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WHAT’SGOING ON HERE?
First, who am I?

◆ My name is Tim Havel, and I am a research scientist now
working on a quantum computing project in the Nuclear
Engineering Dept. at MIT.

◆ I am however a biophysicist by training, who has worked
extensively on a geometric theory of molecular conformation
based on an area of mathematics called “distance geometry”.

◆ I first learned about geometric algebra through some of
Rota’s students who were studying the mathematical aspects of
distance geometry, which I subsequently related to some of
Hestene’s work.

Second, wh y am I telling y ou this?

◆ I am more of a theorizer than a problem solver, and this
course will be mainly about definitions. It will also show you
some of the neat things you can do with them, and I expect all of
you will quickly find new uses of your own.

◆ The “course” is absolutely informal, and is based on the
philosophy that once students get interested in something,
they’ll quickly teach it to themselves ... and probably you too!
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Thir d, what will these lectures tr y to co ver?

1) Historical introduction (which you’ve just had!), and then an
introduction to the basic notions of geometric algebra in one,
two, three and -dimensional Euclidean space.

2) Geometric calculus, some examples of how one can do
classical statics and mechanics with geometric algebra, and
how these fields of “physics” can be regarded as geometry.

3) Introduction to the space-time algebra: Special relativity,
Maxwell’s equations, and multispin quantum mechanics.

4) Nuclear magnetic resonance and quantum computing in the
language of geometric algebra.

Four th, where y ou can find out (lots) more:

◆ Hestenes’ book New Foundations for Classical Mechanics
(2nd ed., Kluwer, 1999) is a great introduction and exposition of
classical mechanics using geometric algebra; his web site also
contains most of his papers ready to be downloaded:

http://ModelingNTS.la.asu.edu

◆ The geometric algebra group at the Cavendish Labs of Cam-
bridge Univ. also has a great web site for the physics, including
the notes and overheads to a much more complete course:

http://www.mrao.cam.ac.uk/~clifford

n
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ONE-DIMENSIONAL SPACE
• Recall that a vector space over the real numbers is

defined by the following operations:

1) An associative multiplication by scalars, with
; multiplying by zero gives a distinguished

element called the origin :  for all .

2) An associative and commutative addition of vectors,
, such that  for all .

3) These operations are distributive, i.e.
and  for all  and .

• The vector space is one-dimensional if in addition for all
 with  there exists  such that .

• On choosing an arbitrary unit , we obtain a one-to-
one mapping between  and : .

• This mapping allows us to define the length  of  as .

Note the scalars are the linear transformations of , while the
vectors are the objects on which the scalars act.

α v,( ) αv→
αβ( )v α βv( )=

0 0v≡ v ∈

u v,( ) u v+→ v u+= 0 v+ v= v ∈

α u v+( ) αu αv+=
α β+( )v αv βv+= α β, ∈ u v, ∈

origin

vector

scalar

real line

a u, ∈ u 0≠ α ∈ αu a=

0 u≠ ∈
α a↔( ) αu a=( )⇔

a α
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How to Multipl y Vector s

• Let  with  as above.

• Suppose that we can “solve” this equation for , and
see where this leads us.

• On setting , we get , so is a scalar.

• Assuming further that , the product of any two vectors
becomes the product of their lengths (up to sign).

A Perhaps Y et Strang er Idea
• Both the real numbers and are 1-D spaces, and we can

regard them as two orthogonal axes in a 2-D space. This
2-D “space” consists of formal sums of scalars and vectors.

• A product of two such entities (if associative & distributive) is:

• This is our first geometric algebra , which looks a lot like
the complex numbers except that  not .

• In fact if we throw reflection in the origin into our trans-
formation, i.e. , we do get  &

• The only geometrically interesting alternative is .

It’ s so simple, so very simple, that only a child can do it!

a u, ∈ a αu=

α au 1–=

a u 1–≡ α u 2–= u2 α 1–=

u u 1–≡

α βu+( ) γ δu+( ) αγ βδ+( ) αδ βγ+( )u+=

1( )
u2 1= 1–

α– au 1–= u2 1–= 0 1,( )

u2 0=
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THE 4 DIMENSIONSOF 2D
And the g eometr y behind comple x number s:

• Let us now suppose we can something similar in 2-D, i.e. that
the square of a vector is its length squared: .

• There is one thing we won’t assume: That the product of
vectors is commutative (it was in 1-D, but nevermind...).

• We can still get a commutative product by averaging the
results of multiplying both ways around, i.e. ,
which we call the symmetric par t of the product.

• This is interpreted using the law of cosines, as follows:

We see have rediscovered the usual vector inner pr oduct !

• The antisymmetric part
by way of contrast, is called the outer pr oduct . This is:

➤ Nilpotent , i.e. .

➤ Alternating , i.e. .

➤ Has nonpositive square, since by Cauchy-Schwarz:

a2 a 2=

ab ba+( ) 2⁄

1
2
--- ab ba+ 

  1
2
--- a2 b2 a b–( )2–+ 

 =

1
2
--- a 2 b 2 a b– 2–+ 

  a b•= =

a b∧ ab ba–( ) 2⁄ ab a b•–= =

a a∧ 0=

a b∧ b a∧( )–=



G e o m e t r i c  A l g e b r a :  P a r a l l e l  P r o c e s s i n g  f o r  t h e  M i n d

T I M O T H Y F . H A V E L

L E C T U R E # 1

6 of 13Jan. 9, 2001

NB: This last property shows that the outer product of two
vectors cannot itself be a vector! This new entity is called a
bivector .

• This shows that the magnitude of a
bivector is the area of the parallelogram spanned by ,
justifying its geometric interpretation as a oriented plane
segment (just as a vector is an oriented line segment).

• The outer product of orthonormal vectors is in fact a

square root of , as

so .

• It follows that the products of pairs of vectors generate a
subalgebra , called the even subalg ebra , which in
2-D is isomorphic to the complex numbers.

• The usual mapping of the plane onto the complex numbers
 is obtained by multiplication by a unit vector , i.e.

.

• Thus the unit bivector can also be interpreted as a half-turn
in the plane, or as the generator of rotations via the polar
form: .

a b∧( )2 a b∧( ) b a∧( )– ab a b•–( ) ba a b•–( )–= =

abba a b•( ) ab ba+( ) a b•( )2+–( )–=

a 2 b 2 a b•( )2–( )– 0<=

a b∧ 2 a b∧( )2–≡
a b,

σ1 σ2,
1– ι σ1 σ2∧≡ σ1σ2 σ1 σ2•– σ1σ2= =

ι2 σ1σ2( ) σ2σ1( )– σ1 σ2σ2( )σ1– σ1σ1– 1–= = = =

+ 2( )

u

a au→ a u• a u∧+ a|| a⊥ι+= =

θι( )exp θ( )cos ι θ( )sin+=
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THEALGEBRAOF3DSPACE

The outer pr oduct of three 3-D vector s:

◆ Now consider the symmetric part of the Clifford product of a
vector  and a bivector , which we denote as

. ♥

Setting & on the r.h.s. gives

 , ♣

Since ♥ is clearly antisymmetric in and , swapping them in ♣

shows that it is equal to

. ♦

Similarly, swapping  and  shows ♣ to be the same as

. ♠

It follows that we have found an outer product of three vectors
, which is:

➤ Multi-linear (because the Clifford product is).

➤ Associative (according to the above definitions).

➤ Alternating (just take the average of ♣, ♦ and ♠).

a b c∧

a b c∧( )∧ 1
2
--- a b c∧( ) b c∧( )a+ 

 =

b c∧ bc b c•–= b c∧ b c• cb–=

a b c∧( )∧ 1
2
--- abc cba– 

  a b∧( ) c∧≡ ≡

b c

b c a∧( )∧ 1
2
--- bca acb– 

  b c∧( ) a∧≡ ≡

a b

c a b∧( )∧ 1
2
--- cab bac– 

  c a∧( ) b∧≡ ≡

a b c∧∧
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Coor dinates (ugh!)

◆ A big advantage of these techniques is that they do not
require coordinate expansions relative to a basis.

◆ Nevertheless, dimensionality is most easily established in
this way; thus let  be an orthonormal basis, and

,  .

Then their outer product can be expanded to

since , & so on.

Thus any outer product can be expanded in the basis bivectors

, , , and the space of bivectors is again 3-D.

◆ For three vectors, a similar but longer calculation shows

,

so that the space of trivector s is 1-D. The unit trivector
 is again a square-root of , since:

Because they commute with everything but change sign under
inversion, trivectors are also called pseudo-scalar s.

◆ The outer products of four or more vectors is always , and
hence the dimension of the whole algebra is .

σ1 σ2 σ3, , ∈

a a1σ1 a2σ2 a3σ3+ += b b1σ1 b2σ2 b3σ3+ +=

a b∧ a1b2 a2b1–( )σ1σ2 a1b3 a3b1–( )σ1σ3+=

a2b3 a3b2–( )σ2σ3+

σ1σ2 σ1 σ2• σ1 σ2∧+ σ1 σ2∧ σ2σ1–= = =

σ1σ2 σ1σ3 σ2σ3

a b c∧ ∧ det a b c, ,( ) σ1σ2σ3=

ι σ1σ2σ3= 1–

ι2 σ1σ2σ3( ) σ3σ2σ1( )– σ1σ2( )σ3
2 σ2σ1( )– … 1–= = = =

0
1 3 3 1+ + + 8=



G e o m e t r i c  A l g e b r a :  P a r a l l e l  P r o c e s s i n g  f o r  t h e  M i n d

T I M O T H Y F . H A V E L

L E C T U R E # 1

9 of 13Jan. 9, 2001

The Point of It All

◆ Any element of is simultaneously an additive operator,
a (right, left, two-sided, inner, outer) multiplicative operator, and
also an operand in the carrier space of the corresponding
(semi)group representations.

◆ A positive scalar, for example, is both a magnitude as well as
a dilatation about the origin.

◆ A vector can be viewed as a lineal magnitude, a transla-tion,
or a reflection-dilatation, since for  with ,

(where  and ).

◆ Thus a product of unit vectors
represents the composition

of their reflections, which is a
rotation by twice the lesser
angle between the normal planes
(where is the reverse of ).
Left multiplication by a vector maps
other vectors into a rotation-
dilatation in their mutual plane.

GEOMETRICINTERPRETATION

3( )

u x, ∈ u2 1=

uxu– u x⊥ x||+( )u– u2x⊥ u2x||– x⊥ x||–= = =

x|| x u•( )u= x⊥ x x u•( )u– x u∧( )u= =

v

u

x

uvxvu

-vxv

R uv≡

RxR̃

R̃ vu≡ R
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◆ The even subalg ebra is isomorphic to Hamilton’s
quaternions , since the basis elements , ,

anticommute, square to , and satisfy the relations

, ,     &

(the signs are in accord with a right-handed basis ).

◆ Next, consider the unit trivector : the two-sided operation is
trivial ( ), but right and left-multiplication are the
orthogonal complement operation, e.g.

; similarly, , .

◆ A vector operates by
outer multiplication on some
other vector by mapping it to
the bivector , which has
dimensions of area and so is
best visualized as the oriented
parallelogram swept out by
as it is translated by .

◆ Similarly, the trivector is the oriented volume
element swept out by as it is translated by ; the asso-
ciativity of the outer product means that the same volume is
obtained on sweeping  by .

+ 3( )
Q I σ2σ3≡ J σ3σ1≡

K σ1σ2≡ 1–

I J K–= JK I–= I K J–= I JK 1=

σ1 σ2 σ3, ,

ι
ιx ι̃ ιι̃x x= =

ισ1 σ3σ2σ1
2– σ2σ3= = ισ2 σ3σ1= ισ3 σ1σ2=

a

b

c

a∧b

a∧b∧c

a

b
a b∧

b
a

a b c∧ ∧
a b∧ c

b c∧ a
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Relations to Other Mathematical Notions

◆ The foregoing geometric interpretations show that Gibbs’
cross pr oduct  is related to the outer product as follows:

(NB: the cross product changes sign on inversion in the origin,
but the outer product is fully basis independent).

◆ It also follows that the triple pr oduct  is the same as

Writing  allows this to be rewritten as

.

The inner product of a vector and a bivector is defined so that
the reciprocal relation is also true, i.e.

.

◆ Thus one can regard the space of bivectors as the dual
space , and multiplication by as the isomorphism defined
by the given metric with  (which Gibbs identified with ).

◆ Finally, consider the comm utator pr oduct  of bivectors:

.

This shows that the Lie algebra is (isomorphic to) the
commutator algebra of bivectors. The exponential map

is the quaternion for a rotation about  by the angle .

a b∧ ι a b×( )= a b× ι– a b∧( )=⇔

a ι– b c∧( )( )• a b c×( )• ι– a b c∧ ∧( )= =

ιd b c∧≡
ι a d•( ) a ιd( )∧=

ι a d∧( ) ι ad da–( ) 2⁄ a ιd( ) ιd( )a–( ) 2⁄ a ιd( )•= = =

∗ ι
∗

ιa ιb,[ ] ba ab–( ) 2⁄≡ ι– a b×( )=

so 3( )

ιa 2⁄–( )exp a 2⁄( )cos ι a 2⁄( ) a a⁄sin–=

a a
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GENERALDEFINITIONS

Sylvester’ s Law of Iner tia:

Definition: A metric vector space is a real v.s. with a
quadratic form , usually written as .

Theorem: Any quadratic form can, by a suitab le choice of
coor dinates, be written in the canonical f orm:

Definition: is the signature of the form, which is
nondeg enerate  if .

Geometric alg ebra of metric vector spaces:

Definition: An associative algebra over is the geometric
algebra of a nondegenerate metric vector space
if it contains  and  as distinct subspaces such that:

1)  for all ;

2)  generates  as an algebra over ;

3)  is not generated by any proper subspace of .

Theorem: All Cliff ord algebras are isomorphic to a direct
sum of matrix alg ebras o ver ,  or .

Q,( )
Q: → v 2 Q v( )≡

Q v1σ1
… vnσn+ +( ) v1

2 … vp
2 vp 1+

2– …– vp q+
2–+ +=

p q,( )
p q+ n=

Q( ) Q,( )

v2 Q v( )= v ∈

Q( )

Q( )
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PARTINGSHOTS
The following is an opinion gained by experience; it cannot be
“proven” save to oneself: The merger of geometric and algebraic
notions provided by GA allows one to more directly and
efficiently use ones geometric intuition to formulate and solve
mathematical problems than any other mathematical system
(tensors, differential forms, etc.). In essence, this means using
the brain’s visual information processing abilities to solve mathe-
matical problems by parallel , rather than sequential , reasoning.
It is amazing how long it has taken the scientific community to
grasp this simple idea! But as Grassmann himself said:

Hermann Grassmann,
forward to the 2nd Ausdehnungslehre, 1862.

I know andfeelobligedto state(thoughI run therisk of seeming

arrogant) that even if this work shouldagain remain unusedfor

anotherseventeenyearsor even longer, still that time will come

whenit will bebrought forth from thedustof oblivion, andwhen

the ideas now dormant will bring forth fruit ... For truth is

eternal and divine, and no phasein the developmentof truth,

however small may be the region encompassed,can passon

without leavinga trace; truth remains,even though the garment

in which poor mortals clothe it may fall to dust.
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