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GEOMETRIC ALGEBRA:
Parallel Pr ocessing f or the Mind

Timothy F. Havel (Nuclear Engineering)

LECTURE #2

J. W. Gibbs, On Multiple Algebra, Science Mag. 25:37-66, 1886.

In its geometricalapplications,multiple algebra will naturally
takeon oneof two principal forms,accordingasvectorsor points
are taken as the elementaryquantities.Theseforms of multiple
algebra may be namedvector analysisand point analysis.The
former is included in the latter, since the subtractionof points
givesus vectors,and in this way Grassmann’s vectoranalysisis
includedin his point analysis.On theotherhand,if werepresent
pointsbyvectorsdrawnfrom a commonorigin, andthendevelop
thoserelations betweensuch vectorsrepresentingpoints,which
are independentof the position of the origin, we may obtain a
large part, possibly all, of an algebra of points. The vector
analysis, thus enlarged, is hardly to be distinguished from a
point analysis,but the treatmentof the subjectin this way has
somethingof a makeshift character, asopposedto the unity and
simplicityof thesubjectwhendevelopeddirectly from the ideaof
something situated at a point.
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BARYCENTRIC CALCULUS
August Fer dinand Möbius (1790-1868)

The barycentric sum of points in an -D
Euclidean space is denoted by ,
where is the total weight . Such sums can also be
viewed as a vector space of dimension , wherein the
points  correspond to a basis (as shown above), namely

(so ). The P.-D. inner product vs. this basis
 induces the coordinate change

,    where

is the centr oid of the ; the coordinates of vs. this new basis
 are called its affine coor dinates .
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Points at Infinity
If every (unit weight!) point of can be uniquely expressed as
a barycentric sum of a system of points , this
system is called a point basis  for .

Points of zero weight are the limit of a sequence of points
which moves off to infinity in a fixed direction as the sum of the
weights goes to zero; therefore they are called points at infinity ,
and identified with a direction. In general, they also have a
magnitude, but this depends on how the limit is taken.

If we choose our basis (or metric!) so that
are (ortho)normal, the weights vs. the basis are
affine coordinates, and (unit weight) points can be viewed as
vectors to an affine hyperplane in , as shown:
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Line-Bound V ector s
Thus the points at infinity (and their magnitudes) can be
viewed as vector s parallel to the affine hyperplane.

This interpretation in shows that the outer product of
a two points is an oriented segment of the line between them, i.e.

Since the magnitude of the bivector is twice the length of the
segment times its height above the origin, any other pair of
points separated by the same distance along the line generate
the same line bound vector; this can also be proven as follows:

Note that a line-bound vector is geometrically distinct from a free
vector  representing a point at infinity!

q2 q1–
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q1∧ q2
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Free Areal Ma gnitudes
The outer product of two free vectors is called a free areal
magnitude . We can write this as

.

This shows that the ordered sum of the line-bound vectors
around a triangle yields a free areal magnitude, i.e.

This is just a discrete version of Stokes’ theorem ... with a
geometric interpretation. To go from here to the continuous
version, just approximate the curve by a polygon, triangulate it,
apply the discrete version to each triangle, and take the limit as
the number of sides goes to infinity.

The outer product of three points is a plane-bound area ... and
so on into as many dimensions as you like!

q2 q1–( ) q3 q1–( )∧ q2 q3∧ q1 q3∧– q1 q2∧+=
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Forces and T orques in One
We regard a force as a free vector ; taking the outer product
with a point in a rigid body yields a line-bound vector
which contains all the information needed to determine how the
force affects the body. To see this, observe that if the body is
pivoted about the point , then the acceleration at each point
is given (up to a constant factor) by

,

as shown in the drawing below:

This illustrates a general rule that we shall see many examples
of: The generators of motion are bivectors.

A second force applied to another point produces the same
response at any point  only if , or

.

This in turn can be true for all only if and hence
, which proves our claim above.
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The Theor y of Scre ws b y Sir Rober t Ball
A complementary interpretation of line-bound vectors is as an
infinitesimal motion. In the plane, rotation about a point with
angular velocity is represented by a weighted point , and all
information on the instantaneous motion of  is in

,

where is the linear velocity of . To prove this, note that
the derivative of the squared distance to any fixed point  is

.

Now if is the unit free area, then .
Also, since , , so , and:

A translation is represented by the free vector , i.e. as a
rotation about a point-at-infinity.

In 3-D space, an instantaneous rotation about an axis thru
a point is represented by a line-bound vector, i.e. by a rotor

, and the resulting motion of a point by .
Instantaneous translations are represented by a translator

, while the sum of a rotor & translator is a general scre w.

c
θ̇ θ̇c

p

θ̇c p∧ θ̇ c p–( ) p∧ p θ̇ p c–( )( )∧ p v⊥∧= = =

v ṗ= p
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Kno wn Onl y by Their Eff ects
The analog of a translator for forces is a sum of two forces,
whose line-bound vectors that are equal in magnitude, opposite
in direction, and on different lines:

The sum of such a pair of forces is
called a couple , and is the outer product of two free vectors.

This brings us to one of the deepest mysteries of geometry: The
reality of nonfactorizab le elements in the algebra. For example,
a general sum of forces cannot itself be written as the outer
product of any two points or free vectors . This follows since
the l.h.s. below is but the r.h.s. vanishes only if the points /
vectors are linearly dependent:

Since , any such wrenc h can always be written
as the sum of a couple and a finite force; similarly, any screw can
be written as the sum of a rotor and a translator.
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THE REGRESSIVE PRODUCT
Grassmann actually defined many kinds of geometrical mul-
tiplication, including ultimately the geometric product itself.

Of particular interest was the regressive (outer) product,
which may be defined via duality as

.

While the usual (progressive ) outer product is a blade in the
direct sum of the nonintersecting subspaces of its factors, the
regressive product is a blade in the intersection of the spanning
subspaces of its factors. In , for example,

More generally, the progressive & regressive products are
related by the “shuffle” formula,

,

where a shuffle is a permutation of that preserves the
order of the first and last elements, is the parity of
that permutation, and the square brackets indicates the dual of
the outer product of the  enclosed factors ( ).
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The Metric Connection
Now let us bring a metric in, by defining a quadratic form in the
barycentric coordinates of the points vs. a
basis ; the corresponding symmetric bilinear
form may be written using matrices as

,

where ( ) are the squared distances among the
basis points . Note that on the difference of a pair
of basis points, e.g. , this form eval-
uates to ; more generally, it gives the
length of any free vector directly. On any pair of basis points is
the form is clearly , and a general inner
product of pairs of unit weight points is .
To be convinced of this, take the vertices of a right pyramid as a
basis, i.e. & for all ( ). The bary-
centric coordinates w.r.t. points are Cartesian coord-
inates vs. the frame with origin & orthonormal axes ,
and you can show that for all free vectors .
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I don’t think we’ re in a Euc lidean space
anymore , Toto...

The astonishing fact is that this quadratic form is indefinite, i.e.
can be negative, and hence it does not correspond to a
Euclidean metric outside of the subspace of free vectors. In fact
its signature is , which for is the Minkowski metric
of relativity. What a coincidence!

At the basis centroid , the form is

 ,

which by a theorem of Lagrange is the negative squared radius
of gyration of the basis (vs. unit weights). Thus if we define

,

where is the distance of to the centroid, then

, whereas on the points .

I have a conjecture that for free vectors, is the inertial
tensor. If so, a simplex of weighted points would describe the
dynamical properties of a rigid body more simply than a total
mass, center of mass and inertial tensor, and would enable the
above static theory of motions and forces to be extended to a
dynamical theory (in 3-D, both involve 10 parameters).
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