatPartitioning_Chaco*)part->data;

549:   if (tol==PETSC_DEFAULT) chaco->eigtol = 0.001;
550:   else {
551:     if (tol<=0.0) SETERRQ(PetscObjectComm((PetscObject)part),PETSC_ERR_ARG_OUTOFRANGE,"Tolerance must be positive");
552:     chaco->eigtol = tol;
553:   }
554:   return(0);
555: }

559: /*@
560:    MatPartitioningChacoGetEigenTol - Gets the eigensolver tolerance.

562:    Not Collective

564:    Input Parameter:
565: .  part - the partitioning context

567:    Output Parameter:
568: .  tol  - the tolerance

570:    Level: advanced

572: .seealso: MatPartitioningChacoSetEigenTol()
573: @*/
574: PetscErrorCode MatPartitioningChacoGetEigenTol(MatPartitioning part,PetscReal *tol)
575: {

581:   PetscUseMethod(part,"MatPartitioningChacoGetEigenTol_C",(MatPartitioning,PetscReal*),(part,tol));
582:   return(0);
583: }

587: PetscErrorCode MatPartitioningChacoGetEigenTol_Chaco(MatPartitioning part,PetscReal *tol)
588: {
589:   MatPartitioning_Chaco *chaco = (MatPartitioning_Chaco*)part->data;

592:   *tol = chaco->eigtol;
593:   return(0);
594: }

598: /*@
599:    MatPartitioningChacoSetEigenNumber - Sets the number of eigenvectors to compute
600:    during partitioning.

602:    Collective on MatPartitioning

604:    Input Parameters:
605: +  part - the partitioning context
606: -  num  - the number of eigenvectors

608:    Options Database:
609: .  -mat_partitioning_chaco_eigen_number <n>: Number of eigenvectors

611:    Note:
612:    Accepted values are 1, 2 or 3, indicating partitioning by bisection,
613:    quadrisection, or octosection.

615:    Level: advanced

617: .seealso: MatPartitioningChacoSetEigenSolver(), MatPartitioningChacoGetEigenTol()
618: @*/
619: PetscErrorCode MatPartitioningChacoSetEigenNumber(MatPartitioning part,PetscInt num)
620: {

626:   PetscTryMethod(part,"MatPartitioningChacoSetEigenNumber_C",(MatPartitioning,PetscInt),(part,num));
627:   return(0);
628: }

632: PetscErrorCode MatPartitioningChacoSetEigenNumber_Chaco(MatPartitioning part,PetscInt num)
633: {
634:   MatPartitioning_Chaco *chaco = (MatPartitioning_Chaco*)part->data;

637:   if (num==PETSC_DEFAULT) chaco->eignum = 1;
638:   else {
639:     if (num<1 || num>3) SETERRQ(PetscObjectComm((PetscObject)part),PETSC_ERR_ARG_OUTOFRANGE,"Can only specify 1, 2 or 3 eigenvectors");
640:     chaco->eignum = num;
641:   }
642:   return(0);
643: }

647: /*@
648:    MatPartitioningChacoGetEigenNumber - Gets the number of eigenvectors used by Chaco.

650:    Not Collective

652:    Input Parameter:
653: .  part - the partitioning context

655:    Output Parameter:
656: .  num  - number of eigenvectors

658:    Level: advanced

660: .seealso: MatPartitioningChacoSetEigenNumber()
661: @*/
662: PetscErrorCode MatPartitioningChacoGetEigenNumber(MatPartitioning part,PetscInt *num)
663: {

669:   PetscUseMethod(part,"MatPartitioningChacoGetEigenNumber_C",(MatPartitioning,PetscInt*),(part,num));
670:   return(0);
671: }

675: PetscErrorCode MatPartitioningChacoGetEigenNumber_Chaco(MatPartitioning part,PetscInt *num)
676: {
677:   MatPartitioning_Chaco *chaco = (MatPartitioning_Chaco*)part->data;

680:   *num = chaco->eignum;
681:   return(0);
682: }

686: PetscErrorCode MatPartitioningSetFromOptions_Chaco(PetscOptionItems *PetscOptionsObject,MatPartitioning part)
687: {
688:   PetscErrorCode        ierr;
689:   PetscInt              i;
690:   PetscReal             r;
691:   PetscBool             flag;
692:   MatPartitioning_Chaco *chaco = (MatPartitioning_Chaco*)part->data;
693:   MPChacoGlobalType     global;
694:   MPChacoLocalType      local;
695:   MPChacoEigenType      eigen;

698:   PetscOptionsHead(PetscOptionsObject,"Chaco partitioning options");
699:   PetscOptionsEnum("-mat_partitioning_chaco_global","Global method","MatPartitioningChacoSetGlobal",MPChacoGlobalTypes,(PetscEnum)chaco->global_method,(PetscEnum*)&global,&flag);
700:   if (flag) { MatPartitioningChacoSetGlobal(part,global); }
701:   PetscOptionsEnum("-mat_partitioning_chaco_local","Local method","MatPartitioningChacoSetLocal",MPChacoLocalTypes,(PetscEnum)chaco->local_method,(PetscEnum*)&local,&flag);
702:   if (flag) { MatPartitioningChacoSetLocal(part,local); }
703:   PetscOptionsReal("-mat_partitioning_chaco_coarse","Coarse level","MatPartitioningChacoSetCoarseLevel",0.0,&r,&flag);
704:   if (flag) { MatPartitioningChacoSetCoarseLevel(part,r); }
705:   PetscOptionsEnum("-mat_partitioning_chaco_eigen_solver","Eigensolver method","MatPartitioningChacoSetEigenSolver",MPChacoEigenTypes,(PetscEnum)chaco->eigen_method,(PetscEnum*)&eigen,&flag);
706:   if (flag) { MatPartitioningChacoSetEigenSolver(part,eigen); }
707:   PetscOptionsReal("-mat_partitioning_chaco_eigen_tol","Eigensolver tolerance","MatPartitioningChacoSetEigenTol",chaco->eigtol,&r,&flag);
708:   if (flag) { MatPartitioningChacoSetEigenTol(part,r); }
709:   PetscOptionsInt("-mat_partitioning_chaco_eigen_number","Number of eigenvectors: 1, 2, or 3 (bi-, quadri-, or octosection)","MatPartitioningChacoSetEigenNumber",chaco->eignum,&i,&flag);
710:   if (flag) { MatPartitioningChacoSetEigenNumber(part,i); }
711:   PetscOptionsBool("-mat_partitioning_chaco_verbose","Show library output","",chaco->verbose,&chaco->verbose,NULL);
712:   PetscOptionsTail();
713:   return(0);
714: }

718: PetscErrorCode MatPartitioningDestroy_Chaco(MatPartitioning part)
719: {
720:   MatPartitioning_Chaco *chaco = (MatPartitioning_Chaco*) part->data;
721:   PetscErrorCode        ierr;

724:   PetscFree(chaco);
725:   /* clear composed functions */
726:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoSetGlobal_C",NULL);
727:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoGetGlobal_C",NULL);
728:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoSetLocal_C",NULL);
729:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoGetLocal_C",NULL);
730:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoSetCoarseLevel_C",NULL);
731:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoSetEigenSolver_C",NULL);
732:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoGetEigenSolver_C",NULL);
733:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoSetEigenTol_C",NULL);
734:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoGetEigenTol_C",NULL);
735:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoSetEigenNumber_C",NULL);
736:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoGetEigenNumber_C",NULL);
737:   return(0);
738: }

740: /*MC
741:    MATPARTITIONINGCHACO - Creates a partitioning context via the external package Chaco.

743:    Level: beginner

745:    Notes: See http://www.cs.sandia.gov/CRF/chac.html

747: .keywords: Partitioning, create, context

749: .seealso: MatPartitioningSetType(), MatPartitioningType
750: M*/

754: PETSC_EXTERN PetscErrorCode MatPartitioningCreate_Chaco(MatPartitioning part)
755: {
756:   PetscErrorCode        ierr;
757:   MatPartitioning_Chaco *chaco;

760:   PetscNewLog(part,&chaco);
761:   part->data = (void*)chaco;

763:   chaco->global_method = MP_CHACO_MULTILEVEL;
764:   chaco->local_method  = MP_CHACO_KERNIGHAN;
765:   chaco->eigen_method  = MP_CHACO_LANCZOS;
766:   chaco->nbvtxcoarsed  = 200;
767:   chaco->eignum        = 1;
768:   chaco->eigtol        = 0.001;
769:   chaco->verbose       = PETSC_FALSE;

771:   part->ops->apply          = MatPartitioningApply_Chaco;
772:   part->ops->view           = MatPartitioningView_Chaco;
773:   part->ops->destroy        = MatPartitioningDestroy_Chaco;
774:   part->ops->setfromoptions = MatPartitioningSetFromOptions_Chaco;

776:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoSetGlobal_C",MatPartitioningChacoSetGlobal_Chaco);
777:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoGetGlobal_C",MatPartitioningChacoGetGlobal_Chaco);
778:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoSetLocal_C",MatPartitioningChacoSetLocal_Chaco);
779:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoGetLocal_C",MatPartitioningChacoGetLocal_Chaco);
780:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoSetCoarseLevel_C",MatPartitioningChacoSetCoarseLevel_Chaco);
781:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoSetEigenSolver_C",MatPartitioningChacoSetEigenSolver_Chaco);
782:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoGetEigenSolver_C",MatPartitioningChacoGetEigenSolver_Chaco);
783:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoSetEigenTol_C",MatPartitioningChacoSetEigenTol_Chaco);
784:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoGetEigenTol_C",MatPartitioningChacoGetEigenTol_Chaco);
785:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoSetEigenNumber_C",MatPartitioningChacoSetEigenNumber_Chaco);
786:   PetscObjectComposeFunction((PetscObject)part,"MatPartitioningChacoGetEigenNumber_C",MatPartitioningChacoGetEigenNumber_Chaco);
787:   return(0);
788: }