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GEOMETRIC ALGEBRA:
Parallel Pr ocessing f or the Mind

Timothy F. Havel (Nuclear Engineering)

LECTURE 3

What is “g eometr y”?

A general definition of “geometry” was
given by Felix Klein (right) in his famous
Erlanger Programm address (1872), as
follows: Geometry is the study of those
quantities and relations which are pre-
served under a group of transformations.

This definition inspired a generation of
research, but is more general than we
need. The classical geometries
(projective, Euclidean and hyperbolic)
involve only Lie groups (named after
Klein’s friend and competitor, Sophus
Lie). These are essentially groups
whose operations can be described
analytically.
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Lie groups are usually studied via their
linear (matrix) representations, which
were introduced by Ferdinand Frobenius.
The irreducible representations are the
building blocks of his theory, & they map
everything in their carrier space onto
everything else.

Thus, according to Klein, the
vectors of the carrier space are
objects in the geometry of the
corresponding group. It was
Hermann Weyl’s great insight to
realize that the “tensor product” is
just a means of constructing new
group repre-sentations, and he
therefore defined tensors more
generally as the vectors in the
carrier space of any group. Rota
called this Weyl’s principle.

Clifford algebras can be constructed via tensor products, and so
it may seem that tensors are more general. As far as Lie groups
are concerned, however, all the corresponding tensors can be
built from the geometric product!
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You want an e xample?

You’ve already had one: Line-bound vectors! In order to relate
this to ordinary mathematics, we’re going to resort to coord-
inates for a moment here (very sad). Thus consider the affine
coordinates of a unit weight point, i.e.

.

In this coordinate system, the group of all linear transform-ations
which preserve the weights of the points (and hence, in
particular, zero weight points at infinity or free vectors, with
coordinates ) is represented by matrices of the form

The invertible matrices of this form form the group of affine
transf ormations , consisting of the translations and nonsingular
linear transformations of the 3-D coordinates (note that the sub-
group of translations admits no linear 3-D representation, since

). If is a proper orthogonal matrix,
we obtain a subgroup consisting of all translations and rotations,
i.e. the group of rigid motions  or proper Euclidean group.

p σ0 p1σ1 p2σ2 p3σ3+ + += 1 p1 p2 p3[ ]↔

0 v1 v2 v3[ ]

1 0 0 0

t1 r11 r12 r13

t2 r21 r22 r23

t3 r31 r32 r33

1

p1

p2

p3

1

t1
t2
t3

r11 r12 r13

r21 r22 r23

r31 r32 r33

p1

p2

p3

+
=

p q+( ) t+ p t+( ) q t+( )+≠ rij[ ]
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Now consider the outer product of with a second point ; the
coordinates of this bivector vs. the induced basis  are

,

which are just the six
minors of the matrix shown
on the right here. These are
called the Plüc ker coor dinates of the line-
bound vector after Julius Plücker (left), who
used them to study line geometry at about the
same time as Grassmann.

It can be shown that if the points & are both subjected to
the same affine transformation, then the Plücker coord-inates
are transformed by the second compound of the matrix, i.e. by
the matrix of all its minors. The collection of all such
matrices again forms a group, which maps the free areal
magnitudes onto the same, and thereby gives us a new
representation of the group of affine transformations.

The locus of the tensor is just a line
in an affine space, which likewise uniquely determines the tensor
in accord with Weyl’s principle. General affine trans-formations
do not preserve the length of a line-bound vector, but they do if

forms a rotation matrix. It follows that line-bound vectors are
Euclidean tensors. Other Euclidean tensors are spheres of fixed
radius, ellipsoids of fixed semi-axes, etc.

p q
σi σ j∧

p q∧ q1 p1–( )σ0 σ1∧ … p2q3 p3q2–( )σ2 σ3∧+ +=

1 p1 p2 p3

1 q1 q2 q3

2 2×
2 4×

p q

2 2× 6 6×

r p q r∧ ∧ 0={ } p q∧

rij[ ]
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THERE IS A BETTER WAY
Matrices are f or the computer s ...
The point is that, with geometric algebra, we don’t need to use
coordinates and matrices at all! As we have seen, the rotation of
a 3D vector is given by , where the
spinor  (or quaternion if you will) is given by

More generally, given a metric vector space of signa-
ture and a product of unit vectors within it, the
mapping is a composition of reflections and
inversions, and hence an isometr y of (meaning that it
preserves the inner product). Moreover, by the Cartan-
Dieudonné theorem, every isometry is of this form.

The multiplicative subgroup of the algebra generat-
ed by the unit vectors is denoted by , while the sub-
group of the even subalgebra is denoted by

. These are two-fold covers of the rotation groups
 and , resp., since  gives the same rotation.

v 3∈ RvR̃ RvR 1–=

p q,
p q, R u1u2…=

v p q,∈ RvR 1–→

p q,

p q,( )
Pin p q,( )

+ p q,( ) Pin p q,( )∩
Spin p q,( )
O p q,( ) SO p q,( ) R±

R ιa( ) 2⁄( )exp ιa 2⁄( )k
k!⁄

k 0=

∞∑= = (a 3 & ι∈ σ1σ2σ3)=

1–( )k
a 2⁄ 2k

2k( )!⁄ ιa
a

------- 1–( )k a 2⁄ 2k 1+

2k 1+( )!
----------------------------

k 0=

∞∑+ 
 

k 0=

∞∑=

a 2⁄( )cos ιa a⁄ a 2⁄( )sin+= (by the series for cos & sin)
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How higher -rank tensor s transf orm:

Now consider how a bivector transforms under rotation of
its factors by a spinor , i.e.

It follows transforms by the same spinor as and , i.e.
the carrier space has changed, but the representation of the
group itself has not! This holds more generally for all tensors that
can be constructed via the geometric product.

Side remarks : Since geometric
algebra can only treat the iso-
metries of metric vector spaces, it
might seem limited to metric
tensors, but in fact the general
linear group is the sub-
group of , and hence this
is not a limitation. Similarly, it may
seem to be limited to anti-
symmetric tensors (i.e. outer
products), but we will soon see
how general tensor products may
be built from geometric products.

p q∧
R Spin p q,( )∈

R p R 1–( ) R qR 1–( )∧ 1
2
--- R p R 1–( ) R qR 1–( ) R qR 1–( ) R p R 1–( )–( )=

1
2
--- R p qR 1– R q p R 1––( ) R p q∧( )R 1–= =

p q∧ p q

Langua ges for Geometr y

Synthetic (Pr olog)

Geometric Alg ebra
(C)

Invariant Theor y
(Assemb ly)

Alg ebraic Geometr y
(Binar y)

GL n( )
Pin n n,( )
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The locus / tensor correspondence does not always work in
geometries over real numbers; for example, the Euclidean inner
product itself is a quadratic form that has only the origin as its
locus, but the same is also true of its negative. For this reason
most mathematicians prefer to work over an algebraically closed
field, i.e. the complex numbers ... but this obviously makes it
less widely applicable to physics!

We have seen that “complex
numbers” arise in geometric
algebras over the reals in many
ways, e.g. as the even sub-
algebra of the Euclidean plane.
Thus an alternative to abstract
complex geometry is to work in
an even dimensional real space.
This leads to more geometric way
to think about Hamiltonian
mechanics in phase (position-momentum) space. Given a phase
space vector  versus an orthonormal

basis and a Hamiltonian , Hamilton’s equations of
motion ,  imply that

THE RETURN OF HAMILTON

 p

q

(−p, q)

H = (p2 + q2) / 2

(q, p)

r Σk pkuk qkvk+( )≡
uk vk,{ } H

q̇k ∂H ∂ pk⁄= ṗk ∂H ∂qk⁄–=
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where is the so-called doub ling bivector . The
time derivative of any other phase space function is given by
its Poisson brac ket  with , i.e.

Like any bivector,  defines a symplectic quadratic form via

which in turn defines a “complex structure” on phase space via

We may thus regard any phase space vector as a “complex”
vector (with ). The correspond-
ing Hermitian inner product has real & imaginary parts:

Symplectic or canonical transformations are those which
preserve the symplectic form, , and so include all
unitary transformations w.r.t. this complex structure.

ṙ ṗkuk q̇kvk+( )
k∑ ∂H

∂qk
---------– uk

∂H
∂ pk
---------vk+ 

 
k∑= =

∂H
∂qk
--------- vk

∂H
∂ pk
--------- uk+ 

  uk vk∧( )•
k∑ ∇H J•≡=

J Σk uk vk∧( )≡
G

H Ġ ∇G ṙ•= =

∇G ∇H J•( )• ∂G
∂qk
--------- vk

∂G
∂ pk
--------- uk+ 

 
k∑ ∂H

∂ pk
--------- vk

∂H
∂qk
--------- uk– 

 
k∑•=

∂G
∂qk
--------- ∂H

∂ pk
--------- ∂G

∂ pk
--------- ∂H

∂qk
---------– 

 
k∑= G H,{ }≡

J

ω x y,( ) x y J•( )•≡ x y∧( ) J• J x y∧( )• J y x∧( )•–= = =

uk J• vk J uk•–= = vk J• uk– J vk•–= =

and hence uk J•( ) J• uk–= vk J•( ) J• vk–=

r q p J•+= p q, u1 … un, ,〈 〉∈

Re r r′〈 | 〉( ) r r′• p p′• q q′•+= =

Im r r′〈 | 〉( ) r r′∧( ) J• q′ p• q p′•–= =

S J S̃ J=
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GEOMETRIC CALCULUS
Star ting with the “real” comple x deriv ative:

.

The conjugate operator annihilates analytic functions, since

are the Cauchy-Riemann  equations. On analytic functions,

is twice the usual complex derivative, since on complex powers

,

but is well-defined even for nonanalytic functions, for example
, which is nowhere analytic!

From Gauss’ and Stoke’s theorems in the plane, we can also
derive the first Cauchy integral formula as follows:

f z( )∇ ∂x f x y,( ) ι ∂y f x y,( )–= z x ιy+=( )

0 ∇ f z( ) ∂x f x y,( ) ι ∂y f x y,( )+= =

∂x u x y,( ) ιv x y,( )+( ) ι ∂y u x y,( ) ιv x y,( )+( )+=

∂xu x y,( ) ∂yv x y,( )–( ) ι ∂xv x y,( ) ∂yu x y,( )+( )+=

f z( )∇ ∂x u x y,( ) ιv x y,( )+( ) ι ∂y u x y,( ) ιv x y,( )+( )–=

∂xu x y,( ) ∂yv x y,( )+( ) ι ∂xv x y,( ) ∂yu x y,( )–( )+=

z
n∇ nz

n 1– ∂xx ∂yy+( ) ι ∂xy ∂yx–( )+( ) 2nz
n 1–

= =

∇
z∇ ∂xx ∂yy–( ) ι ∂xy ∂yx+( )+ 0= =

f z( ) zd∫° u xd v yd–( ) ι u yd v xd+( )∫°+∫° f zd•( )∫° ι f zd×( )∫°+= =

∇ f×( ) x ydd∫∫ ι ∇ f•( ) x ydd∫∫+ ι ∇ f( ) x ydd∫∫ 0= = =
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GC in Three (& Higher) Dimensions
Geometric algebra also enables one to put standard results in
multivariate calculus (on manifolds) into a geometric form. The
key is the vector deriv ative  of Hestenes & Sobczyk, namely

 ,

where and the basis vectors act on the partials
by geometric multiplication.

In 2-D with , we get the “complex” derivative as

.

Breaking the 3-D up into symmetric and antisymmetric parts, we
obtain the diver gence  and the (dual of the) curl  as

 .

The directional deriv ative is given by , which for
vector  is the usual Jacobian applied to .

A very general form of the fundamental theorem of calculus
can also be given, which includes the divergence, Green’s &
Stokes’ theorems as special cases:

This integral formula generalizes to any number of dimensions!

F x( )∇ σ1
F∂
x1∂

-------- … σn
F∂
xn∂

--------+ + σ1 ∂1F … σn ∂nF+ += =

F: n( )→ σk

F f : →≡

∇f σ1∂1 σ2∂2+( ) σ1( )2 σ1u σ2v+( ) ∂x ι∂y–( ) u ιv+( )= =

F x( )∇ F x( )∇• ∇ F x( )∧+=

a ∇•( )F x( )
F f : →≡ a

xd F∇
V

∫ s Fd
V∂∫°=
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THE SPACE-TIME ALGEBRA
If onl y Einstein had kno wn!

The geometric algebra of Minkowski
space-time is generated by an orthonormal
basis , and is linearly spanned by:

scalar s (1-D)

vector s (4-D)

bivector s (6-D)

dual vector s (4-D)

pseudo-scalar s (1-D)

For , consider the involutory mapping between
the even subalgebra  and , given by

.

Since  and

this mapping is an algebra isomorphism . Note
that this isomorphism is frame-dependent.

1 3,( )

γ0 γ1 γ2 γ3, , ,[ ]

1 ∈

γk ∈ γk
2 2δ0k 1–=( )

γkγ l γ lγk–= ∧2∈

γkγ lγm ∧3∈

ι γ0γ1γ2γ3≡ ∧4∈

1 k l, 3 k l≠,≤ ≤
+

1 3,( ) 3( )
1 1↔ γkγ0 σk↔ γkγ l σlσk↔ ι ι↔

σk
2 γkγ0( )2 γk

2γ0
2– 1= = =

γkγ0( ) γ lγ0( ) γ0γkγ lγ0– γ0γ lγkγ0 γ lγ0( ) γkγ0( )–= = =

+
1 3,( ) 3( )≈
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In a given frame of reference , we can split any
event  into

where is the time and
the place of the event in this frame. Henceforth, we will assume
a fixed frame, and denote the relative spatial vectors in this
frame as , , .

For , any Lorentz transf ormation is given by
, where with . Once again, the

corresponding Lie algebra can be identified with the bivector
algebra under its commutator product, and

rotate b y .

The provides a concise means of expressing many physical
relations, even ostensibly nonrelativistic ones. For example, if

is the
space-time velocity ( proper time), and we define the Faraday
bivector as , a manifestly covariant form of
the Lorentz force law is (where is mass &
charge), so that  is the generator of motion.

γ0 γ1 γ2 γ3, , ,[ ]
x ∈

xγ0 x γ0• x γ0∧+ t x+= =

t x γ0•≡ x x γ0∧≡ γ1γ0 γ2γ0 γ3γ0, ,〈 〉∈

σ1 γ1γ0≡ σ2 γ2γ0≡ σ3 γ3γ0≡

1 k l, 3 k l≠,≤ ≤
LxL̃± L

+
1 3,( )∈ LL̃ 1=

boost b y
;β 2ϑ( )tanh=

ϑσk( )exp ϑ( )cosh σk ϑ( )sinh+=

γ 1 σkβ+( )( )1 2/=

θισk( )exp θ( )cos ισk θ( )sin+= 2θ

v vγ0
2 v γ0• v γ0∧+( )γ0 td τd⁄ xd τd⁄+( )γ0= = =

τ
F E ιB+= ∧2∈

m v̇ q F v•= m q

F
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JAMES CLERK MAXWELL
An even more spectacularly concise way of
expressing the geometry behind the physics is
found in the S.T.A. version of Maxwell’s equations.
If is the space-time current
density , these equations are simply

✽

where is the (contra-
variant) vector derivative operator.

To show that this is equivalent to the usual four equations, we
begin by breaking it into its vector & trivector parts:

The vector part yields , or

,

where we have expanded the second term as follows:

The scalar part is , the electric field source equation,
while the bivector part is:

J ρ J+( )γ0=

F∇ J=

∇ γ0∂0 γ1∂1– γ2∂2– γ3∂3–≡ γ0 ∂0 ∇–( )=

F∇ ∇ F• ∇ F∧+ ρ J+( )γ0= =

ρ J+ ∇ F•( ) γ0• ∇ F•( ) γ0∧+=

γ0 ∇∧( ) F• γ0 ∇ F•( )∧– ∇ E ιB+( )• ∂0 E ιB+( )– ∇ γ0ιB( )•+=

γ0 ∇ F•( )∧ ∇ γ0•( )F ∇ γ0 F∧( )•– ∂0 E ιB+( ) ∇ γ0ιB( )•–= =

∇ E• ρ=

J ∂0E+ ∇ ιB( )• ∂0 ιB( )– γ0 ∂0 ∇–( )( ) γ0ιB( )•+=
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The first term is zero since and are orthogonal as space-
time bivectors, while the last term is on the right is the sum of

(which cancels with the second term), and

.

Putting all this together gives the usual magnetic field source
equation .

We now go back and take the trivector part of ✽, i.e.

.

The term because the electric field
is , while the term

gives us the equation  on wedging with . Finally,

while , so that the last equation
 follows on dotting ✽ by .

Note the field’s space-time energy-momentum is

so the electromagnetic stress-energy tensor is just .

∇ ιB

γ0∂0( ) γ0ιB( )• ∂0 γ0 γ0 ιB∧( )•( ) ∂0 ιB( )= =

∇γ0( ) γ0 ιB∧( )•

γ0∇( ) ι γ0B( )( )• ι ∇γ0( ) γ0B( )∧( ) ι ∇ B∧( )–= = =

J ∂0E+ ∇ B×=

0 ∇ F∧ γ0 ∂0 ∇–( )( ) E ιB+( )∧ four terms= = =

γ0∂0 E∧ ∂0 γ0 E∧( ) 0= =

E E1γ1γ0 E2γ2γ0 E3γ3γ0+ +=

∇γ0( ) ιB( )∧ ι γ0∇( ) B• ι
2
--- γ0∇B Bγ0∇+( ) γ0ι ∇ B•( )–= = =

∇ B• 0= γ0

∇γ0( ) E∧ γ0ι ∇ E×( )=

γ0∂0( ) ιB( )∧ γ0ι ∂0B( )–=

∇ E× ∂0B= γ0ι γ1γ2γ3=

P ≡
1
2
--- E

2
B

2
+( ) E B×+( )γ0

1
2
--- E ιB+( ) E ιB–( )γ0

1
2
---– F γ0Fγ0( )γ0 ,= =

Fγ0F( ) 2⁄–
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STILL TO COME!
Quantum Computing by NMR a la GA

In the ne xt & final lecture we shall:

◆ Justify and geometric interpret the tensor product and
imaginary unit of multispin quantum mechanics using the space-
time algebra.

◆ Show how one can process binary information stored in the
states of the spins, and why such a computer would in principle
be more powerful than any “classical” device.

◆ Explain the basic ideas of Nuclear Magnetic Resonance via
geometric algebra, and show how one can “emulate” a quantum
information processor.

◆ Ask if geometric algebra can give any insight into the
relations between the quantum and classical worlds!
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