GEOMETRIC ALGEBRA:

Parallel Processing for the Mind
Timothy F. Havel (Nuclear Engineering)

Lecture 4

On spin \& spinors:

The operators for the $x, y \& z$ components of the angular momentum of a spin $1 / 2$ particle (in units of \hbar) are usually represented by one half the Pauli matrices:

$$
\underline{\sigma}_{1} \equiv\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \underline{\sigma}_{2} \equiv\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \quad \underline{\sigma}_{3} \equiv\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

These are easily seen to anticommute \& square to the identity, and hence correspond to orthonormal vectors in a matrix representation for $\mathcal{G}(3)$.

The state of a spin is more commonly specified by a spinor (unit vector) $|\psi\rangle$ in a 2-D Hilbert space \mathcal{H} over \mathcal{C}, in which case the expected components of the angular momentum are $\frac{1}{2}\langle\psi| \underline{\sigma}_{k}|\psi\rangle=\frac{1}{2} \operatorname{tr}\left(\underline{\Psi}_{k}\right)=\frac{1}{4} \operatorname{tr}\left(\underline{\Psi}_{k}+\underline{\sigma}_{k} \underline{\Psi}\right)=\frac{1}{2} \operatorname{tr}\left(\left(\Psi \bullet \sigma_{k}\right) \underline{1}\right)=\Psi \bullet \sigma_{k}$ where $\underline{\Psi} \equiv|\psi\rangle\langle\psi|$, i.e. the inner product of $\Psi, \sigma_{k} \in \mathcal{G}(3)$!

Since $\Psi \bullet \sigma_{k}$ is a scalar, Ψ itself must be the sum of a scalar \& a vector, and the scalar part is $\langle\Psi\rangle_{0} \equiv \frac{1}{2} \operatorname{tr}(\underline{\Psi})=\frac{1}{2}\langle\psi \mid \psi\rangle=\frac{1}{2}$. Using the fact that the angular momentum is quantized along its own axis to $1 / 2$, the vector part can be written as $\frac{1}{2} \boldsymbol{R} \sigma_{3} \tilde{\boldsymbol{R}}$, i.e. as a rotation of σ_{3} by some spinor $\boldsymbol{R} \in \mathcal{G}^{+}(3)$. It follows that $\Psi=\boldsymbol{R}\left(\frac{1}{2}\left(1+\sigma_{3}\right)\right) \tilde{\boldsymbol{R}}$ or, using the correspondence between $\mathcal{G}^{+}(3)$ and $\operatorname{SU}(2)$ matrices:
$\underline{\Psi}=\left[\begin{array}{ll}a & -b^{*} \\ b & a^{*}\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}a^{*} & b^{*} \\ -b & a\end{array}\right]=\left[\begin{array}{l}a \\ b\end{array}\right]\left[\begin{array}{l}a^{*}\end{array} b^{*}\right]=\left[\begin{array}{l}|a|^{2} a b^{*} \\ b a^{*}|b|^{2}\end{array}\right]=|\psi\rangle\langle\psi|$
Thus we can identify $|\psi\rangle$ with $\psi \equiv \boldsymbol{R} \boldsymbol{E}_{+}$, where $\boldsymbol{E}_{+} \equiv \frac{1}{2}\left(1+\sigma_{3}\right)$ is an idempotent $\left(\boldsymbol{E}_{+}^{2}=\boldsymbol{E}_{+}\right)$. In fact, since the 2 nd column of $\mathrm{SU}(2)$ matrices is determined by the first, we can just use \boldsymbol{R} !

Another big advantage of representing states by sums of scalars \& vectors is that this representation extends directly to statistical ensembles $\{\Psi\}$ of spin states, as follows:
$\bar{\Psi}=\frac{1}{M} \sum_{i=1}^{M} \Psi_{i}=\frac{1}{2}+\frac{1}{2 M} \sum_{i=1}^{M} \boldsymbol{R}_{i} \sigma_{3} \tilde{\boldsymbol{R}}_{i} \underset{M \rightarrow \infty}{\longrightarrow} \frac{1}{2}+\oint \boldsymbol{R} \sigma_{3} \tilde{\boldsymbol{R}} d P(\boldsymbol{R})$
We may write this (dropping the bar) as $\Psi=(1+s) / 2$, where $s \equiv\|s\| \leq 1$ is the ensemble's polarization. The "operator" $\bar{\Psi}$, called the density operator, yields the ensemble average expectation value of any observable \boldsymbol{A} via:
$\overline{\langle\psi| \underline{A}|\psi\rangle}=M^{-1} \sum_{i=1}^{M}\langle\psi| \underline{A}|\psi\rangle=2 M^{-1} \sum_{i=1}^{M}\left\langle\boldsymbol{A} \Psi_{i}\right\rangle_{0}=2\langle\boldsymbol{A} \bar{\Psi}\rangle_{0}$

Spins from Space-Time (sic)

The spin vector s is the net angular momentum (in units of \hbar), which for a classical spinning particle of charge e leads to a magnetic moment of $s \mu_{0} \equiv s e /(2 m)(c=1)$, where μ_{0} is the Bohr magneton. The spatial vector s corresponds to a spacetime bivector $\boldsymbol{s}=\mathbf{s} \gamma_{0}$, where γ_{0} defines its inertial frame. In a co-moving frame, this evolves according to the covariant form of Lorentz equation (Lecture 3) as $\dot{s}=$
$2 \mu_{0}\left(\mathbf{F} \bullet\left(s \gamma_{0}\right)\right) \wedge \gamma_{0}=2 \mu_{0}\left((\boldsymbol{E} \bullet s+(1 \boldsymbol{B}) \bullet s) \gamma_{0}\right) \wedge \gamma_{0}=2 \mu_{0} \boldsymbol{s} \times \boldsymbol{B}$,
where we have used the facts that γ_{0} anticommutes with $\boldsymbol{s}, \boldsymbol{E}$, \boldsymbol{B} and t , while $\boldsymbol{E} \cdot \boldsymbol{s}$ is a scalar but $(\mathrm{l} \boldsymbol{B}) \cdot \boldsymbol{s}$ is a spatial vector. The lack of response to the electric field is a result of choosing a co-moving frame. Thus the magnetic moment of the electron, which is very nearly $2 \mu_{0}$, can be explained by a simple classical model. Like the magnetic field itself, however, spin behaves under inversion like a spatial bivector is .

Multiparticle Algebra

More than the Sum of lts Parts?

To model a system of N particles:
> Take as usual the direct sum of their states (vectors);

- Consider the corresponding joint Clifford algebra, i.e.
$(\mathcal{G}(1,3))^{N} \approx \mathcal{G}(N, 3 N)$;
> This algebra has dimension $2^{4 N}$ (exponential in $N!$).
Assuming there exists a common frame of reference, i.e. a natural choice of time-like γ_{0}^{m} in every particle space, then:
> The even subalgebras $\mathcal{G}^{+}(1,3)$ of different particle spaces commute, since for $1 \leq i, j \leq 3$ and $1 \leq k<l \leq N$

$$
\sigma_{k}^{m} \sigma_{l}^{n} \leftrightarrow\left(\gamma_{k}^{m} \gamma_{0}^{m}\right)\left(\gamma_{l}^{n} \gamma_{0}^{n}\right)=\left(\gamma_{l}^{n} \gamma_{0}^{n}\right)\left(\gamma_{k}^{m} \gamma_{0}^{m}\right) \leftrightarrow \sigma_{l}^{n} \sigma_{k}^{m}
$$

where the superscripts are particle indices.
> Thus one has an isomorphism with the tensor product of the corresponding 3-D Euclidean geometric algebras:

$$
\left(\mathcal{G}^{+}(1,3)\right)^{N} \approx(\mathcal{G}(3))^{\otimes N ;}
$$

$>$ This algebra has dimension $2^{3 N}$ (still exponential!).

Product Operators

The usual nonrelativistic theory of N spin $1 / 2$ particles relies entirely upon the algebra of $2^{N} \times 2^{N}$ matrices over \mathcal{C}, which has dimension only $2^{2 N+1}$. The extra degrees of freedom in the algebra $\left(\mathcal{G}^{+}(1,3)\right)^{N}$ are due to the fact that it contains a different imaginary unit ${ }^{m}$ for every particle m.

These extra degrees of freedom can be removed can be removed by multiplication by the correlator idempotent:

$$
\boldsymbol{C} \equiv \frac{1}{2}\left(1-\imath^{1} \imath^{2}\right) \frac{1}{2}\left(1-\imath^{1} \imath^{3}\right) \cdots \cdots \frac{1}{2}\left(1-\imath^{1} \imath^{N}\right)
$$

This projects everything onto an "ideal" of the correct dimension, in which all these different imaginary units have been identified. In addition, since $\boldsymbol{C}=\boldsymbol{C}^{2}$ is easily seen to commute with everything in the algebra, multiplication by it is trivially a homomorphism onto this ideal (subalgebra).

Henceforth we shall drop the implicit factor of \boldsymbol{C} from all our expressions, and use the single imaginary unit

$$
\mathfrak{\imath} \equiv \mathfrak{\imath}^{1} C=\ldots=\imath^{N} C .
$$

Note the correlated product of the even subalgebras in each particle space, $\left(G^{+}(3)\right)^{\otimes N / C}$, is a subalgebra of dimension $2^{2 N}$ (the same as that of the subspace of Hermitian matrices), which has never been recognized in the matrix algebra!

MULTIPARTICLE SPINORS

Just as in the one-particle case, multi-particle spinors (state vectors) $|\psi\rangle$ in the 2^{N}-D complex Hilbert space correspond to elements of a left-ideal obtained by multiplying through by an idempotent:

$$
\boldsymbol{E} \boldsymbol{C} \equiv \boldsymbol{E}_{+}^{1} \ldots \boldsymbol{E}_{+}^{N} \boldsymbol{C} \quad\left(\boldsymbol{E}_{ \pm}^{m} \equiv \frac{1}{2}\left(1 \pm \sigma_{3}^{m}\right)\right) .
$$

This ideal corresponds, as before, to matrices whose columns are all zero save for their left-most, and provides a carrier space for the products of all possible 3-D rotations.

Similarly, multiparticle density operators may now be written (omitting now the \boldsymbol{C}) as

$$
\Psi=\frac{1}{M} \sum_{i=1}^{M} \Psi_{i}=\frac{1}{M} \sum_{i=1}^{M} \Psi_{i} \tilde{\Psi}_{i}=\frac{1}{M} \sum_{i=1}^{M} \boldsymbol{R}_{i} \boldsymbol{E} \tilde{\boldsymbol{R}}_{i}
$$

where $\boldsymbol{R}_{i} \in\left(\mathcal{G}^{+}(3)\right)^{\otimes N} / \boldsymbol{C}$. Note however that \boldsymbol{R}_{i} may not be factorizable into one particle rotations $\boldsymbol{R}_{i}^{1} \cdots \boldsymbol{R}_{i}^{N}$, in which case the corresponding spinor $\psi_{i}=\boldsymbol{R}_{i} \boldsymbol{E}$ cannot be expressed as a product of one-particle spinors $\psi_{i}^{1} \cdots \psi_{i}^{N}$ and so is termed entangled. It may also happen that the individual terms in this sum can be factorized as $\boldsymbol{R}_{i}^{m} \boldsymbol{E}_{+}^{m} \tilde{\boldsymbol{R}}_{i}^{m}$, but the overall sum is not factorizable. In this case the density operator describes a correlated, but not an entangled, statistical ensemble.

The Basics of Quantum Information Processing

Binary information can be stored in an array of two-state quantum systems (e.g. spin 1/2) relative to a fixed computational basis of $\mathcal{H}\left(2^{N}\right)$ (or ideal in $\left.(\mathcal{G}(3))^{\otimes N} / \boldsymbol{C}\right)$:

$$
\begin{aligned}
& |0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \leftrightarrow \quad|0\rangle\langle 0|=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad \leftrightarrow \quad \boldsymbol{E}_{+}=\frac{1}{2}\left(1+\sigma_{3}\right) \\
& |1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \leftrightarrow \quad|1\rangle\langle 1|=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \quad \leftrightarrow \quad \boldsymbol{E}_{-}=\frac{1}{2}\left(1-\sigma_{3}\right)
\end{aligned}
$$

Each such qubit can be placed into a coherent superposition over these two basis states, which for $\alpha, \beta \in \mathcal{C}$ can be written in the following equivalent ways:

$$
\left.\begin{array}{r}
\alpha|0\rangle+\beta|1\rangle=\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right]
\end{array} \leftrightarrow+\begin{array}{r}
(\alpha|0\rangle+\beta|1\rangle)(\tilde{\alpha}\langle 0|+\tilde{\beta}\langle 1|)=\left[\begin{array}{c}
|\alpha|^{2} \\
\tilde{\alpha} \tilde{\beta} \\
\tilde{\alpha} \beta
\end{array}|\beta|^{2}\right.
\end{array}\right] \quad \leftrightarrow \quad \begin{array}{r}
\left(\alpha+\beta \sigma_{1}\right) E_{+}\left(\tilde{\alpha}+\tilde{\beta} \sigma_{1}\right)=\frac{1}{2}\left(1+\Re(\tilde{\alpha} \beta) \sigma_{1}+\mathfrak{I}(\tilde{\alpha} \beta) \sigma_{2}\right. \\
\left.+\left(|\alpha|^{2}-|\beta|^{2}\right) \sigma_{3}\right)
\end{array}
$$

```
GeometriccAlgebra: Parallel Processing for the Mind
```

A superposition over all qubits individually expands to a superposition over all integers in $\left\{0, \ldots, 2^{N}-1\right\}$, e.g.

$$
|\Omega\rangle=2^{N / 2} \underbrace{(|0\rangle+|1\rangle) \ldots \ldots(|0\rangle+|1\rangle)}_{N}=2^{N / 2} \sum_{j=0}^{2^{N}-1}|j\rangle,
$$

$(|j\rangle \equiv|01 \ldots 0\rangle$ is obtained by binary expansion of the integer j).
By the linearity of quantum mechanics, any unitary operation \boldsymbol{U} on such a superposition operates on every term of its expansion in parallel, i.e.

$$
\underline{\boldsymbol{U}}|\Omega\rangle=2^{N / 2} \sum_{j=0}^{2^{N}-1} \underline{\boldsymbol{U}}|j\rangle
$$

(in $\left(\mathcal{G}^{+}(3)\right)^{\otimes N} / \boldsymbol{C}, \boldsymbol{U}$ acts as $\underline{\boldsymbol{U}}|\Omega\rangle\langle\Omega| \underline{\tilde{\boldsymbol{U}}}$, which is also linear). Moreover, there exists a polynomially-bounded basis for the unitary group $\mathrm{U}\left(2^{N}\right)$ (i.e. one that is unitarily universal).

Example: All one-qubit operations, including those mapping one qubit states to superpositions, e.g. the Hadamard gate

$$
\underline{\boldsymbol{R}}_{\mathrm{H}}|0\rangle=(|0\rangle+|1\rangle) / \sqrt{2} \quad \underline{\boldsymbol{R}}_{\mathrm{H}}|1\rangle=(|0\rangle-|1\rangle) / \sqrt{2},
$$

together with the c-NOT (controlled-NOT) logic gate which computes the XOR of its inputs (see right). Note that this operates on
 bit b conditional on bit a.

There exists a subgroup of $\mathrm{U}\left(2^{N}\right)$ which:
> Maps single states $|j\rangle$ to single states.

- Admits a polynomially bounded basis for the symmetric group $\mathrm{S}\left(2^{N}\right)$ (i.e. that is computationally universal).

This is nontrivial, since unitary operations are necessarily reversible (i.e. each output corresponds to a single input).
Example: The Toffoli gate has three input and three output bits. It copies the $a \& b$ bits, but takes the NOT of the c bit if the other two are both 1 (see right). Setting the c bit to 1 thus takes the
 NAND of the other two.

Some of the hardest and most interesting computational problems (e.g. NP-complete) are decision problems:

Given a boolean function $f:\{0,1\}^{N} \longrightarrow\{0,1\}^{M}$ and an integer $0 \leq j \leq 2^{M}-1$, decide if the set $\{i \mid f(i)=j\}$ has some global property (e.g. is nonempty, periodic, etc.).

One might think such problems could be efficiently solved on a quantum computer by applying a unitary transformation \boldsymbol{U}_{f} (which computes the function f) to a superposition,

$$
\underline{\boldsymbol{U}}_{f}(|\Omega\rangle|\mathbf{0}\rangle)=2^{N / 2} \sum_{i=0}^{2^{N}-1}|i\rangle|f(i)\rangle,
$$

followed by measurement of the output qubit's state. But according to von Neumann's measurement postulate:

The result of a measurement on a quantum system in
a superposition is a random term in the superposition, each with probability equal the modulus of its coefficient.

For $|\Omega\rangle|\mathbf{0}\rangle$, this implies the chance of observing a given $|j\rangle$ is

$$
\operatorname{Pr}(i \mid f(i)=j)=|\{i \mid f(i)=j\}| / 2^{N},
$$

which may be exponentially small. Even if it is not small, some properties of $\{i \mid f(i)=j\}$ (e.g. periodicity) can only be found by enumeration all or most of it.

There is a way around this: If one adjusts the phases of the terms of the input superposition appropriately, an additional transformation can be found that will amplify the magnitude of the coefficients associated with the solution(s), such that the probability of finding the solution upon making a measurement becomes appreciable. Because of an analogy with light diffraction, this is usually called interference.

Example: The Deutsch-Jozsa algorithm.

Suppose we are given a function $f:\{0,1\} \rightarrow\{0,1\}$, and ask:
$>$ Is f a constant function, i.e.

$$
(|\{i \mid f(i)=0\}|=0) \quad \text { or } \quad(|\{i \mid f(i)=1\}|=0) \text {, or: }
$$

$>$ Is f a balanced function, i.e.

$$
|\{i \mid f(i)=0\}|=|\{i \mid f(i)=1\}| \quad \text { ?? }
$$

(two of the four possible functions $f:\{0,1\} \rightarrow\{0,1\}$ are constant, while the other two are balanced). This can be determined classically only by evaluating f on both inputs.

1) Starting with $|01\rangle \equiv|0\rangle|1\rangle$, apply the Hadamard gates:

$$
\left|\psi_{1}\right\rangle \equiv\left(\underline{\boldsymbol{R}}_{\mathrm{H}}^{1} \underline{\boldsymbol{R}}_{\mathrm{H}}^{2}\right)|01\rangle \equiv\left(\underline{\boldsymbol{R}}_{\mathrm{H}}|0\rangle\right)\left(\underline{\boldsymbol{R}}_{\mathrm{H}}|1\rangle\right)=\frac{1}{2}(|0\rangle+|1\rangle)(|0\rangle-|1\rangle)
$$

2) Evaluate f via its unitary transformation \boldsymbol{U}_{f} :

$$
\begin{aligned}
\left|\psi_{2}\right\rangle \equiv \underline{\boldsymbol{U}}_{f}\left|\psi_{1}\right\rangle & =\frac{1}{2}\left(\underline{\boldsymbol{U}}_{f}|0\rangle|0\rangle+\underline{\boldsymbol{U}}_{f}|1\rangle|0\rangle-\underline{\boldsymbol{U}}_{f}|0\rangle|1\rangle-\underline{\boldsymbol{U}}_{f}|1\rangle|1\rangle\right) \\
& =\frac{1}{2}(|0\rangle|f(0)\rangle+|1\rangle|f(1)\rangle-|0\rangle|\bar{f}(0)\rangle-|1\rangle|\bar{f}(1)\rangle)
\end{aligned}
$$

where $\bar{f}=1-f$ is the complement (or negation) of f.
3) Using the fact that

$$
|f(i)\rangle-|\bar{f}(i)\rangle=\left\{\begin{array}{ll}
|0\rangle-|1\rangle & \text { if } f(i)=0 \\
|1\rangle-|0\rangle & \text { if } f(i)=1
\end{array}\right\}=(-1)^{f(i)}(|0\rangle-|1\rangle)
$$

```
Geometric Algebra: Parallel Processing for the Mind
```

we can rewrite this as follows:

$$
\left|\Psi_{2}\right\rangle=\frac{1}{2}\left((-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle\right)(|0\rangle-|1\rangle)
$$

4) Now apply the same pair of Hadamard gates again:

$$
\begin{aligned}
\left|\psi_{3}\right\rangle & \equiv\left(\underline{\boldsymbol{R}}_{\mathrm{H}}^{1} \underline{\boldsymbol{R}}_{\mathrm{H}}^{2}\right)\left|\psi_{2}\right\rangle \quad\left(\text { since } \underline{\boldsymbol{R}}_{\mathrm{H}}(|0\rangle-|1\rangle)=\sqrt{2}|1\rangle\right) \\
& =\frac{1}{2}\left((-1)^{f(0)}(|0\rangle+|1\rangle)+(-1)^{f(1)}(|0\rangle-|1\rangle)\right)|1\rangle
\end{aligned}
$$

5) This in turn may be rewritten as

$$
\left|\psi_{3}\right\rangle= \begin{cases}(-1)^{f(0)}|0\rangle|1\rangle & \text { if } f(0)=f(1) \\ (-1)^{f(0)}|1\rangle|1\rangle & \text { if } f(0)=\bar{f}(1)\end{cases}
$$

showing the concentration of coherence via interference.
6) Thus measurement of the "input" (left-most) qubit gives $|0\rangle$ if f is constant and $|1\rangle$ if f is balanced.

The remarkable thing is that this took only a single evalua-tion of the function f. This algorithm was the first hint that quantum computers are more powerful than classical.

NB: A general quantum search algorithm is known which is quadratically faster than classical linear search, but very few quantum algorithms are known that are exponentially faster.

The Geometry Behind the Logic

The Hadamard Gate Revisited

Recall the action of the Hadamard gate on basis states:

$$
\underline{\boldsymbol{R}}_{\mathrm{H}}|0\rangle=(|0\rangle+|1\rangle) / \sqrt{2} \quad \underline{\boldsymbol{R}}_{\mathrm{H}}|1\rangle=(|0\rangle-|1\rangle) / \sqrt{2},
$$

The idempotents corresponding to the resulting states are:

$$
\begin{array}{lll}
\underline{\boldsymbol{R}}_{\mathrm{H}} \underline{\boldsymbol{E}}_{+} \underline{\tilde{\boldsymbol{R}}}_{\mathrm{H}}=\frac{1}{2}\left[\begin{array}{lr}
1 & 1 \\
1 & 1
\end{array}\right] & \leftrightarrow & \boldsymbol{G}_{+} \equiv\left(1+\sigma_{1}\right) / 2 \\
\underline{\boldsymbol{R}}_{\mathrm{H}} \underline{\boldsymbol{E}}_{-} \underline{\tilde{\boldsymbol{R}}}_{\mathrm{H}}=\frac{1}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] & \leftrightarrow & \boldsymbol{G}_{-} \equiv\left(1-\sigma_{1}\right) / 2
\end{array}
$$

We can also show that

$$
\begin{aligned}
\underline{\boldsymbol{R}}_{\mathrm{H}}(|0\rangle+\mathfrak{\imath}|1\rangle) / \sqrt{2} & =((|0\rangle+|1\rangle)+\mathfrak{\imath}((|0\rangle-|1\rangle))) / 2 \\
& =((1+\mathfrak{\imath})|0\rangle+(1-\mathfrak{\imath})|1\rangle) / 2
\end{aligned}
$$

which becomes $(|0\rangle-1|1\rangle) / \sqrt{2}$ on multiplying thru by the phase factor $(1-1) / \sqrt{2}$. The corresponding idempotents are:

$$
(|0\rangle \pm \imath|1\rangle)(\langle 0| \pm \imath\langle 1|)=\frac{1}{2}\left[\begin{array}{rr}
1 & \mp \imath \\
\pm \imath & 1
\end{array}\right] \quad \leftrightarrow \quad F_{ \pm} \equiv\left(1 \pm \sigma_{2}\right) / 2
$$

Since $\left(\boldsymbol{R}_{\mathrm{H}}\right)^{2}=1$ and maps $\boldsymbol{x} \leftrightarrow \boldsymbol{z} \& \boldsymbol{y} \leftrightarrow-\boldsymbol{y}$, it follows that $\boldsymbol{R}_{\mathrm{H}}$ is just a rotation by π about the axis $\boldsymbol{h}=\left(\sigma_{1}+\sigma_{3}\right) / \sqrt{2}$!

Recall such rotations can be written in exponential form as

$$
\exp (-\imath(\pi / 2) \boldsymbol{h})=-\boldsymbol{l} \boldsymbol{h} \quad\left(\text { since } \boldsymbol{h}^{2}=1\right) .
$$

It may be observed that $(-\boldsymbol{h})^{2}=-1$, due to a geometrically irrelevant global phase (a gauge degree of freedom); the phase corrected Hadamard gate is

$$
\boldsymbol{R}_{\mathrm{H}}=\exp (\imath(\pi / 2)(1-\boldsymbol{h}))=\boldsymbol{h} ; \quad \text { similarly },
$$

the NOT operation N is a rotation by π about σ_{1}, i.e. $N=\sigma_{1}$.

The c-NOT Gate Revisited

Recall that the c-NOT gate takes the NOT of one qubit if the other is $|1\rangle$, e.g.

$$
\begin{array}{ll}
\underline{S}^{2 \mid 1}|00\rangle=|00\rangle & \underline{S}^{2 \mid 1}|01\rangle=|01\rangle \\
\underline{S}^{2 \mid 1}|10\rangle=|11\rangle & \underline{S}^{2 \mid 1}|11\rangle=|10\rangle
\end{array}
$$

Using the nilpotent transition operators $|0\rangle\langle 1| \&|1\rangle\langle 0|$, we can write this as

$$
\begin{aligned}
\underline{\boldsymbol{S}}^{2 \mid 1} & =|00\rangle\langle 00|+|01\rangle\langle 01|+|11\rangle\langle 10|+|10\rangle\langle 11| \\
& =|00\rangle\langle 00|+|01\rangle\langle 01|+\underline{\sigma}_{1}^{2}(|10\rangle\langle 10|+|11\rangle\langle 11|) \\
& =(|0\rangle\langle 0|)(|0\rangle\langle 0|+|1\rangle\langle 1|)+\underline{\sigma}_{1}^{2}(|1\rangle\langle 1|)(|0\rangle\langle 0|+|1\rangle\langle 1|) \\
& =|0\rangle\langle 0| \otimes \mathbf{1}+(|1\rangle\langle 1| \otimes \mathbf{1}) \underline{\sigma}_{1}^{2} \leftrightarrow \quad \boldsymbol{E}_{+}^{1}+\boldsymbol{E}_{-}^{1} \sigma_{1}^{2}
\end{aligned}
$$

This has an interesting ideal-theoretic interpretation:
Rotate qubit 2 by π in the left-ideal defined by \boldsymbol{E}_{-}^{1}, but leave it alone in the complementary ideal defined by the annihillating idempotent \boldsymbol{E}_{+}^{1}.

Using a well-known formula for the exponential of any-thing times a commuting idempotent, this may be written as

$$
\begin{aligned}
\exp \left(\imath(\pi / 2) \boldsymbol{E}_{-}^{1}\left(1-\sigma_{1}^{2}\right)\right) & =\left(1-\boldsymbol{E}_{-}^{1}\right)+\boldsymbol{E}_{-}^{1} \exp \left(-\imath(\pi / 2)\left(1-\sigma_{1}^{2}\right)\right) \\
& =\boldsymbol{E}_{+}^{1}+\boldsymbol{E}_{-}^{1} \sigma_{1}^{2}=1-2 \boldsymbol{E}_{-}^{1} \boldsymbol{G}_{-}^{2}
\end{aligned}
$$

More generally, a conditional rotation is a rotation of a qubit in the left-ideal generated by the idempotents of the given states of one or more other qubits.

Noting that ${ }_{\imath} \sigma_{3} \boldsymbol{E}_{ \pm}= \pm \imath \boldsymbol{E}_{ \pm}$so that rotations about σ_{3}^{1} in the ideal generated by \boldsymbol{G}_{-}^{2} are also conditional phase shifts, the form $1-2 \boldsymbol{E}_{-}^{1} \boldsymbol{G}_{-}^{2}$ makes it clear that $\boldsymbol{S}^{2 \mid 1}$ can alternatively be viewed as a phase shift of the first qubit conditional on the second being along $-\boldsymbol{x}$. We can therefore write $\boldsymbol{S}^{2 \mid 1}$ as a phase shift conditional on both qubits being along $-\boldsymbol{z}$, sandwiched between two Hadamards, as follows:

$$
\boldsymbol{R}_{\mathrm{H}}^{2} \exp \left(-\imath \pi \boldsymbol{E}_{-}^{1} \boldsymbol{E}_{-}^{2}\right) \boldsymbol{R}_{\mathrm{H}}^{2}=\exp \left(-\imath \pi \boldsymbol{E}_{-}^{1} \boldsymbol{R}_{\mathrm{H}}^{2} \boldsymbol{E}_{-}^{2} \boldsymbol{R}_{\mathrm{H}}^{2}\right)=\exp \left(-\imath \pi \boldsymbol{E}_{-}^{1} \boldsymbol{G}_{-}^{2}\right)
$$

Using green \& red arrows for the qubit projected onto the \boldsymbol{E}_{-}^{1} \& \boldsymbol{E}_{+}^{1} ideals, this can be represented by vector diagrams as follows:

This is actually rather close to how $S^{2 \mid 1}$ is implemented in NMR spectroscopy, which also makes common use of such dia-grams without recognizing their ideal-theoretic connection.

The Deutsch-Jozsa Algorithm Revisited

The initial superposition in the Deutsch-Jozsa algorithm is

$$
\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|=\boldsymbol{G}_{+}^{1} \boldsymbol{G}_{-}^{2}=\frac{1}{4}\left(1+\sigma_{1}^{1}-\sigma_{1}^{2}-\sigma_{1}^{1} \sigma_{1}^{2}\right)
$$

If $f(0)=f(1)=0, \boldsymbol{U}_{f}=1$ and so the final Hadamards just transform this back to $\boldsymbol{E}_{+}^{1} \boldsymbol{E}_{-}^{2}$, telling us it's constant.

Now suppose we have the function $f(0)=0, f(1)=1$. Then $\boldsymbol{U}_{f}=\boldsymbol{S}^{2 \mid 1}$, i.e. the output qubit is flipped from $|0\rangle$ to $|1\rangle$ when the input bit is $|1\rangle$. How does this act on the product operators in the initial state? To answer that question by geometric reasoning only, let us go into the ideals generated by \boldsymbol{G}_{-}^{2} and \boldsymbol{G}_{+}^{2}, where we find that

$$
\sigma_{1}^{1} \sigma_{1}^{2}=\sigma_{1}^{1} \sigma_{1}^{2}\left(\boldsymbol{G}_{+}^{2}+\boldsymbol{G}_{-}^{2}\right)=\sigma_{1}^{1} \boldsymbol{G}_{+}^{2}-\sigma_{1}^{1} \boldsymbol{G}_{-}^{2} .
$$

This shows that this state is that shown on the right, i.e. the two components of the first qubit point in opposite directions along \boldsymbol{x}. We know that $\boldsymbol{S}^{2 \mid 1}=1-2 \boldsymbol{E}_{-}^{1} \boldsymbol{G}_{-}^{2}$ will rotate the green one by π about z to give us the state:

$$
\sigma_{1}^{1} \boldsymbol{G}_{+}^{2}+\sigma_{1}^{1} \boldsymbol{G}_{-}^{2}=\sigma_{1}^{1}
$$

Thus the net effect of $S^{2 \mid 1}$ is to do a swap,

$$
\sigma_{1}^{1} \leftrightarrow \sigma_{1}^{1} \sigma_{1}^{2} ;
$$

applied to $\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|$, it swaps the signs of these terms (while it commutes with $\&$ hence has no effect on σ_{1}^{2}), so we get:

$$
\boldsymbol{S}^{2 \mid 1}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| \boldsymbol{S}^{2 \mid 1}=\frac{1}{4}\left(1-\sigma_{1}^{1}-\sigma_{1}^{2}+\sigma_{1}^{1} \sigma_{1}^{2}\right)=\boldsymbol{G}_{-}^{1} \boldsymbol{G}_{-}^{2}
$$

The final Hadamards convert this to $\boldsymbol{E}_{-}^{1} \boldsymbol{E}_{-}^{2}$ as expected.

CLOSING REMARKS

The Future of Quantum Computing

1) To date, computers have done more than theory has in enabling us to deal with complexity in the natural sciences (and elsewhere), because very simple local dynamics can model arbitrarily complex global behavior.
2) The situation in multiparticle quantum systems is similar: Simple (indeed linear) local dynamics can lead to very complex large-scale behavior, including the apparent nonlinearities of the classical world.
3) Quantum computers may yield only modest advantages in combinatorial problems, but they will certainly provide a powerful means of simulating general quantum systems.
4) Thus the advent of quantum computers will greatly extend the reach of fundamental physics to the complex systems found in chemistry and molecular biology.
5) Meanwhile, there is much to be learned about how simple quantum dynamics leads to classical complexity (even chaos), which is the subject of the theory of decoherence.
6) By computing with homomorphic images in Clifford algebras, this may even enable theorems to be "proved" by experiment (for CaF_{2}, a dimension of $2^{10^{11}}$ has been reached).
