Actual source code: nls.c

petsc-3.7.5 2017-01-01
Report Typos and Errors
  1: #include <petsctaolinesearch.h>
  2: #include <../src/tao/matrix/lmvmmat.h>
  3: #include <../src/tao/unconstrained/impls/nls/nls.h>

  5: #include <petscksp.h>
  6: #include <petscpc.h>
  7: #include <petsc/private/kspimpl.h>
  8: #include <petsc/private/pcimpl.h>

 10: #define NLS_KSP_CG      0
 11: #define NLS_KSP_NASH    1
 12: #define NLS_KSP_STCG    2
 13: #define NLS_KSP_GLTR    3
 14: #define NLS_KSP_PETSC   4
 15: #define NLS_KSP_TYPES   5

 17: #define NLS_PC_NONE     0
 18: #define NLS_PC_AHESS    1
 19: #define NLS_PC_BFGS     2
 20: #define NLS_PC_PETSC    3
 21: #define NLS_PC_TYPES    4

 23: #define BFGS_SCALE_AHESS        0
 24: #define BFGS_SCALE_PHESS        1
 25: #define BFGS_SCALE_BFGS         2
 26: #define BFGS_SCALE_TYPES        3

 28: #define NLS_INIT_CONSTANT         0
 29: #define NLS_INIT_DIRECTION        1
 30: #define NLS_INIT_INTERPOLATION    2
 31: #define NLS_INIT_TYPES            3

 33: #define NLS_UPDATE_STEP           0
 34: #define NLS_UPDATE_REDUCTION      1
 35: #define NLS_UPDATE_INTERPOLATION  2
 36: #define NLS_UPDATE_TYPES          3

 38: static const char *NLS_KSP[64] = {"cg", "nash", "stcg", "gltr", "petsc"};

 40: static const char *NLS_PC[64] = {"none", "ahess", "bfgs", "petsc"};

 42: static const char *BFGS_SCALE[64] = {"ahess", "phess", "bfgs"};

 44: static const char *NLS_INIT[64] = {"constant", "direction", "interpolation"};

 46: static const char *NLS_UPDATE[64] = {"step", "reduction", "interpolation"};

 48: static PetscErrorCode MatLMVMSolveShell(PC pc, Vec b, Vec x);
 49: /* Routine for BFGS preconditioner


 52:  Implements Newton's Method with a line search approach for solving
 53:  unconstrained minimization problems.  A More'-Thuente line search
 54:  is used to guarantee that the bfgs preconditioner remains positive
 55:  definite.

 57:  The method can shift the Hessian matrix.  The shifting procedure is
 58:  adapted from the PATH algorithm for solving complementarity
 59:  problems.

 61:  The linear system solve should be done with a conjugate gradient
 62:  method, although any method can be used. */

 64: #define NLS_NEWTON              0
 65: #define NLS_BFGS                1
 66: #define NLS_SCALED_GRADIENT     2
 67: #define NLS_GRADIENT            3

 71: static PetscErrorCode TaoSolve_NLS(Tao tao)
 72: {
 73:   PetscErrorCode               ierr;
 74:   TAO_NLS                      *nlsP = (TAO_NLS *)tao->data;
 75:   PC                           pc;
 76:   KSPConvergedReason           ksp_reason;
 77:   TaoLineSearchConvergedReason ls_reason;
 78:   TaoConvergedReason           reason;

 80:   PetscReal                    fmin, ftrial, f_full, prered, actred, kappa, sigma;
 81:   PetscReal                    tau, tau_1, tau_2, tau_max, tau_min, max_radius;
 82:   PetscReal                    f, fold, gdx, gnorm, pert;
 83:   PetscReal                    step = 1.0;
 84:   PetscReal                    delta;
 85:   PetscReal                    norm_d = 0.0, e_min;

 87:   PetscInt                     stepType;
 88:   PetscInt                     bfgsUpdates = 0;
 89:   PetscInt                     n,N,kspits;
 90:   PetscInt                     needH = 1;

 92:   PetscInt                     i_max = 5;
 93:   PetscInt                     j_max = 1;
 94:   PetscInt                     i, j;

 97:   if (tao->XL || tao->XU || tao->ops->computebounds) {
 98:     PetscPrintf(((PetscObject)tao)->comm,"WARNING: Variable bounds have been set but will be ignored by nls algorithm\n");
 99:   }

101:   /* Initialized variables */
102:   pert = nlsP->sval;

104:   /* Number of times ksp stopped because of these reasons */
105:   nlsP->ksp_atol = 0;
106:   nlsP->ksp_rtol = 0;
107:   nlsP->ksp_dtol = 0;
108:   nlsP->ksp_ctol = 0;
109:   nlsP->ksp_negc = 0;
110:   nlsP->ksp_iter = 0;
111:   nlsP->ksp_othr = 0;

113:   /* Modify the linear solver to a trust region method if desired */
114:   switch(nlsP->ksp_type) {
115:   case NLS_KSP_CG:
116:     KSPSetType(tao->ksp, KSPCG);
117:     KSPSetFromOptions(tao->ksp);
118:     break;

120:   case NLS_KSP_NASH:
121:     KSPSetType(tao->ksp, KSPNASH);
122:     KSPSetFromOptions(tao->ksp);
123:     break;

125:   case NLS_KSP_STCG:
126:     KSPSetType(tao->ksp, KSPSTCG);
127:     KSPSetFromOptions(tao->ksp);
128:     break;

130:   case NLS_KSP_GLTR:
131:     KSPSetType(tao->ksp, KSPGLTR);
132:     KSPSetFromOptions(tao->ksp);
133:     break;

135:   default:
136:     /* Use the method set by the ksp_type */
137:     break;
138:   }

140:   /* Initialize trust-region radius when using nash, stcg, or gltr
141:    Will be reset during the first iteration */
142:   if (NLS_KSP_NASH == nlsP->ksp_type) {
143:     KSPNASHSetRadius(tao->ksp,nlsP->max_radius);
144:   } else if (NLS_KSP_STCG == nlsP->ksp_type) {
145:     KSPSTCGSetRadius(tao->ksp,nlsP->max_radius);
146:   } else if (NLS_KSP_GLTR == nlsP->ksp_type) {
147:     KSPGLTRSetRadius(tao->ksp,nlsP->max_radius);
148:   }

150:   if (NLS_KSP_NASH == nlsP->ksp_type || NLS_KSP_STCG == nlsP->ksp_type || NLS_KSP_GLTR == nlsP->ksp_type) {
151:     tao->trust = tao->trust0;

153:     if (tao->trust < 0.0) SETERRQ(PETSC_COMM_SELF,1, "Initial radius negative");

155:     /* Modify the radius if it is too large or small */
156:     tao->trust = PetscMax(tao->trust, nlsP->min_radius);
157:     tao->trust = PetscMin(tao->trust, nlsP->max_radius);
158:   }

160:   /* Get vectors we will need */
161:   if (NLS_PC_BFGS == nlsP->pc_type && !nlsP->M) {
162:     VecGetLocalSize(tao->solution,&n);
163:     VecGetSize(tao->solution,&N);
164:     MatCreateLMVM(((PetscObject)tao)->comm,n,N,&nlsP->M);
165:     MatLMVMAllocateVectors(nlsP->M,tao->solution);
166:   }

168:   /* Check convergence criteria */
169:   TaoComputeObjectiveAndGradient(tao, tao->solution, &f, tao->gradient);
170:   TaoGradientNorm(tao, tao->gradient,NORM_2,&gnorm);
171:   if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute function generated Inf or NaN");

173:   TaoMonitor(tao, tao->niter, f, gnorm, 0.0, 1.0, &reason);
174:   if (reason != TAO_CONTINUE_ITERATING) return(0);

176:   /* create vectors for the limited memory preconditioner */
177:   if ((NLS_PC_BFGS == nlsP->pc_type) && (BFGS_SCALE_BFGS != nlsP->bfgs_scale_type)) {
178:     if (!nlsP->Diag) {
179:       VecDuplicate(tao->solution,&nlsP->Diag);
180:     }
181:   }

183:   /* Modify the preconditioner to use the bfgs approximation */
184:   KSPGetPC(tao->ksp, &pc);
185:   switch(nlsP->pc_type) {
186:   case NLS_PC_NONE:
187:     PCSetType(pc, PCNONE);
188:     PCSetFromOptions(pc);
189:     break;

191:   case NLS_PC_AHESS:
192:     PCSetType(pc, PCJACOBI);
193:     PCSetFromOptions(pc);
194:     PCJacobiSetUseAbs(pc,PETSC_TRUE);
195:     break;

197:   case NLS_PC_BFGS:
198:     PCSetType(pc, PCSHELL);
199:     PCSetFromOptions(pc);
200:     PCShellSetName(pc, "bfgs");
201:     PCShellSetContext(pc, nlsP->M);
202:     PCShellSetApply(pc, MatLMVMSolveShell);
203:     break;

205:   default:
206:     /* Use the pc method set by pc_type */
207:     break;
208:   }

210:   /* Initialize trust-region radius.  The initialization is only performed
211:      when we are using Nash, Steihaug-Toint or the Generalized Lanczos method. */
212:   if (NLS_KSP_NASH == nlsP->ksp_type || NLS_KSP_STCG == nlsP->ksp_type || NLS_KSP_GLTR == nlsP->ksp_type) {
213:     switch(nlsP->init_type) {
214:     case NLS_INIT_CONSTANT:
215:       /* Use the initial radius specified */
216:       break;

218:     case NLS_INIT_INTERPOLATION:
219:       /* Use the initial radius specified */
220:       max_radius = 0.0;

222:       for (j = 0; j < j_max; ++j) {
223:         fmin = f;
224:         sigma = 0.0;

226:         if (needH) {
227:           TaoComputeHessian(tao, tao->solution,tao->hessian,tao->hessian_pre);
228:           needH = 0;
229:         }

231:         for (i = 0; i < i_max; ++i) {
232:           VecCopy(tao->solution,nlsP->W);
233:           VecAXPY(nlsP->W,-tao->trust/gnorm,tao->gradient);
234:           TaoComputeObjective(tao, nlsP->W, &ftrial);
235:           if (PetscIsInfOrNanReal(ftrial)) {
236:             tau = nlsP->gamma1_i;
237:           } else {
238:             if (ftrial < fmin) {
239:               fmin = ftrial;
240:               sigma = -tao->trust / gnorm;
241:             }

243:             MatMult(tao->hessian, tao->gradient, nlsP->D);
244:             VecDot(tao->gradient, nlsP->D, &prered);

246:             prered = tao->trust * (gnorm - 0.5 * tao->trust * prered / (gnorm * gnorm));
247:             actred = f - ftrial;
248:             if ((PetscAbsScalar(actred) <= nlsP->epsilon) && (PetscAbsScalar(prered) <= nlsP->epsilon)) {
249:               kappa = 1.0;
250:             } else {
251:               kappa = actred / prered;
252:             }

254:             tau_1 = nlsP->theta_i * gnorm * tao->trust / (nlsP->theta_i * gnorm * tao->trust + (1.0 - nlsP->theta_i) * prered - actred);
255:             tau_2 = nlsP->theta_i * gnorm * tao->trust / (nlsP->theta_i * gnorm * tao->trust - (1.0 + nlsP->theta_i) * prered + actred);
256:             tau_min = PetscMin(tau_1, tau_2);
257:             tau_max = PetscMax(tau_1, tau_2);

259:             if (PetscAbsScalar(kappa - 1.0) <= nlsP->mu1_i) {
260:               /* Great agreement */
261:               max_radius = PetscMax(max_radius, tao->trust);

263:               if (tau_max < 1.0) {
264:                 tau = nlsP->gamma3_i;
265:               } else if (tau_max > nlsP->gamma4_i) {
266:                 tau = nlsP->gamma4_i;
267:               } else if (tau_1 >= 1.0 && tau_1 <= nlsP->gamma4_i && tau_2 < 1.0) {
268:                 tau = tau_1;
269:               } else if (tau_2 >= 1.0 && tau_2 <= nlsP->gamma4_i && tau_1 < 1.0) {
270:                 tau = tau_2;
271:               } else {
272:                 tau = tau_max;
273:               }
274:             } else if (PetscAbsScalar(kappa - 1.0) <= nlsP->mu2_i) {
275:               /* Good agreement */
276:               max_radius = PetscMax(max_radius, tao->trust);

278:               if (tau_max < nlsP->gamma2_i) {
279:                 tau = nlsP->gamma2_i;
280:               } else if (tau_max > nlsP->gamma3_i) {
281:                 tau = nlsP->gamma3_i;
282:               } else {
283:                 tau = tau_max;
284:               }
285:             } else {
286:               /* Not good agreement */
287:               if (tau_min > 1.0) {
288:                 tau = nlsP->gamma2_i;
289:               } else if (tau_max < nlsP->gamma1_i) {
290:                 tau = nlsP->gamma1_i;
291:               } else if ((tau_min < nlsP->gamma1_i) && (tau_max >= 1.0)) {
292:                 tau = nlsP->gamma1_i;
293:               } else if ((tau_1 >= nlsP->gamma1_i) && (tau_1 < 1.0) && ((tau_2 < nlsP->gamma1_i) || (tau_2 >= 1.0))) {
294:                 tau = tau_1;
295:               } else if ((tau_2 >= nlsP->gamma1_i) && (tau_2 < 1.0) && ((tau_1 < nlsP->gamma1_i) || (tau_2 >= 1.0))) {
296:                 tau = tau_2;
297:               } else {
298:                 tau = tau_max;
299:               }
300:             }
301:           }
302:           tao->trust = tau * tao->trust;
303:         }

305:         if (fmin < f) {
306:           f = fmin;
307:           VecAXPY(tao->solution,sigma,tao->gradient);
308:           TaoComputeGradient(tao,tao->solution,tao->gradient);

310:           TaoGradientNorm(tao, tao->gradient,NORM_2,&gnorm);
311:           if (PetscIsInfOrNanReal(gnorm)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute gradient generated Inf or NaN");
312:           needH = 1;

314:           TaoMonitor(tao, tao->niter, f, gnorm, 0.0, 1.0, &reason);
315:           if (reason != TAO_CONTINUE_ITERATING) return(0);
316:         }
317:       }
318:       tao->trust = PetscMax(tao->trust, max_radius);

320:       /* Modify the radius if it is too large or small */
321:       tao->trust = PetscMax(tao->trust, nlsP->min_radius);
322:       tao->trust = PetscMin(tao->trust, nlsP->max_radius);
323:       break;

325:     default:
326:       /* Norm of the first direction will initialize radius */
327:       tao->trust = 0.0;
328:       break;
329:     }
330:   }

332:   /* Set initial scaling for the BFGS preconditioner
333:      This step is done after computing the initial trust-region radius
334:      since the function value may have decreased */
335:   if (NLS_PC_BFGS == nlsP->pc_type) {
336:     if (f != 0.0) {
337:       delta = 2.0 * PetscAbsScalar(f) / (gnorm*gnorm);
338:     } else {
339:       delta = 2.0 / (gnorm*gnorm);
340:     }
341:     MatLMVMSetDelta(nlsP->M,delta);
342:   }

344:   /* Set counter for gradient/reset steps*/
345:   nlsP->newt = 0;
346:   nlsP->bfgs = 0;
347:   nlsP->sgrad = 0;
348:   nlsP->grad = 0;

350:   /* Have not converged; continue with Newton method */
351:   while (reason == TAO_CONTINUE_ITERATING) {
352:     ++tao->niter;
353:     tao->ksp_its=0;

355:     /* Compute the Hessian */
356:     if (needH) {
357:       TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);
358:     }

360:     if ((NLS_PC_BFGS == nlsP->pc_type) && (BFGS_SCALE_AHESS == nlsP->bfgs_scale_type)) {
361:       /* Obtain diagonal for the bfgs preconditioner  */
362:       MatGetDiagonal(tao->hessian, nlsP->Diag);
363:       VecAbs(nlsP->Diag);
364:       VecReciprocal(nlsP->Diag);
365:       MatLMVMSetScale(nlsP->M,nlsP->Diag);
366:     }

368:     /* Shift the Hessian matrix */
369:     if (pert > 0) {
370:       MatShift(tao->hessian, pert);
371:       if (tao->hessian != tao->hessian_pre) {
372:         MatShift(tao->hessian_pre, pert);
373:       }
374:     }

376:     if (NLS_PC_BFGS == nlsP->pc_type) {
377:       if (BFGS_SCALE_PHESS == nlsP->bfgs_scale_type) {
378:         /* Obtain diagonal for the bfgs preconditioner  */
379:         MatGetDiagonal(tao->hessian, nlsP->Diag);
380:         VecAbs(nlsP->Diag);
381:         VecReciprocal(nlsP->Diag);
382:         MatLMVMSetScale(nlsP->M,nlsP->Diag);
383:       }
384:       /* Update the limited memory preconditioner */
385:       MatLMVMUpdate(nlsP->M, tao->solution, tao->gradient);
386:       ++bfgsUpdates;
387:     }

389:     /* Solve the Newton system of equations */
390:     KSPSetOperators(tao->ksp,tao->hessian,tao->hessian_pre);
391:     if (NLS_KSP_NASH == nlsP->ksp_type || NLS_KSP_STCG == nlsP->ksp_type ||  NLS_KSP_GLTR == nlsP->ksp_type) {

393:       if (NLS_KSP_NASH == nlsP->ksp_type) {
394:         KSPNASHSetRadius(tao->ksp,nlsP->max_radius);
395:       } else if (NLS_KSP_STCG == nlsP->ksp_type) {
396:          KSPSTCGSetRadius(tao->ksp,nlsP->max_radius);
397:       } else if (NLS_KSP_GLTR == nlsP->ksp_type) {
398:         KSPGLTRSetRadius(tao->ksp,nlsP->max_radius);
399:       }

401:       KSPSolve(tao->ksp, tao->gradient, nlsP->D);
402:       KSPGetIterationNumber(tao->ksp,&kspits);
403:       tao->ksp_its+=kspits;
404:       tao->ksp_tot_its+=kspits;

406:       if (NLS_KSP_NASH == nlsP->ksp_type) {
407:         KSPNASHGetNormD(tao->ksp,&norm_d);
408:       } else if (NLS_KSP_STCG == nlsP->ksp_type) {
409:          KSPSTCGGetNormD(tao->ksp,&norm_d);
410:       } else if (NLS_KSP_GLTR == nlsP->ksp_type) {
411:         KSPGLTRGetNormD(tao->ksp,&norm_d);
412:       }

414:       if (0.0 == tao->trust) {
415:         /* Radius was uninitialized; use the norm of the direction */
416:         if (norm_d > 0.0) {
417:           tao->trust = norm_d;

419:           /* Modify the radius if it is too large or small */
420:           tao->trust = PetscMax(tao->trust, nlsP->min_radius);
421:           tao->trust = PetscMin(tao->trust, nlsP->max_radius);
422:         } else {
423:           /* The direction was bad; set radius to default value and re-solve
424:              the trust-region subproblem to get a direction */
425:           tao->trust = tao->trust0;

427:           /* Modify the radius if it is too large or small */
428:           tao->trust = PetscMax(tao->trust, nlsP->min_radius);
429:           tao->trust = PetscMin(tao->trust, nlsP->max_radius);

431:           if (NLS_KSP_NASH == nlsP->ksp_type) {
432:             KSPNASHSetRadius(tao->ksp,nlsP->max_radius);
433:           } else if (NLS_KSP_STCG == nlsP->ksp_type) {
434:             KSPSTCGSetRadius(tao->ksp,nlsP->max_radius);
435:           } else if (NLS_KSP_GLTR == nlsP->ksp_type) {
436:             KSPGLTRSetRadius(tao->ksp,nlsP->max_radius);
437:           }

439:           KSPSolve(tao->ksp, tao->gradient, nlsP->D);
440:           KSPGetIterationNumber(tao->ksp,&kspits);
441:           tao->ksp_its+=kspits;
442:           tao->ksp_tot_its+=kspits;
443:           if (NLS_KSP_NASH == nlsP->ksp_type) {
444:             KSPNASHGetNormD(tao->ksp,&norm_d);
445:           } else if (NLS_KSP_STCG == nlsP->ksp_type) {
446:             KSPSTCGGetNormD(tao->ksp,&norm_d);
447:           } else if (NLS_KSP_GLTR == nlsP->ksp_type) {
448:             KSPGLTRGetNormD(tao->ksp,&norm_d);
449:           }

451:           if (norm_d == 0.0) SETERRQ(PETSC_COMM_SELF,1, "Initial direction zero");
452:         }
453:       }
454:     } else {
455:       KSPSolve(tao->ksp, tao->gradient, nlsP->D);
456:       KSPGetIterationNumber(tao->ksp, &kspits);
457:       tao->ksp_its += kspits;
458:       tao->ksp_tot_its+=kspits;
459:     }
460:     VecScale(nlsP->D, -1.0);
461:     KSPGetConvergedReason(tao->ksp, &ksp_reason);
462:     if ((KSP_DIVERGED_INDEFINITE_PC == ksp_reason) &&  (NLS_PC_BFGS == nlsP->pc_type) && (bfgsUpdates > 1)) {
463:       /* Preconditioner is numerically indefinite; reset the
464:          approximate if using BFGS preconditioning. */

466:       if (f != 0.0) {
467:         delta = 2.0 * PetscAbsScalar(f) / (gnorm*gnorm);
468:       } else {
469:         delta = 2.0 / (gnorm*gnorm);
470:       }
471:       MatLMVMSetDelta(nlsP->M,delta);
472:       MatLMVMReset(nlsP->M);
473:       MatLMVMUpdate(nlsP->M, tao->solution, tao->gradient);
474:       bfgsUpdates = 1;
475:     }

477:     if (KSP_CONVERGED_ATOL == ksp_reason) {
478:       ++nlsP->ksp_atol;
479:     } else if (KSP_CONVERGED_RTOL == ksp_reason) {
480:       ++nlsP->ksp_rtol;
481:     } else if (KSP_CONVERGED_CG_CONSTRAINED == ksp_reason) {
482:       ++nlsP->ksp_ctol;
483:     } else if (KSP_CONVERGED_CG_NEG_CURVE == ksp_reason) {
484:       ++nlsP->ksp_negc;
485:     } else if (KSP_DIVERGED_DTOL == ksp_reason) {
486:       ++nlsP->ksp_dtol;
487:     } else if (KSP_DIVERGED_ITS == ksp_reason) {
488:       ++nlsP->ksp_iter;
489:     } else {
490:       ++nlsP->ksp_othr;
491:     }

493:     /* Check for success (descent direction) */
494:     VecDot(nlsP->D, tao->gradient, &gdx);
495:     if ((gdx >= 0.0) || PetscIsInfOrNanReal(gdx)) {
496:       /* Newton step is not descent or direction produced Inf or NaN
497:          Update the perturbation for next time */
498:       if (pert <= 0.0) {
499:         /* Initialize the perturbation */
500:         pert = PetscMin(nlsP->imax, PetscMax(nlsP->imin, nlsP->imfac * gnorm));
501:         if (NLS_KSP_GLTR == nlsP->ksp_type) {
502:           KSPGLTRGetMinEig(tao->ksp,&e_min);
503:           pert = PetscMax(pert, -e_min);
504:         }
505:       } else {
506:         /* Increase the perturbation */
507:         pert = PetscMin(nlsP->pmax, PetscMax(nlsP->pgfac * pert, nlsP->pmgfac * gnorm));
508:       }

510:       if (NLS_PC_BFGS != nlsP->pc_type) {
511:         /* We don't have the bfgs matrix around and updated
512:            Must use gradient direction in this case */
513:         VecCopy(tao->gradient, nlsP->D);
514:         VecScale(nlsP->D, -1.0);
515:         ++nlsP->grad;
516:         stepType = NLS_GRADIENT;
517:       } else {
518:         /* Attempt to use the BFGS direction */
519:         MatLMVMSolve(nlsP->M, tao->gradient, nlsP->D);
520:         VecScale(nlsP->D, -1.0);

522:         /* Check for success (descent direction) */
523:         VecDot(tao->gradient, nlsP->D, &gdx);
524:         if ((gdx >= 0) || PetscIsInfOrNanReal(gdx)) {
525:           /* BFGS direction is not descent or direction produced not a number
526:              We can assert bfgsUpdates > 1 in this case because
527:              the first solve produces the scaled gradient direction,
528:              which is guaranteed to be descent */

530:           /* Use steepest descent direction (scaled) */

532:           if (f != 0.0) {
533:             delta = 2.0 * PetscAbsScalar(f) / (gnorm*gnorm);
534:           } else {
535:             delta = 2.0 / (gnorm*gnorm);
536:           }
537:           MatLMVMSetDelta(nlsP->M, delta);
538:           MatLMVMReset(nlsP->M);
539:           MatLMVMUpdate(nlsP->M, tao->solution, tao->gradient);
540:           MatLMVMSolve(nlsP->M, tao->gradient, nlsP->D);
541:           VecScale(nlsP->D, -1.0);

543:           bfgsUpdates = 1;
544:           ++nlsP->sgrad;
545:           stepType = NLS_SCALED_GRADIENT;
546:         } else {
547:           if (1 == bfgsUpdates) {
548:             /* The first BFGS direction is always the scaled gradient */
549:             ++nlsP->sgrad;
550:             stepType = NLS_SCALED_GRADIENT;
551:           } else {
552:             ++nlsP->bfgs;
553:             stepType = NLS_BFGS;
554:           }
555:         }
556:       }
557:     } else {
558:       /* Computed Newton step is descent */
559:       switch (ksp_reason) {
560:       case KSP_DIVERGED_NANORINF:
561:       case KSP_DIVERGED_BREAKDOWN:
562:       case KSP_DIVERGED_INDEFINITE_MAT:
563:       case KSP_DIVERGED_INDEFINITE_PC:
564:       case KSP_CONVERGED_CG_NEG_CURVE:
565:         /* Matrix or preconditioner is indefinite; increase perturbation */
566:         if (pert <= 0.0) {
567:           /* Initialize the perturbation */
568:           pert = PetscMin(nlsP->imax, PetscMax(nlsP->imin, nlsP->imfac * gnorm));
569:           if (NLS_KSP_GLTR == nlsP->ksp_type) {
570:             KSPGLTRGetMinEig(tao->ksp, &e_min);
571:             pert = PetscMax(pert, -e_min);
572:           }
573:         } else {
574:           /* Increase the perturbation */
575:           pert = PetscMin(nlsP->pmax, PetscMax(nlsP->pgfac * pert, nlsP->pmgfac * gnorm));
576:         }
577:         break;

579:       default:
580:         /* Newton step computation is good; decrease perturbation */
581:         pert = PetscMin(nlsP->psfac * pert, nlsP->pmsfac * gnorm);
582:         if (pert < nlsP->pmin) {
583:           pert = 0.0;
584:         }
585:         break;
586:       }

588:       ++nlsP->newt;
589:       stepType = NLS_NEWTON;
590:     }

592:     /* Perform the linesearch */
593:     fold = f;
594:     VecCopy(tao->solution, nlsP->Xold);
595:     VecCopy(tao->gradient, nlsP->Gold);

597:     TaoLineSearchApply(tao->linesearch, tao->solution, &f, tao->gradient, nlsP->D, &step, &ls_reason);
598:     TaoAddLineSearchCounts(tao);

600:     while (ls_reason != TAOLINESEARCH_SUCCESS && ls_reason != TAOLINESEARCH_SUCCESS_USER && stepType != NLS_GRADIENT) {      /* Linesearch failed */
601:       f = fold;
602:       VecCopy(nlsP->Xold, tao->solution);
603:       VecCopy(nlsP->Gold, tao->gradient);

605:       switch(stepType) {
606:       case NLS_NEWTON:
607:         /* Failed to obtain acceptable iterate with Newton 1step
608:            Update the perturbation for next time */
609:         if (pert <= 0.0) {
610:           /* Initialize the perturbation */
611:           pert = PetscMin(nlsP->imax, PetscMax(nlsP->imin, nlsP->imfac * gnorm));
612:           if (NLS_KSP_GLTR == nlsP->ksp_type) {
613:             KSPGLTRGetMinEig(tao->ksp,&e_min);
614:             pert = PetscMax(pert, -e_min);
615:           }
616:         } else {
617:           /* Increase the perturbation */
618:           pert = PetscMin(nlsP->pmax, PetscMax(nlsP->pgfac * pert, nlsP->pmgfac * gnorm));
619:         }

621:         if (NLS_PC_BFGS != nlsP->pc_type) {
622:           /* We don't have the bfgs matrix around and being updated
623:              Must use gradient direction in this case */
624:           VecCopy(tao->gradient, nlsP->D);
625:           ++nlsP->grad;
626:           stepType = NLS_GRADIENT;
627:         } else {
628:           /* Attempt to use the BFGS direction */
629:           MatLMVMSolve(nlsP->M, tao->gradient, nlsP->D);
630:           /* Check for success (descent direction) */
631:           VecDot(tao->solution, nlsP->D, &gdx);
632:           if ((gdx <= 0) || PetscIsInfOrNanReal(gdx)) {
633:             /* BFGS direction is not descent or direction produced not a number
634:                We can assert bfgsUpdates > 1 in this case
635:                Use steepest descent direction (scaled) */

637:             if (f != 0.0) {
638:               delta = 2.0 * PetscAbsScalar(f) / (gnorm*gnorm);
639:             } else {
640:               delta = 2.0 / (gnorm*gnorm);
641:             }
642:             MatLMVMSetDelta(nlsP->M, delta);
643:             MatLMVMReset(nlsP->M);
644:             MatLMVMUpdate(nlsP->M, tao->solution, tao->gradient);
645:             MatLMVMSolve(nlsP->M, tao->gradient, nlsP->D);

647:             bfgsUpdates = 1;
648:             ++nlsP->sgrad;
649:             stepType = NLS_SCALED_GRADIENT;
650:           } else {
651:             if (1 == bfgsUpdates) {
652:               /* The first BFGS direction is always the scaled gradient */
653:               ++nlsP->sgrad;
654:               stepType = NLS_SCALED_GRADIENT;
655:             } else {
656:               ++nlsP->bfgs;
657:               stepType = NLS_BFGS;
658:             }
659:           }
660:         }
661:         break;

663:       case NLS_BFGS:
664:         /* Can only enter if pc_type == NLS_PC_BFGS
665:            Failed to obtain acceptable iterate with BFGS step
666:            Attempt to use the scaled gradient direction */

668:         if (f != 0.0) {
669:           delta = 2.0 * PetscAbsScalar(f) / (gnorm*gnorm);
670:         } else {
671:           delta = 2.0 / (gnorm*gnorm);
672:         }
673:         MatLMVMSetDelta(nlsP->M, delta);
674:         MatLMVMReset(nlsP->M);
675:         MatLMVMUpdate(nlsP->M, tao->solution, tao->gradient);
676:         MatLMVMSolve(nlsP->M, tao->gradient, nlsP->D);

678:         bfgsUpdates = 1;
679:         ++nlsP->sgrad;
680:         stepType = NLS_SCALED_GRADIENT;
681:         break;

683:       case NLS_SCALED_GRADIENT:
684:         /* Can only enter if pc_type == NLS_PC_BFGS
685:            The scaled gradient step did not produce a new iterate;
686:            attemp to use the gradient direction.
687:            Need to make sure we are not using a different diagonal scaling */

689:         MatLMVMSetScale(nlsP->M,0);
690:         MatLMVMSetDelta(nlsP->M,1.0);
691:         MatLMVMReset(nlsP->M);
692:         MatLMVMUpdate(nlsP->M, tao->solution, tao->gradient);
693:         MatLMVMSolve(nlsP->M, tao->gradient, nlsP->D);

695:         bfgsUpdates = 1;
696:         ++nlsP->grad;
697:         stepType = NLS_GRADIENT;
698:         break;
699:       }
700:       VecScale(nlsP->D, -1.0);

702:       TaoLineSearchApply(tao->linesearch, tao->solution, &f, tao->gradient, nlsP->D, &step, &ls_reason);
703:       TaoLineSearchGetFullStepObjective(tao->linesearch, &f_full);
704:       TaoAddLineSearchCounts(tao);
705:     }

707:     if (ls_reason != TAOLINESEARCH_SUCCESS && ls_reason != TAOLINESEARCH_SUCCESS_USER) {
708:       /* Failed to find an improving point */
709:       f = fold;
710:       VecCopy(nlsP->Xold, tao->solution);
711:       VecCopy(nlsP->Gold, tao->gradient);
712:       step = 0.0;
713:       reason = TAO_DIVERGED_LS_FAILURE;
714:       tao->reason = TAO_DIVERGED_LS_FAILURE;
715:       break;
716:     }

718:     /* Update trust region radius */
719:     if (NLS_KSP_NASH == nlsP->ksp_type || NLS_KSP_STCG == nlsP->ksp_type || NLS_KSP_GLTR == nlsP->ksp_type) {
720:       switch(nlsP->update_type) {
721:       case NLS_UPDATE_STEP:
722:         if (stepType == NLS_NEWTON) {
723:           if (step < nlsP->nu1) {
724:             /* Very bad step taken; reduce radius */
725:             tao->trust = nlsP->omega1 * PetscMin(norm_d, tao->trust);
726:           } else if (step < nlsP->nu2) {
727:             /* Reasonably bad step taken; reduce radius */
728:             tao->trust = nlsP->omega2 * PetscMin(norm_d, tao->trust);
729:           } else if (step < nlsP->nu3) {
730:             /*  Reasonable step was taken; leave radius alone */
731:             if (nlsP->omega3 < 1.0) {
732:               tao->trust = nlsP->omega3 * PetscMin(norm_d, tao->trust);
733:             } else if (nlsP->omega3 > 1.0) {
734:               tao->trust = PetscMax(nlsP->omega3 * norm_d, tao->trust);
735:             }
736:           } else if (step < nlsP->nu4) {
737:             /*  Full step taken; increase the radius */
738:             tao->trust = PetscMax(nlsP->omega4 * norm_d, tao->trust);
739:           } else {
740:             /*  More than full step taken; increase the radius */
741:             tao->trust = PetscMax(nlsP->omega5 * norm_d, tao->trust);
742:           }
743:         } else {
744:           /*  Newton step was not good; reduce the radius */
745:           tao->trust = nlsP->omega1 * PetscMin(norm_d, tao->trust);
746:         }
747:         break;

749:       case NLS_UPDATE_REDUCTION:
750:         if (stepType == NLS_NEWTON) {
751:           /*  Get predicted reduction */

753:           if (NLS_KSP_STCG == nlsP->ksp_type) {
754:             KSPSTCGGetObjFcn(tao->ksp,&prered);
755:           } else if (NLS_KSP_NASH == nlsP->ksp_type)  {
756:             KSPNASHGetObjFcn(tao->ksp,&prered);
757:           } else {
758:             KSPGLTRGetObjFcn(tao->ksp,&prered);
759:           }

761:           if (prered >= 0.0) {
762:             /*  The predicted reduction has the wrong sign.  This cannot */
763:             /*  happen in infinite precision arithmetic.  Step should */
764:             /*  be rejected! */
765:             tao->trust = nlsP->alpha1 * PetscMin(tao->trust, norm_d);
766:           } else {
767:             if (PetscIsInfOrNanReal(f_full)) {
768:               tao->trust = nlsP->alpha1 * PetscMin(tao->trust, norm_d);
769:             } else {
770:               /*  Compute and actual reduction */
771:               actred = fold - f_full;
772:               prered = -prered;
773:               if ((PetscAbsScalar(actred) <= nlsP->epsilon) &&
774:                   (PetscAbsScalar(prered) <= nlsP->epsilon)) {
775:                 kappa = 1.0;
776:               } else {
777:                 kappa = actred / prered;
778:               }

780:               /*  Accept of reject the step and update radius */
781:               if (kappa < nlsP->eta1) {
782:                 /*  Very bad step */
783:                 tao->trust = nlsP->alpha1 * PetscMin(tao->trust, norm_d);
784:               } else if (kappa < nlsP->eta2) {
785:                 /*  Marginal bad step */
786:                 tao->trust = nlsP->alpha2 * PetscMin(tao->trust, norm_d);
787:               } else if (kappa < nlsP->eta3) {
788:                 /*  Reasonable step */
789:                 if (nlsP->alpha3 < 1.0) {
790:                   tao->trust = nlsP->alpha3 * PetscMin(norm_d, tao->trust);
791:                 } else if (nlsP->alpha3 > 1.0) {
792:                   tao->trust = PetscMax(nlsP->alpha3 * norm_d, tao->trust);
793:                 }
794:               } else if (kappa < nlsP->eta4) {
795:                 /*  Good step */
796:                 tao->trust = PetscMax(nlsP->alpha4 * norm_d, tao->trust);
797:               } else {
798:                 /*  Very good step */
799:                 tao->trust = PetscMax(nlsP->alpha5 * norm_d, tao->trust);
800:               }
801:             }
802:           }
803:         } else {
804:           /*  Newton step was not good; reduce the radius */
805:           tao->trust = nlsP->alpha1 * PetscMin(norm_d, tao->trust);
806:         }
807:         break;

809:       default:
810:         if (stepType == NLS_NEWTON) {

812:           if (NLS_KSP_STCG == nlsP->ksp_type) {
813:               KSPSTCGGetObjFcn(tao->ksp,&prered);
814:           } else if (NLS_KSP_NASH == nlsP->ksp_type)  {
815:               KSPNASHGetObjFcn(tao->ksp,&prered);
816:           } else {
817:               KSPGLTRGetObjFcn(tao->ksp,&prered);
818:           }
819:           if (prered >= 0.0) {
820:             /*  The predicted reduction has the wrong sign.  This cannot */
821:             /*  happen in infinite precision arithmetic.  Step should */
822:             /*  be rejected! */
823:             tao->trust = nlsP->gamma1 * PetscMin(tao->trust, norm_d);
824:           } else {
825:             if (PetscIsInfOrNanReal(f_full)) {
826:               tao->trust = nlsP->gamma1 * PetscMin(tao->trust, norm_d);
827:             } else {
828:               actred = fold - f_full;
829:               prered = -prered;
830:               if ((PetscAbsScalar(actred) <= nlsP->epsilon) && (PetscAbsScalar(prered) <= nlsP->epsilon)) {
831:                 kappa = 1.0;
832:               } else {
833:                 kappa = actred / prered;
834:               }

836:               tau_1 = nlsP->theta * gdx / (nlsP->theta * gdx - (1.0 - nlsP->theta) * prered + actred);
837:               tau_2 = nlsP->theta * gdx / (nlsP->theta * gdx + (1.0 + nlsP->theta) * prered - actred);
838:               tau_min = PetscMin(tau_1, tau_2);
839:               tau_max = PetscMax(tau_1, tau_2);

841:               if (kappa >= 1.0 - nlsP->mu1) {
842:                 /*  Great agreement */
843:                 if (tau_max < 1.0) {
844:                   tao->trust = PetscMax(tao->trust, nlsP->gamma3 * norm_d);
845:                 } else if (tau_max > nlsP->gamma4) {
846:                   tao->trust = PetscMax(tao->trust, nlsP->gamma4 * norm_d);
847:                 } else {
848:                   tao->trust = PetscMax(tao->trust, tau_max * norm_d);
849:                 }
850:               } else if (kappa >= 1.0 - nlsP->mu2) {
851:                 /*  Good agreement */

853:                 if (tau_max < nlsP->gamma2) {
854:                   tao->trust = nlsP->gamma2 * PetscMin(tao->trust, norm_d);
855:                 } else if (tau_max > nlsP->gamma3) {
856:                   tao->trust = PetscMax(tao->trust, nlsP->gamma3 * norm_d);
857:                 } else if (tau_max < 1.0) {
858:                   tao->trust = tau_max * PetscMin(tao->trust, norm_d);
859:                 } else {
860:                   tao->trust = PetscMax(tao->trust, tau_max * norm_d);
861:                 }
862:               } else {
863:                 /*  Not good agreement */
864:                 if (tau_min > 1.0) {
865:                   tao->trust = nlsP->gamma2 * PetscMin(tao->trust, norm_d);
866:                 } else if (tau_max < nlsP->gamma1) {
867:                   tao->trust = nlsP->gamma1 * PetscMin(tao->trust, norm_d);
868:                 } else if ((tau_min < nlsP->gamma1) && (tau_max >= 1.0)) {
869:                   tao->trust = nlsP->gamma1 * PetscMin(tao->trust, norm_d);
870:                 } else if ((tau_1 >= nlsP->gamma1) && (tau_1 < 1.0) && ((tau_2 < nlsP->gamma1) || (tau_2 >= 1.0))) {
871:                   tao->trust = tau_1 * PetscMin(tao->trust, norm_d);
872:                 } else if ((tau_2 >= nlsP->gamma1) && (tau_2 < 1.0) && ((tau_1 < nlsP->gamma1) || (tau_2 >= 1.0))) {
873:                   tao->trust = tau_2 * PetscMin(tao->trust, norm_d);
874:                 } else {
875:                   tao->trust = tau_max * PetscMin(tao->trust, norm_d);
876:                 }
877:               }
878:             }
879:           }
880:         } else {
881:           /*  Newton step was not good; reduce the radius */
882:           tao->trust = nlsP->gamma1 * PetscMin(norm_d, tao->trust);
883:         }
884:         break;
885:       }

887:       /*  The radius may have been increased; modify if it is too large */
888:       tao->trust = PetscMin(tao->trust, nlsP->max_radius);
889:     }

891:     /*  Check for termination */
892:     TaoGradientNorm(tao, tao->gradient,NORM_2,&gnorm);
893:     if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PETSC_COMM_SELF,1,"User provided compute function generated Not-a-Number");
894:     needH = 1;
895:     TaoMonitor(tao, tao->niter, f, gnorm, 0.0, step, &reason);
896:   }
897:   return(0);
898: }

900: /* ---------------------------------------------------------- */
903: static PetscErrorCode TaoSetUp_NLS(Tao tao)
904: {
905:   TAO_NLS        *nlsP = (TAO_NLS *)tao->data;

909:   if (!tao->gradient) {VecDuplicate(tao->solution,&tao->gradient);}
910:   if (!tao->stepdirection) {VecDuplicate(tao->solution,&tao->stepdirection);}
911:   if (!nlsP->W) {VecDuplicate(tao->solution,&nlsP->W);}
912:   if (!nlsP->D) {VecDuplicate(tao->solution,&nlsP->D);}
913:   if (!nlsP->Xold) {VecDuplicate(tao->solution,&nlsP->Xold);}
914:   if (!nlsP->Gold) {VecDuplicate(tao->solution,&nlsP->Gold);}
915:   nlsP->Diag = 0;
916:   nlsP->M = 0;
917:   return(0);
918: }

920: /*------------------------------------------------------------*/
923: static PetscErrorCode TaoDestroy_NLS(Tao tao)
924: {
925:   TAO_NLS        *nlsP = (TAO_NLS *)tao->data;

929:   if (tao->setupcalled) {
930:     VecDestroy(&nlsP->D);
931:     VecDestroy(&nlsP->W);
932:     VecDestroy(&nlsP->Xold);
933:     VecDestroy(&nlsP->Gold);
934:   }
935:   VecDestroy(&nlsP->Diag);
936:   MatDestroy(&nlsP->M);
937:   PetscFree(tao->data);
938:   return(0);
939: }

941: /*------------------------------------------------------------*/
944: static PetscErrorCode TaoSetFromOptions_NLS(PetscOptionItems *PetscOptionsObject,Tao tao)
945: {
946:   TAO_NLS        *nlsP = (TAO_NLS *)tao->data;

950:   PetscOptionsHead(PetscOptionsObject,"Newton line search method for unconstrained optimization");
951:   PetscOptionsEList("-tao_nls_ksp_type", "ksp type", "", NLS_KSP, NLS_KSP_TYPES, NLS_KSP[nlsP->ksp_type], &nlsP->ksp_type, 0);
952:   PetscOptionsEList("-tao_nls_pc_type", "pc type", "", NLS_PC, NLS_PC_TYPES, NLS_PC[nlsP->pc_type], &nlsP->pc_type, 0);
953:   PetscOptionsEList("-tao_nls_bfgs_scale_type", "bfgs scale type", "", BFGS_SCALE, BFGS_SCALE_TYPES, BFGS_SCALE[nlsP->bfgs_scale_type], &nlsP->bfgs_scale_type, 0);
954:   PetscOptionsEList("-tao_nls_init_type", "radius initialization type", "", NLS_INIT, NLS_INIT_TYPES, NLS_INIT[nlsP->init_type], &nlsP->init_type, 0);
955:   PetscOptionsEList("-tao_nls_update_type", "radius update type", "", NLS_UPDATE, NLS_UPDATE_TYPES, NLS_UPDATE[nlsP->update_type], &nlsP->update_type, 0);
956:   PetscOptionsReal("-tao_nls_sval", "perturbation starting value", "", nlsP->sval, &nlsP->sval,NULL);
957:   PetscOptionsReal("-tao_nls_imin", "minimum initial perturbation", "", nlsP->imin, &nlsP->imin,NULL);
958:   PetscOptionsReal("-tao_nls_imax", "maximum initial perturbation", "", nlsP->imax, &nlsP->imax,NULL);
959:   PetscOptionsReal("-tao_nls_imfac", "initial merit factor", "", nlsP->imfac, &nlsP->imfac,NULL);
960:   PetscOptionsReal("-tao_nls_pmin", "minimum perturbation", "", nlsP->pmin, &nlsP->pmin,NULL);
961:   PetscOptionsReal("-tao_nls_pmax", "maximum perturbation", "", nlsP->pmax, &nlsP->pmax,NULL);
962:   PetscOptionsReal("-tao_nls_pgfac", "growth factor", "", nlsP->pgfac, &nlsP->pgfac,NULL);
963:   PetscOptionsReal("-tao_nls_psfac", "shrink factor", "", nlsP->psfac, &nlsP->psfac,NULL);
964:   PetscOptionsReal("-tao_nls_pmgfac", "merit growth factor", "", nlsP->pmgfac, &nlsP->pmgfac,NULL);
965:   PetscOptionsReal("-tao_nls_pmsfac", "merit shrink factor", "", nlsP->pmsfac, &nlsP->pmsfac,NULL);
966:   PetscOptionsReal("-tao_nls_eta1", "poor steplength; reduce radius", "", nlsP->eta1, &nlsP->eta1,NULL);
967:   PetscOptionsReal("-tao_nls_eta2", "reasonable steplength; leave radius alone", "", nlsP->eta2, &nlsP->eta2,NULL);
968:   PetscOptionsReal("-tao_nls_eta3", "good steplength; increase radius", "", nlsP->eta3, &nlsP->eta3,NULL);
969:   PetscOptionsReal("-tao_nls_eta4", "excellent steplength; greatly increase radius", "", nlsP->eta4, &nlsP->eta4,NULL);
970:   PetscOptionsReal("-tao_nls_alpha1", "", "", nlsP->alpha1, &nlsP->alpha1,NULL);
971:   PetscOptionsReal("-tao_nls_alpha2", "", "", nlsP->alpha2, &nlsP->alpha2,NULL);
972:   PetscOptionsReal("-tao_nls_alpha3", "", "", nlsP->alpha3, &nlsP->alpha3,NULL);
973:   PetscOptionsReal("-tao_nls_alpha4", "", "", nlsP->alpha4, &nlsP->alpha4,NULL);
974:   PetscOptionsReal("-tao_nls_alpha5", "", "", nlsP->alpha5, &nlsP->alpha5,NULL);
975:   PetscOptionsReal("-tao_nls_nu1", "poor steplength; reduce radius", "", nlsP->nu1, &nlsP->nu1,NULL);
976:   PetscOptionsReal("-tao_nls_nu2", "reasonable steplength; leave radius alone", "", nlsP->nu2, &nlsP->nu2,NULL);
977:   PetscOptionsReal("-tao_nls_nu3", "good steplength; increase radius", "", nlsP->nu3, &nlsP->nu3,NULL);
978:   PetscOptionsReal("-tao_nls_nu4", "excellent steplength; greatly increase radius", "", nlsP->nu4, &nlsP->nu4,NULL);
979:   PetscOptionsReal("-tao_nls_omega1", "", "", nlsP->omega1, &nlsP->omega1,NULL);
980:   PetscOptionsReal("-tao_nls_omega2", "", "", nlsP->omega2, &nlsP->omega2,NULL);
981:   PetscOptionsReal("-tao_nls_omega3", "", "", nlsP->omega3, &nlsP->omega3,NULL);
982:   PetscOptionsReal("-tao_nls_omega4", "", "", nlsP->omega4, &nlsP->omega4,NULL);
983:   PetscOptionsReal("-tao_nls_omega5", "", "", nlsP->omega5, &nlsP->omega5,NULL);
984:   PetscOptionsReal("-tao_nls_mu1_i", "", "", nlsP->mu1_i, &nlsP->mu1_i,NULL);
985:   PetscOptionsReal("-tao_nls_mu2_i", "", "", nlsP->mu2_i, &nlsP->mu2_i,NULL);
986:   PetscOptionsReal("-tao_nls_gamma1_i", "", "", nlsP->gamma1_i, &nlsP->gamma1_i,NULL);
987:   PetscOptionsReal("-tao_nls_gamma2_i", "", "", nlsP->gamma2_i, &nlsP->gamma2_i,NULL);
988:   PetscOptionsReal("-tao_nls_gamma3_i", "", "", nlsP->gamma3_i, &nlsP->gamma3_i,NULL);
989:   PetscOptionsReal("-tao_nls_gamma4_i", "", "", nlsP->gamma4_i, &nlsP->gamma4_i,NULL);
990:   PetscOptionsReal("-tao_nls_theta_i", "", "", nlsP->theta_i, &nlsP->theta_i,NULL);
991:   PetscOptionsReal("-tao_nls_mu1", "", "", nlsP->mu1, &nlsP->mu1,NULL);
992:   PetscOptionsReal("-tao_nls_mu2", "", "", nlsP->mu2, &nlsP->mu2,NULL);
993:   PetscOptionsReal("-tao_nls_gamma1", "", "", nlsP->gamma1, &nlsP->gamma1,NULL);
994:   PetscOptionsReal("-tao_nls_gamma2", "", "", nlsP->gamma2, &nlsP->gamma2,NULL);
995:   PetscOptionsReal("-tao_nls_gamma3", "", "", nlsP->gamma3, &nlsP->gamma3,NULL);
996:   PetscOptionsReal("-tao_nls_gamma4", "", "", nlsP->gamma4, &nlsP->gamma4,NULL);
997:   PetscOptionsReal("-tao_nls_theta", "", "", nlsP->theta, &nlsP->theta,NULL);
998:   PetscOptionsReal("-tao_nls_min_radius", "lower bound on initial radius", "", nlsP->min_radius, &nlsP->min_radius,NULL);
999:   PetscOptionsReal("-tao_nls_max_radius", "upper bound on radius", "", nlsP->max_radius, &nlsP->max_radius,NULL);
1000:   PetscOptionsReal("-tao_nls_epsilon", "tolerance used when computing actual and predicted reduction", "", nlsP->epsilon, &nlsP->epsilon,NULL);
1001:   PetscOptionsTail();
1002:   TaoLineSearchSetFromOptions(tao->linesearch);
1003:   KSPSetFromOptions(tao->ksp);
1004:   return(0);
1005: }


1008: /*------------------------------------------------------------*/
1011: static PetscErrorCode TaoView_NLS(Tao tao, PetscViewer viewer)
1012: {
1013:   TAO_NLS        *nlsP = (TAO_NLS *)tao->data;
1014:   PetscInt       nrejects;
1015:   PetscBool      isascii;

1019:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii);
1020:   if (isascii) {
1021:     PetscViewerASCIIPushTab(viewer);
1022:     if (NLS_PC_BFGS == nlsP->pc_type && nlsP->M) {
1023:       MatLMVMGetRejects(nlsP->M,&nrejects);
1024:       PetscViewerASCIIPrintf(viewer, "Rejected matrix updates: %D\n",nrejects);
1025:     }
1026:     PetscViewerASCIIPrintf(viewer, "Newton steps: %D\n", nlsP->newt);
1027:     PetscViewerASCIIPrintf(viewer, "BFGS steps: %D\n", nlsP->bfgs);
1028:     PetscViewerASCIIPrintf(viewer, "Scaled gradient steps: %D\n", nlsP->sgrad);
1029:     PetscViewerASCIIPrintf(viewer, "Gradient steps: %D\n", nlsP->grad);

1031:     PetscViewerASCIIPrintf(viewer, "nls ksp atol: %D\n", nlsP->ksp_atol);
1032:     PetscViewerASCIIPrintf(viewer, "nls ksp rtol: %D\n", nlsP->ksp_rtol);
1033:     PetscViewerASCIIPrintf(viewer, "nls ksp ctol: %D\n", nlsP->ksp_ctol);
1034:     PetscViewerASCIIPrintf(viewer, "nls ksp negc: %D\n", nlsP->ksp_negc);
1035:     PetscViewerASCIIPrintf(viewer, "nls ksp dtol: %D\n", nlsP->ksp_dtol);
1036:     PetscViewerASCIIPrintf(viewer, "nls ksp iter: %D\n", nlsP->ksp_iter);
1037:     PetscViewerASCIIPrintf(viewer, "nls ksp othr: %D\n", nlsP->ksp_othr);
1038:     PetscViewerASCIIPopTab(viewer);
1039:   }
1040:   return(0);
1041: }

1043: /* ---------------------------------------------------------- */
1044: /*MC
1045:   TAONLS - Newton's method with linesearch for unconstrained minimization.
1046:   At each iteration, the Newton line search method solves the symmetric
1047:   system of equations to obtain the step diretion dk:
1048:               Hk dk = -gk
1049:   a More-Thuente line search is applied on the direction dk to approximately
1050:   solve
1051:               min_t f(xk + t d_k)

1053:     Options Database Keys:
1054: + -tao_nls_ksp_type - "cg","nash","stcg","gltr","petsc"
1055: . -tao_nls_pc_type - "none","ahess","bfgs","petsc"
1056: . -tao_nls_bfgs_scale_type - "ahess","phess","bfgs"
1057: . -tao_nls_init_type - "constant","direction","interpolation"
1058: . -tao_nls_update_type - "step","direction","interpolation"
1059: . -tao_nls_sval - perturbation starting value
1060: . -tao_nls_imin - minimum initial perturbation
1061: . -tao_nls_imax - maximum initial perturbation
1062: . -tao_nls_pmin - minimum perturbation
1063: . -tao_nls_pmax - maximum perturbation
1064: . -tao_nls_pgfac - growth factor
1065: . -tao_nls_psfac - shrink factor
1066: . -tao_nls_imfac - initial merit factor
1067: . -tao_nls_pmgfac - merit growth factor
1068: . -tao_nls_pmsfac - merit shrink factor
1069: . -tao_nls_eta1 - poor steplength; reduce radius
1070: . -tao_nls_eta2 - reasonable steplength; leave radius
1071: . -tao_nls_eta3 - good steplength; increase readius
1072: . -tao_nls_eta4 - excellent steplength; greatly increase radius
1073: . -tao_nls_alpha1 - alpha1 reduction
1074: . -tao_nls_alpha2 - alpha2 reduction
1075: . -tao_nls_alpha3 - alpha3 reduction
1076: . -tao_nls_alpha4 - alpha4 reduction
1077: . -tao_nls_alpha - alpha5 reduction
1078: . -tao_nls_mu1 - mu1 interpolation update
1079: . -tao_nls_mu2 - mu2 interpolation update
1080: . -tao_nls_gamma1 - gamma1 interpolation update
1081: . -tao_nls_gamma2 - gamma2 interpolation update
1082: . -tao_nls_gamma3 - gamma3 interpolation update
1083: . -tao_nls_gamma4 - gamma4 interpolation update
1084: . -tao_nls_theta - theta interpolation update
1085: . -tao_nls_omega1 - omega1 step update
1086: . -tao_nls_omega2 - omega2 step update
1087: . -tao_nls_omega3 - omega3 step update
1088: . -tao_nls_omega4 - omega4 step update
1089: . -tao_nls_omega5 - omega5 step update
1090: . -tao_nls_mu1_i -  mu1 interpolation init factor
1091: . -tao_nls_mu2_i -  mu2 interpolation init factor
1092: . -tao_nls_gamma1_i -  gamma1 interpolation init factor
1093: . -tao_nls_gamma2_i -  gamma2 interpolation init factor
1094: . -tao_nls_gamma3_i -  gamma3 interpolation init factor
1095: . -tao_nls_gamma4_i -  gamma4 interpolation init factor
1096: - -tao_nls_theta_i -  theta interpolation init factor

1098:   Level: beginner
1099: M*/

1103: PETSC_EXTERN PetscErrorCode TaoCreate_NLS(Tao tao)
1104: {
1105:   TAO_NLS        *nlsP;
1106:   const char     *morethuente_type = TAOLINESEARCHMT;

1110:   PetscNewLog(tao,&nlsP);

1112:   tao->ops->setup = TaoSetUp_NLS;
1113:   tao->ops->solve = TaoSolve_NLS;
1114:   tao->ops->view = TaoView_NLS;
1115:   tao->ops->setfromoptions = TaoSetFromOptions_NLS;
1116:   tao->ops->destroy = TaoDestroy_NLS;

1118:   /* Override default settings (unless already changed) */
1119:   if (!tao->max_it_changed) tao->max_it = 50;
1120:   if (!tao->trust0_changed) tao->trust0 = 100.0;

1122:   tao->data = (void*)nlsP;

1124:   nlsP->sval   = 0.0;
1125:   nlsP->imin   = 1.0e-4;
1126:   nlsP->imax   = 1.0e+2;
1127:   nlsP->imfac  = 1.0e-1;

1129:   nlsP->pmin   = 1.0e-12;
1130:   nlsP->pmax   = 1.0e+2;
1131:   nlsP->pgfac  = 1.0e+1;
1132:   nlsP->psfac  = 4.0e-1;
1133:   nlsP->pmgfac = 1.0e-1;
1134:   nlsP->pmsfac = 1.0e-1;

1136:   /*  Default values for trust-region radius update based on steplength */
1137:   nlsP->nu1 = 0.25;
1138:   nlsP->nu2 = 0.50;
1139:   nlsP->nu3 = 1.00;
1140:   nlsP->nu4 = 1.25;

1142:   nlsP->omega1 = 0.25;
1143:   nlsP->omega2 = 0.50;
1144:   nlsP->omega3 = 1.00;
1145:   nlsP->omega4 = 2.00;
1146:   nlsP->omega5 = 4.00;

1148:   /*  Default values for trust-region radius update based on reduction */
1149:   nlsP->eta1 = 1.0e-4;
1150:   nlsP->eta2 = 0.25;
1151:   nlsP->eta3 = 0.50;
1152:   nlsP->eta4 = 0.90;

1154:   nlsP->alpha1 = 0.25;
1155:   nlsP->alpha2 = 0.50;
1156:   nlsP->alpha3 = 1.00;
1157:   nlsP->alpha4 = 2.00;
1158:   nlsP->alpha5 = 4.00;

1160:   /*  Default values for trust-region radius update based on interpolation */
1161:   nlsP->mu1 = 0.10;
1162:   nlsP->mu2 = 0.50;

1164:   nlsP->gamma1 = 0.25;
1165:   nlsP->gamma2 = 0.50;
1166:   nlsP->gamma3 = 2.00;
1167:   nlsP->gamma4 = 4.00;

1169:   nlsP->theta = 0.05;

1171:   /*  Default values for trust region initialization based on interpolation */
1172:   nlsP->mu1_i = 0.35;
1173:   nlsP->mu2_i = 0.50;

1175:   nlsP->gamma1_i = 0.0625;
1176:   nlsP->gamma2_i = 0.5;
1177:   nlsP->gamma3_i = 2.0;
1178:   nlsP->gamma4_i = 5.0;

1180:   nlsP->theta_i = 0.25;

1182:   /*  Remaining parameters */
1183:   nlsP->min_radius = 1.0e-10;
1184:   nlsP->max_radius = 1.0e10;
1185:   nlsP->epsilon = 1.0e-6;

1187:   nlsP->ksp_type        = NLS_KSP_STCG;
1188:   nlsP->pc_type         = NLS_PC_BFGS;
1189:   nlsP->bfgs_scale_type = BFGS_SCALE_PHESS;
1190:   nlsP->init_type       = NLS_INIT_INTERPOLATION;
1191:   nlsP->update_type     = NLS_UPDATE_STEP;

1193:   TaoLineSearchCreate(((PetscObject)tao)->comm,&tao->linesearch);
1194:   TaoLineSearchSetType(tao->linesearch,morethuente_type);
1195:   TaoLineSearchUseTaoRoutines(tao->linesearch,tao);
1196:   TaoLineSearchSetOptionsPrefix(tao->linesearch,tao->hdr.prefix);

1198:   /*  Set linear solver to default for symmetric matrices */
1199:   KSPCreate(((PetscObject)tao)->comm,&tao->ksp);
1200:   KSPSetOptionsPrefix(tao->ksp, tao->hdr.prefix);
1201:   return(0);
1202: }

1206: static PetscErrorCode MatLMVMSolveShell(PC pc, Vec b, Vec x)
1207: {
1209:   Mat            M;

1215:   PCShellGetContext(pc,(void**)&M);
1216:   MatLMVMSolve(M, b, x);
1217:   return(0);
1218: }