17.804: Quantitative Research Methods III

Fall 2018

Instructor: Teppei Yamamoto
TA: Paige Bollen
Department of Political Science
MIT

1 Contact Information

<table>
<thead>
<tr>
<th></th>
<th>Teppei</th>
<th>Paige</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td>E53–401</td>
<td>E53–406</td>
</tr>
<tr>
<td>Phone</td>
<td>617–253–6959</td>
<td>919–265–4840</td>
</tr>
<tr>
<td>Email</td>
<td>teppei@mit.edu</td>
<td>pbollen@mit.edu</td>
</tr>
</tbody>
</table>

2 Logistics

- Lectures: Mondays and Wednesdays 3:30–5pm, E53-438
- Recitations: Day and time TBA, E53-485
- Teppei’s office hours: Make an appointment
- Paige’s office hours: Mondays 1:00 - 3:00 pm, E53-406

Please note:
- We will have no class on October 8 (Columbus Day), on November 12 (Veterans Day), and on November 22 (Wednesday before Thanksgiving).

3 Course Description

This course is the third course in the quantitative research methods sequence at the MIT political science department. Building on the first two courses of the sequence (17.800 and 17.802), this class covers advanced statistical tools for empirical analysis in modern political science. Our focus in this course will be on techniques for model-based inference, including various regression models for cross-section data (e.g., binary outcome models, discrete choice models, sample selection models, event count models, survival outcome models, etc.) as well as grouped data (e.g., mixed effects models and hierarchical models). This complements the methods for design-based inference primarily covered in the previous course of the sequence. This course also covers basics of the fundamental statistical principles underlying these models (e.g., maximum likelihood theory, theory
of generalized linear models, Bayesian statistics) as well as a variety of estimation techniques (e.g., numerical optimization, bootstrap, Markov chain Monte Carlo). The ultimate goal of this course is to provide students with adequate methodological skills for conducting cutting-edge empirical research in their own fields of substantive interest.

4 Prerequisites

There are three prerequisites for this course:

2. Probability and statistics covered in 17.800 and 17.802, including linear regression and basic causal inference.

3. Statistical computing: familiarity with at least one statistical software. We will use R and STAN in this course (more on this below).

For 1 and 3, we expect the level of background knowledge and skills equivalent to what is covered in the department’s Math Camp II; see https://stellar.mit.edu/S/project/mathcamp2/

5 Course Requirements

The final grades are based on the following items:

- **Problem sets (40%)**: Weekly problem sets will be given throughout the semester. Problem sets will contain analytical, computational, and data analysis questions. Each problem set will be counted equally toward the calculation of the final grade. The following instructions will apply to all problem sets unless otherwise noted.

 - Problem sets should be submitted electronically on LMOD by the beginning of class (3:30 pm) the day it is due. Neither late submission nor printed problem sets will be accepted unless you ask for special permission from the instructor in advance of the deadline. (Permission may be granted or not granted, with or without penalty, depending on the specific circumstances.)

 - Working in groups is encouraged, but each student must submit their own writeup of the solutions. In particular, you must not simply copy and paste someone else’s answers or computer code. Violation of this policy will be considered an academic integrity issue and processed accordingly to MIT’s rules and procedures for such violations. We also ask you to write down the names of the other students with whom you solved the problems together on the first sheet of your solutions.

 - For analytical questions, you should include your intermediate steps, as well as comments on those steps when appropriate. We will allow handwritten answers to some analytical problems as long as the write-ups are readable. If you choose to handwrite your answer to these questions, we ask that you upload a scanned copy of your work and include it in your problem set submission. For data analysis questions, include annotated code as part of your answers. All results should be presented so that they can be easily understood.
• **Quizzes** (15%): Three in-class, closed-book quizzes will take place on October 1, October 29, and November 28 during the regular class time.

• **Final project** (35%): The final project will be a short research paper which typically applies a method learned in this course to an empirical problem of your substantive interest. The paper should be approximately 10 pages in length and contain a concise statement of the research question, description of the data, empirical strategy, results, and conclusions. Literature reviews, theoretical background and motivations should be either omitted or kept to minimum. You should also submit a copy of your analysis code. Co-authoring is generally encouraged, though political science Ph.D. students should be mindful that a co-authored seminar paper cannot be used as the basis of their second-year paper. Replication papers are also accepted as long as they methodologically go beyond the original analysis in some significant manner.

Students are expected to adhere to the following deadlines:

- September to early October: **Start** thinking about possible topics, exploring data sources, and running simple analyses on acquired data sets. Run your ideas by the TA and instructor during their office hours and after classes/recitations to obtain their reactions.

- October 15: Turn in a **brief description of your proposed project**. By this date you need to have found your coauthor, acquired the data you plan to use, and completed a descriptive analysis of the data (e.g. simple summary statistics, crosstabs and plots). Meet with the instructor to discuss your proposal during his office hours. You may be asked to revise and resubmit the proposal in two weeks from the meeting.

- December 10 and 12: Students will give **presentations in front of the class** during the regular class time. Presentations should last about 10 minutes (determined based on the class size, but time limits will be strictly enforced) and take the form much like presentations at major academic conferences such as the APSA and MPSA annual meetings. Students should prepare electronic slides to accompany their presentation. Performance on this presentation will be counted toward the class participation grade (see below). Make final revisions to your paper based on the feedback.

- December 19: **Paper due**. Please turn in one printed copy of your paper by the end of the day, and email electronic copies to the instructor and TA.

• **Participation and presentation** (10%): Students are strongly encouraged to ask questions and actively participate in discussions during lectures and recitation sessions.

In addition, there will be recommended readings and lecture notes. Students are strongly encouraged to complete readings prior to the lectures in order to get the most out of them.

6 **Course Website**

You can find the Stellar website for this course at:

```
http://stellar.mit.edu/S/course/17/fa18/17.804/
```

We will distribute course materials, including readings, lecture slides and problem sets, on this website.
7 Questions about Course Materials

In this course, we will utilize an online discussion board called Piazza. This is a question-and-answer platform that is easy to use and designed to get you answers to questions quickly. We encourage you to use the Piazza Q & A board when asking questions about lectures, problem sets, and other course materials outside of recitation sessions and office hours. You can access the Piazza course page either directly from the below address or the link posted on the Stellar course website:

https://piazza.com/mit/fall2018/17804

Using Piazza will allow students to see and learn from other students’ questions. Both the TA and the instructor will regularly check the board and answer questions posted, although everyone else is also encouraged to contribute to the discussion. A student’s respectful and constructive participation on the forum will count toward his/her class participation grade. Do not email your questions directly to the instructors or TAs (unless they are of a personal nature) — we will not answer them!

8 Recitation Sessions

Weekly recitation sessions will be held in E53-485 on days and times to be determined in the first week of class. Sessions will cover a review of the theoretical material and also provide help with computing issues. The teaching assistant will run the sessions and can give more details. Attendance is strongly encouraged.

9 Notes on Computing

In this course we use R, an open-source statistical computing environment that is very widely used in statistics and political science. (If you are already well versed in another statistical software, you are free to use it, but you will be on your own.) Each problem set will contain computing and/or data analysis exercises which can be solved with R but often require going beyond canned functions and writing your own program.

In addition to the materials from the department’s math camps (see above), there are many resources for statistics and data science using R that are targeted at both introductory and advanced levels. Examples:

- For specific questions about R, searching the CRAN website or Stack Overflow with appropriate keywords will often yield satisfactory results.
- There are a lot of other useful online resources, especially about newer-generation packages oriented for data science applications. Check out materials on RStudio’s website (documentations, cheatsheets, videos, webinars, etc.).
• As a last resort, you can post your question to the R help e-mail list, but be sure to read the posting guidelines before doing so, and follow exactly what they say. The list is run by a very busy group of people (you will frequently get answers from R Core team members) and they can be nasty if you are not respectful of the norms.

For Bayesian statistical modeling, we also use [STAN](#), a cross-platform, open-source software for Bayesian statistical inference. STAN uses syntax similar to R and comes with an easy-to-use interface with R. Currently [the STAN project website](#) is the best place to learn the language.

10 Books

• Recommended books: We will read chapters from these books throughout the course. We strongly recommend that you at least purchase (1) either one of the first two books, (2) Gelman and Hill, and (3) Gelman et al. These books can be purchased at online bookstores (e.g. Amazon) and they will be on reserve in the library.

 – Cameron, Colin and Pravin Trivedi. 2005. *Microeconometrics: Methods and Applications*. Cambridge University Press. (Slightly less standard, but covers most of the topics throughout the course.)

• Optional books: These books are standard references for specific topics covered in this course. We will assign a chapter or two from them. Those chapters will be on electronic reserve. Nice books to have for advanced students, but no need to purchase only for this course.

11 Tentative Course Outline

11.1 Generalized Linear Models and Extensions

Binary Outcome Models

1. Binary Logit and Probit Models

 Recommended:
• Wooldridge Ch.15 or Cameron & Trivedi Ch.14

2. Theory of Maximum Likelihood Estimation

Recommended:
• Wooldridge Ch.13 or Cameron & Trivedi Ch.5, 7.2–7.4

3. Numerical Optimization

Recommended:
• Wooldridge Ch.12.7 or Cameron & Trivedi Ch.10

4. Bootstrap and Monte Carlo Approximation

Recommended:
• Efron & Tibshirani, Ch.6

Optional:
• Wooldridge Ch.12.8.2 or Cameron & Trivedi Ch.11

Discrete Choice Models

1. Multinomial Logit and Probit Models

2. Ordered Logit and Probit Models

Recommended:
• Wooldridge Ch.16 or Cameron & Trivedi Ch.15

Optional:
Event Count Models

1. Theory of Generalized Linear Models

 Recommended:
 - McCullagh & Nelder, Ch.2
 - Gelman & Hill, Ch.6

 Optional:
 - McCullagh & Nelder, Ch.9.1, 9.2

2. Event Count Models

 Recommended:
 - Wooldridge Ch.18 or Cameron & Trivedi Ch.20

Models for Panel and Multilevel Data

1. Fixed and Random Effects Models

 Recommended:
 - Wooldridge, Ch.10 or Cameron & Trivedi, Ch.21

2. Mixed Effects Models

 Recommended:
 - Gelman & Hill, Ch.11

 Optional:
 - Cameron & Trivedi, Ch.22.8, 24.6
11.2 Bayesian Statistical Modeling

Introduction to Bayesian Statistics

1. Basic Concepts of Bayesian Statistics

 Recommended:

 • Gelman et al., Ch.1, 2, 3, 4 and 5.

2. Markov Chain Monte Carlo

 Recommended:

 • Gelman et al., Ch.10, 11 and 12.

 Optional:

Bayesian Statistical Modeling

1. Hierarchical Linear and Nonlinear Models

 Recommended:

 • Gelman & Hill, Ch.12, 13

 Optional:

 • Gelman & Hill, Ch.14, 15

2. Missing Data

 Recommended:

 • Gelman et al. Ch.18

 Optional:

3. Measurement and Item Response Theory

 Recommended:

Optional: