What Skills Matter in Data Quality?

Research Team

WooYoung Chung Case Western Reserve University

Craig Fisher Marist College

Yang Lee Northeastern University

Richard Wang MIT & U.C. Berkeley

Presentation The 7th International Conference on Information Quality

November 10, 2002

Presentation Roadmap

<u>Challenge</u>: DQ/IQ is an interdisciplinary field.

- 1. How should we conceptualize the DQ skills?
- 2. How do different sets of DQ skills complement one another?
- 3. What areas of DQ need more research and education?

- Conceptual Framework
 - General System Systems Theory
 - Classification of DQ skills
 - Literature Review
- Exploratory Survey Study
 - The skills survey at the 6th ICIQ
 - Preliminary Findings
 - Conclusions

General Systems Theory

<u>Boulding (1956)</u> General Systems Theory	<u>Chaffee (1985)</u> Classification of Business strategies	Morgan (1986) Classification of organizational theories	<u>DQ/IQ</u> Classification of DQ/IQ research and skills
Mechanical System (levels 1-3) Ex.: physics, economics	Linear Strategies Classic manageme	The machine metaphor ent theory, MBO	Technical (analytic) capabilities
Open Systems (levels 4-6) Ex.: biology, botany	Adaptive Strategies Contingency t	The organism metaphor heory, OIP	Adaptive Capabilities
Human Systems (levels 7-9) Ex: sociology, anthropology	Interpretive Strategies Symbol managemen	The brain metaphor t, social meanings	Interpretive Capabilites

Research Examples

<u>Classification</u>	Examples
Technical Capabilities	Bohm and Jacopini, 1966; Chen, 1976; Coad and Yourdon, 1991; Codd, 1970; Dijkstra, 1968; Gane and Sarson, 1979
	Ballou and Pazer, 1985, 1995
Adaptive Capabilities	Adams, Nelson, and Todd, 1992; Davis, Bagozzi, and Warshaw, 1989; Mathieson, 1991; Taylor and Todd, 1995
	Baroudi, Olsen, and Ives, 1986; Chin and Newsted, 1995
	Brancheau and Wetherbe, 1990; Moore and Benbasat, 1991
	DeLone and McLean, 1992; Seddon, 1997
	Barki and Hartwick, 1994; Newman and Robey, 1992; Salaway, 1987;
	Orr, 1998; Wang and Strong, 1996

Research Examples

Classification

Examples

Interpretive Capabilities

Barley, 1986; DeSanctis and Poole, 1994; Orlikowski, 1992, 2000; Orlikowski and Yates, 1994;

Constant, Sproull, and Kiesler, 1996; Pickering and King, 1995; Zack, 1993

Weisband, 1987

Davenport and Short, 1990; Hammer, 1990; Hammer and Champy, 1993

Descriptive Statistics Table 1

No.	Description	Mean	Std	Based on	Based on	Subsets			
			Dev	T-Test	Tukey	Based on Tukey		ey	
1.	DQ measurement	6.33	0.96	1-2	1-10	А			
2.	DQ implications	6.10	1.08	1-6, 9	1-13	А	В		
3.	TQM	5.90	1.09	2-10	1-15	А	В	С	
4.	Data entry improvement	5.84	1.20	2-11	1-15	А	В	С	
5.	Org. policies	5.79	1.27	2-13	1-15	А	В	С	
6.	DB error detection	5.77	1.35	2-12	1-15	А	В	С	
7.	DQ dimensions	5.75	1.04	3-12	1-15	А	В	С	
8.	Change process	5.72	1.07	3-12	1-15	А	В	С	
9.	DQ cost/benefit	5.70	1.35	2-12	1-15	А	В	С	
10.	User requirements	5.67	1.14	3-14	1-15	А	В	С	
11.	Info. overload	5.49	1.21	4-15	2-15		В	С	
12.	DQ audit	5.46	1.18	5-15	2-15		В	С	
13.	Statistical techniques	5.30	1.46	5,10-15	2-18		В	С	D
14.	Data mining skills	5.23	1.50	10-15	3-18			С	D
15.	Data warehouse setup	5.18	1.43	11-15	3-18			С	D
16.	Analytic models	4.54	1.59	16-18	13-18				D
17.	Relational algebra	4.54	1.52	16-18	13-18				D
18.	Software tools	4.54	1.41	16-18	13-18				D

Factor Analysis

	Factor 1	Factor 2	Factor 3
Factor 1 (Alpha = .798)			
14. Data Mining Skills	.783		
16. Analytic Models	.765		
15. Data Warehouse Setup	.726		
17. Relational Algebra	.588	.508	
13. Statistical Techniques	.577	.442	
Factor 2 (Alpha = .644)			
1. DQ Measurements		.813	
3. TQM		.675	.413
4. Data Entry Improvement		.612	
10. User Requirements		.553	
Factor 3 (Alpha = .699)			
8. Change Process			.795
2. DQ Implications			.694
9. DQ Cost/Benefit			.644
6. DB Error Detection	.466		.561

Skills Ratings by Job Titles Table 5 – abridged

	Professors (N=10)		Executives Managers (N=11)		Consultants (N=10)		Project Managers Analysts (N=15)	
	Mean	Std.	Mean	Std.	Mean	Std	Mean	Std
		Dev		Dev		Dev		Dev
Interpretive Capabilities	6.08	0.69	5.95	0.66	5.38	1.32	5.97	0.82
Adaptive Capabilities	5.68	0.83	5.64	1.10	6.30	0.60	6.17	0.60
Technical Capabilities	4.66	1.13	4.38	1.10	4.84	1.48	5.21	0.93

Conclusions

- Practitioners value diverse skills differently depending on their job situations.
- IS educators should design a data quality curriculum to fit the need of long-term and short-term career objectives of their student.
- Both academic researchers and executives reported Interpretive Capabilities—the ability of identifying and articulating organizational implications of data quality—as most important in improving and maintaining the data quality.
- Future research efforts should be directed to a systematic investigation of how data quality would affect the way in which people are organized and jobs are structured.