17.803 Political Science Laboratory

Spring 2023

MIT

Instructor: Teppei Yamamoto
Office: E53-401 & Zoom
Email: teppei@mit.edu
Office Hours: TBD

TA: Paige Bollen
Office: E53-406 & Zoom
Email: pbollen@mit.edu
Office Hours: TBD

WRAP Advisor: Michael Maune
Office: E18–228h
Email: mmaune@mit.edu
Office Hours: Schedule here

Notes on Logistics

- The class meets on Mondays and Wednesdays at 9:30–11 in E53-438. The first class meets on February 6, and the last class meets on May 15.
- The lab meets on Fridays at 10–11 in E53-XXX. (Note: In the first class meeting on Feb 6, we will try to find an alternative 1-hour lab slot that works as well or better for everyone in the class. If there is one, we will switch to that time. If not, we will stick to the originally scheduled time.)
- No class or lab on:
 - Monday, February 20 (Presidents’ Day)
 - Monday, March 27 - Friday, March 31 (Spring break)
 - Monday, April 10 - Friday, April 14 (classes replaced by personal meetings with Teppei)
 - Monday, April 17 (Patriots’ Day)
- Class and lab will be held exceptionally on Tuesday, February 21 (Monday schedule of classes to be held Institute-wide)

Lectures and Lab sessions will happen in person on campus. Should you be barred from attending a class session in person due to your own health condition and/or per instruction by MIT Medical, contact us immediately so we can figure out alternative arrangements.

Purpose and Goals

This class introduces undergraduate political scientists to the basic quantitative tools of political science research. In particular, this class explores the key statistical and computational research tools that social scientists use to frame and answer empirical questions. When you finish this subject successfully, you will be able to conduct quantitative
research, be better able to read critically much of the professional literature in political science and other statistically-based fields, and have an employable skill. The most important purpose behind the Political Science Laboratory, however, is to help you move from a passive reader of social scientific tomes to a creative producer of new insights.

A particular focus of the class will be on the issue of causal inference. The political world is composed of a web of cause-and-effect relationships that are entangled and intertwined. The complex nature of our world makes our life as political scientists tough and challenging, even compared to those of rocket scientists and nuclear physicists. The central theme that runs throughout the course will be: How can we tell causation from mere association? The answer lies in good research designs and appropriate statistical tools, as you will learn by the end of the semester.

This class emphasizes practical skills and intuition for good quantitative social science, compared to traditional statistics courses. As such, the class will involve lots of hands-on exercises, lab sessions, group work, discussion and presentation sessions, along with more traditional problem sets. Throughout the semester, you will also work on an original research project that involves data collection, analysis with a statistical computing language (R), and a write-up of your findings. If this subject piques your interest in a more rigorous treatment of statistical methods and perhaps a professional career in quantitative political science, consider taking 17.800 (Quantitative Research Methods I) and 17.802 (Quantitative Research Methods II) in the next year with our first-year graduate students.

This course is also one of the two Communication Intensive subjects for the Course 17 Major (CI-M). A CI-M course is designed to help you develop your writing and speaking skills in the major. As a result, Michael Maune, a lecturer from the Writing, Rhetoric, and Professional Communication (WRAP) program, has been assigned to help with this course. Students are required to meet with the WRAP lecturer twice during the semester: once for a presentation rehearsal, and once for either a writing conference or second rehearsal. You can schedule a WRAP conference here. The WRAP instructor will also provide communication workshops several times throughout the semester. These workshops are required and will be held during lab time. Finally, the WRAP instructor will provide written feedback on the first and final drafts of your project write-up and on your final presentations. You can also set up an individual consultation with the communications experts at the Writing and Communication Center (WCC) via their online form. The WCC staff may be particularly helpful in revising your writing or practicing your oral presentation.

Prerequisites

You need to have taken 17.801 (Scope and Methods) to enroll in this course. We expect no prior specialized training in statistics, probability, or computation (assuming you have successfully made your way through MIT up to this point).

Organization

The class roughly consists of three components. First, you will learn how to collect, manage, and analyze data using software tools on your computer (R and other packages). You will spend the first three weeks of the semester mostly training yourself up on this dimension. In weeks 2–3, the class will take a lab style where you will bring your own laptop and work through exercises with help from the instructor and the TA. Your mid-week and weekend assignments will involve watching videos and completing basic tutorials on your own so you can get started right away with those in-class exercises. For the rest of the semester, you will practice and hone those skills through problem sets, in-class design exercises, and data analysis for your class project.

Second, you will spend most of your remaining class time on learning about research designs and statistics. Making a credible causal claim about the social world requires good research designs, and the central goal of this component of the subject is to build your intuition about credible designs. After successfully completing your semester, you
will be able to tell well-designed empirical studies from poorly-designed ones with confidence. Specifically, we will cover six different research designs, or identification strategies, in this subject. These designs are extremely commonly used in quantitative social science and account for the bulk of what you see in academic journals in political science nowadays. Each design topic will be covered over two separate class meetings. In the first class, the instructor will give a lecture on the conceptual and theoretical underpinnings of the design. Typically after the first class you will be assigned a design exercise which will invite you to think harder and more concretely about the design. The second class will usually include a group exercise or discussion session based on the design exercise, may cover more details or extensions, or will give you an opportunity to work with data. In addition to these design-based class meetings, we will also take a short (but important) excursion to the world of statistical inference and learn theories and techniques that are commonly used across all designs.

Third, you will work on a research project of your own making. This is the most exciting part of this subject, but also it is much more challenging than it might first appear to you. You will be responsible for making good and steady progress over the course of the semester, so make sure to spare some time for the project and accomplish something concrete every week. To help you on this dimension, we will have several class meetings dedicated to your projects (see the next section). You will also be required to submit a draft version of your paper midway through the semester, on which you will receive feedback from us. At the end of the semester, you will give an oral presentation on your project, and then submit a final write-up where you will summarize your research question, hypothesis, research design, data, and findings in the style of an academic research paper.

Because of the hands-on nature of this subject, your individual preparation and participation in each class is mandatory. Preparation will involve different things for each meeting, so refer to the course calendar below for the specifics. In each class, we will pay attention to who seems prepared and who is not. We will meet three times each week, unless otherwise indicated on the calendar.

Requirements

The final grades are based on the following items:

- **Class attendance, participation and engagement (15%)**
- **Problem sets (35%)**: There will be six problem sets spread throughout the semester. Only the first five are mandatory and equally count towards the final grade. The last one will be optional, and if you complete it, the grade will replace the lowest grade you obtained for the mandatory five. The problem sets will contain conceptual, analytical, computational and data analysis questions. Please note:
 - Problem sets should be submitted electronically on the Canvas course site. No late submission will be accepted unless you ask for special permission from the instructor in advance of the deadline. (Permission may be granted or not granted, with or without penalty, depending on specific circumstances.)
 - Working in groups is encouraged, but you must submit your own write-up of the solutions. In particular, you must not copy and paste someone else’s answers or computer code. Violation of this policy will be considered an academic integrity issue and processed accordingly to MIT’s rules and procedures for such violations. We also ask you to write down the names of the other students with whom you solved the problems together on the first sheet of your solutions.
 - For analytical questions, you should include your intermediate steps, as well as comments on those steps when appropriate. For computing and data analysis questions, include annotated code as part of your answers. All results should be presented so that they can be easily understood.

- **Design exercises (15%)**: You will be asked to complete five design exercises, each corresponding to a particular research design covered in the subject. They are either short group projects or individual exercises that
are designed to deepen your understanding about the research designs. Each exercise will be assigned at the end of a class and due at the beginning of the next class. We will then collectively discuss your work in the class. Contents will vary so you should follow the instructions on each specific exercise.

- **Final project presentation and write-up (35%):** The final project is the culmination of this subject. You will be responsible for finding an empirical question that interests you and answering it by applying the skills you are going to learn in this subject. This will be a serious research project that will require your constant attention and engagement throughout the semester. Below are the key milestones that will help you move toward the completion of the project by the end of the semester. Performance on each of these points will count toward your final grade.

 - **February:** Start thinking about possible topics and exploring data sources. The class on Research Designs Overview (see class calendar) will be particularly helpful for you to think which research design will best fit your question. Look through the examples we will provide on Canvas to guide your thoughts. Within the first two weeks of the semester, we strongly encourage you to schedule a meeting with the TA and talk about your ideas. The meeting will be informal and intended to help you transform your nascent thoughts (perhaps derived from your work in 17.801) into something that is “causally well-identified.”

 - **March 8:** By the beginning of class, submit a 1-2 page memo summarizing your current ideas. Your memo should consist of at least two potential topics you are considering working on, as well as the research designs that you are going to use for those topics. For each topic, you should clearly state your research question, your working hypothesis, why you think the proposed research design is appropriate for answering the question, and where and how you plan to acquire the necessary data. You will revise these statements into the longer draft due in April (see below) based on feedback from us. *It is particularly important that you have done thorough research on data availability by this date.* You are also welcome to visit the instructor and run your ideas. Within the next two weeks of your project memo submission, meet with the TA again to discuss your ideas and decide on a single topic and a research design for the project. Depending on how much work will be involved in the acquisition of the data, you and the TA will decide the scope of the project for the semester (i.e. what must be completed by the end of semester and what can be left for future exploration, possibly as part of your thesis).

 - **April 7:** Turn in the first draft of your paper by the end of day. This draft should contain theoretical motivations for your project, the research design you propose to employ, and an empirical strategy for answering your question. The draft should be approximately 5 pages long and will eventually become a part of your final submission.

 - **Week of April 10:** Meet with the instructor to discuss your draft. These meetings will be at least 30 minutes, but no more than 1 hour. After the meeting, you will revise your draft to incorporate the feedback given by the instructor. You are also strongly encouraged to meet with the WRAP advisor to discuss your paper around this time.

 - **May 1:** We will hold a project workshop during the regular class time. This will be an informal discussion session to talk through issues that students have come across in the course of their projects, and engage in peer-to-peer learning. You should bring your own stories and questions to share with others in the class. Be prepared to help the other members of class with anything they are stuck on.

 - **May 10 or May 15:** You will present your project in front of the class during the regular class time. Your presentation should last for approximately 15 minutes, but could be longer depending on the enrollment count. Further details will be determined closer to this date. You should prepare electronic slides to accompany your presentation, and practice it in advance. You are required to rehearse your presentation with the WRAP advisor at least once before your assigned presentation date. There will
be a Q&A and discussion session after each of the presentations. Make final revisions to your paper based on the feedback.

- **May 16: Final write-up due.** Please turn in your paper by midnight. Your paper should have approximately 15 pages. We will give you more detailed submission instructions via email closer to this date.

Course Website

You can find the course website at:

https://canvas.mit.edu/courses/18679

We will distribute course materials, readings, lecture slides, and problem sets on this website.

Questions about Course Materials

We will also utilize an online discussion board called *Piazza*. You can sign up here. This is a question-and-answer platform that is easy to use and designed to get you answers to questions quickly. We encourage you to use the Piazza Q & A board when asking questions about lectures, problem sets, and other class materials. There are also free Piazza apps for Android and iOS devices. The Piazza course page is listed below:

https://piazza.com/mit/spring2023/17803

Using Piazza will allow you to see and learn from questions others have. The instructors will regularly check the board and answer questions posted, although everyone else is also encouraged to contribute to the discussion. Your respectful and constructive participation on the forum will count toward your class participation grade. *Do not email your questions directly to the instructors* (unless they are of a personal nature) — we will not answer them!

Lab Sessions and Communication Workshops

Lab sessions will be held on Fridays from 10:00 am-11:00 am, in-person. Lab sessions will be held in room E53-438. Sessions will often be your dedicated time to make progress on your project: Bring your laptop. We will also occasionally review class materials and help you with computing issues in problem sets. The TA will run the sessions and can give more details. Since this subject counts towards your LAB requirement, attendance in every session is **mandatory**.

As mentioned above, **communication workshops** will replace the lab sessions for March 24, April 21, and May 5. These workshops will occur in the same room (E53-438) and be led by the WRAP advisor. Attendance is **mandatory** for these workshops to fulfill the CI-M requirements.

Books

- **Required books:** We will read chapters from the following book, which we strongly recommend that you purchase (it is relatively cheap). The book should be available for purchase at any major online bookstores (e.g. Amazon) and on reserve in the library.
Additionally, we will take several chapters from the following book as required reading assignments with short exercise problems. They will be posted on Canvas and are available on reserve in the library. You do not need to purchase the whole book, though we highly recommend it as your statistics reference book if you are interested in this subject.

We will also assign several video tutorials and exercises. Follow the hyperlinks in the course calendar below to access those materials.

- **Recommended books:** These books cover particular sections of the course more in depth and are recommended for your reference, particularly if the sections are directly relevant for your final project.

Course Calendar

Please consult this calendar carefully. Also, note:

You are expected to be in class whenever the calendar is marked in **bold**.

All required readings and video tutorials are indicated with †.

All homework exercises – psets and design exercises – are indicated with ●.

All project related deadlines are indicated with ★.

Schedule changes are indicated by *italics*.

<table>
<thead>
<tr>
<th>CLASS (MONDAY)</th>
<th>MID WEEK ASSIGNMENT</th>
<th>CLASS (WEDNESDAY)</th>
<th>LAB (FRIDAY)</th>
<th>WEEKEND ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 6th</td>
<td>† Read Angrist & Pischke, Introduction</td>
<td>Feb 8th Research Designs Overview</td>
<td>Feb 10th Lab 1</td>
<td>† Read Freedman et al. Ch. 4 and 5 & complete exercises</td>
</tr>
<tr>
<td>Feb 13th</td>
<td>● Install & set up R on your laptop † Watch Robinson, Lesson 1.1-1.6</td>
<td>Feb 15th R Lab ● pset 1 out</td>
<td>Feb 17th Lab 2</td>
<td>† Watch Robinson, Lesson 2.1-2.7</td>
</tr>
<tr>
<td>Class will meet on Tuesday, Feb 21st, instead R Lab</td>
<td>Feb 22nd R Lab ● pset 1 due ● pset 2 out</td>
<td>Feb 24th Lab 3</td>
<td></td>
<td>⊖ Read Angrist & Pischke Ch.1</td>
</tr>
<tr>
<td>CLASS (MONDAY)</td>
<td>MID-WEEK ASSIGNMENT</td>
<td>CLASS (WEDNESDAY)</td>
<td>LAB (FRIDAY)</td>
<td>WEEKEND ASSIGNMENT</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Feb 27th</td>
<td>Randomized Experiments</td>
<td>Mar 1st Randomized Experiments</td>
<td>Mar 3rd Lab 4</td>
<td>(\dagger) Read Freedman et al. Ch. 16–18 & complete exercises</td>
</tr>
<tr>
<td>Mar 6th</td>
<td>Statistical Inference</td>
<td>Mar 8th Statistical inference</td>
<td>Mar 10th Lab 5</td>
<td>(\dagger) Read Freedman et al. Ch. 26–27 & complete exercises</td>
</tr>
<tr>
<td>Mar 13th</td>
<td>Statistical Inference</td>
<td>Mar 15th Matching</td>
<td>Mar 17th Lab 6</td>
<td>• Matching exercise</td>
</tr>
<tr>
<td>Mar 20th</td>
<td>Matching</td>
<td>Mar 22nd Regression</td>
<td>Mar 24th Lab 7: WRAP Composing Your Draft Project Write-Up</td>
<td></td>
</tr>
<tr>
<td>Mar 27th</td>
<td>No class (Spring vacation)</td>
<td>Mar 29th No class (Spring vacation)</td>
<td>Mar 31st No lab (Spring vacation)</td>
<td></td>
</tr>
<tr>
<td>Apr 3rd</td>
<td>Regression</td>
<td>Apr 5th Instrumental Variables</td>
<td>Apr 7th Lab 8</td>
<td>★ Project first draft due by end of day</td>
</tr>
<tr>
<td>Apr 10th</td>
<td>No class</td>
<td>Apr 12th No class</td>
<td>Apr 14th No lab</td>
<td></td>
</tr>
<tr>
<td>Apr 17th</td>
<td>No class (Patriots’ Day)</td>
<td>Apr 19th Instrumental Variables</td>
<td>Apr 21st Lab 9: WRAP Common Issues in Project Write-Up Drafts</td>
<td>(\dagger) Read Angrist & Pischke Ch.4</td>
</tr>
<tr>
<td>Apr 24th</td>
<td>Regression Discontinuity</td>
<td>Apr 26th Regression Discontinuity</td>
<td>Apr 28th Lab 10</td>
<td></td>
</tr>
<tr>
<td>May 1st</td>
<td>Project Workshop</td>
<td>May 3rd Difference in Differences</td>
<td>May 5th Lab 11: WRAP Improving Political Science Presentations</td>
<td>• DID exercise</td>
</tr>
<tr>
<td>CLASS (MONDAY)</td>
<td>MID-WEEK ASSIGNMENT</td>
<td>CLASS (WEDNESDAY)</td>
<td>LAB (FRIDAY)</td>
<td>WEEKEND ASSIGNMENT</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>May 8th</td>
<td>Difference in Differences • pset 6 due</td>
<td>May 10th ★ Project Presentations</td>
<td>May 12th</td>
<td></td>
</tr>
<tr>
<td>May 15th</td>
<td>★ Project Presentations</td>
<td>★ May 16th: Project final write-up due by end of day</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>