The BaSICS of NMR

A macroscopic quantum system:

Although the magnetic dipoles of near-by spins interact, the rapid rotational diffusion of the molecules in liquids average these interactions to zero. Hence to an excellent first-order approximation, spins in different molecules do not interact. It follows that if the state of the spins in the m-th molecule is $\left|\psi^{m}\right\rangle$, then density operator of an M molecule ensemble factorizes as follows:

$$
\begin{aligned}
\Psi & =\overline{\left|\psi^{1} \psi^{2} \ldots \psi^{M}\right\rangle\left\langle\psi^{1} \psi^{2} \ldots \psi^{M}\right|} \\
& =\overline{\left|\psi^{1}\right\rangle\left\langle\psi^{1}\right| \cdots\left|\psi^{M}\right\rangle\left\langle\psi^{M}\right|}=\overline{\left|\psi^{1}\right\rangle\left\langle\psi^{1}\right|} \cdots \overline{\left|\psi^{M}\right\rangle\left\langle\psi^{M}\right|} \\
& =\Psi^{1} \Psi^{2} \ldots \Psi^{M} \approx \Psi^{\otimes M} \quad\left(\Psi \equiv M^{-1} \sum_{m} \overline{\left|\psi^{m}\right\rangle\left\langle\psi^{m}\right|}\right)
\end{aligned}
$$

Thus the kinematics is identical to that of a single molecule!
The dynamics and observables are also identical, since:

$$
\begin{gathered}
e^{-i t \Sigma_{m} \mathbf{H}^{m}}\left(\Psi^{\otimes M}\right) e^{i t \Sigma_{m} \mathbf{H}^{m}}=\left(e^{-i t \mathbf{H}} \Psi e^{i t \mathbf{H}}\right)^{\otimes M} \\
\operatorname{tr}\left(\Psi^{\otimes M} \sum_{m} \sigma_{\alpha}^{m}\right)=M \operatorname{tr}\left(\Psi \sigma_{\alpha}^{m}\right)
\end{gathered}
$$

The weak-coupling Hamiltonian:

The Hamiltonian of liquid-state NMR has the form:

$$
\mathbf{H}=-\frac{1}{2} \sum_{k} \omega_{0}^{k} \sigma_{3}^{k}+\frac{\pi}{2} \sum_{k<l} J^{k l}\left(\sigma_{1}^{k} \sigma_{1}^{l}+\sigma_{2}^{k} \sigma_{2}^{l}+\sigma_{3}^{k} \sigma_{3}^{l}\right)
$$

The first term is the Zeeman interaction (in rad $/ \mathrm{sec}$) with the external magnetic field (along z) as before; the second is the scalar coupling of pairs of spins across chemical bonds.

It follows from first-order perturbation theory that if $\left|\omega_{0}^{k}-\omega_{0}^{l}\right| \gg \pi J^{k l} \quad \forall k, l$ (weak coupling), the scalar coupling terms may be replaced by their secular parts $\pi J^{k l} \sigma_{3}^{k} \sigma_{3}^{l}$. Now since \mathbf{H} is diagonal, $\exp (-t \mathbf{H})$ may be given in closed form.

Radio-frequency fields:

Given a strong RF-field on-resonance with the k-th spin,

$$
\mathbf{H}_{\mathrm{RF}}=\omega_{1}^{k}\left(\cos \left(\omega_{0}^{k} t\right) \sigma_{1}^{k}+\sin \left(\omega_{0}^{k} t\right) \sigma_{2}^{k}\right)=\omega_{1}^{k} \exp \left(\imath \omega_{0}^{k} t \sigma_{3}^{k}\right) \sigma_{1}^{k}
$$

with $\omega_{1}^{k} \gg \pi\left|J^{k \mid}\right| \forall l$, it follows from the Liouville-von Neumann equation that in a co-rotating frame

$$
\Psi^{\prime}=\exp \left(-\omega \omega_{0}^{k} t \sigma_{3}^{k}\right) \Psi \exp \left(\omega \omega_{0}^{k} t \sigma_{3}^{k}\right),
$$

the (spin vector of) the spin rotates about the x^{\prime} axis according to $\exp \left(--\omega_{1}^{k} t \sigma_{1^{\prime}}^{k}\right)$. Henceforth, all our transform-ations will be referred to such a rotating frame (w/o primes).

In-Phase \& Anti-phase Coherence

The effect of scalar coupling:

The (weak) scalar coupling propagator has the form:

$$
\exp \left(-\imath \pi J^{12} t \sigma_{3}^{1} \sigma_{3}^{2} / 2\right)=\cos \left(\pi J^{12} t / 2\right)-\imath \sin \left(\pi J^{12} t / 2\right) \sigma_{3}^{1} \sigma_{3}^{2}
$$

Applied to a transverse state of e.g. spin 1, this yields:

$$
\begin{array}{r}
\exp \left(-12 \pi J^{12} t \sigma_{3}^{1} \sigma_{3}^{2} / 2\right) \sigma_{1}^{1} \exp \left(12 \pi J^{12} t \sigma_{3}^{1} \sigma_{3}^{2} / 2\right) \\
=\cos \left(\pi J^{12} t\right) \sigma_{1}^{1}+\sin \left(\pi J^{12} t\right) \sigma_{2}^{1} \sigma_{3}^{2}
\end{array}
$$

This is a rotation between in-phase $\left(\sigma_{1}^{1}\right)$ and anti-phase ($\sigma_{2}^{1} \sigma_{3}^{2}$) coherence on spin 1.

A classical interpretation is found on rotating to the z-axis, where the diagonal matrix elements in the σ_{3} basis $(|0\rangle \equiv|\uparrow\rangle$, $|1\rangle \equiv|\downarrow\rangle$) are deviations from equal populations:

$P O$	$\langle 00\| P O\|00\rangle$	$\langle 10\| P O\|10\rangle$	$\langle 01\| P O\|01\rangle$	$\langle 11\| P O\|11\rangle$
σ_{3}^{1}	1	-1	1	-1
$\sigma_{3}^{1} \sigma_{3}^{2}$	1	-1	-1	1

The anti-phase population difference between $|0\rangle \&|1\rangle$ states of spin 1 is inverted in the subensemble where spin 2 is down.

Spectra \& vector diagrams:

Thus in- / anti-phase coherence corresponds to classical ensembles, characterized by these relative populations, which are in transition between spin 1 "up" \& "down". Moreover, spin 1's magnetization (population difference) precesses at the rate $\omega_{0}^{1} /(2 \pi) \pm J^{12}$ as spin 2 is "up" or "down", resp. The spectrum (real part of the Fourier transform) is,

in which the anti-phase population inversion may be seen.
The rotation of σ_{1}^{1} into $\sigma_{2}^{1} \sigma_{3}^{2}$ may be visualized as follows:

Magnetization of spin 1 in subensemble with spin 2 "up" \& "down".

The one-bit quantum logic gates:

The simplest logic gate is the NOT, which is a π-rotation about the x -axis combined with a phase shift,

$$
\exp \left(\mathrm{\imath} \frac{\pi}{2}\left(1-\sigma_{1}^{k}\right)\right)=\mathrm{\imath}\left(\cos (\pi / 2)-\mathrm{\imath} \sin (\pi / 2) \sigma_{1}^{k}\right)=\sigma_{1}^{k}
$$

recalling that the density operators of the basis states of the k th spin (with a totally mixed state everywhere else) are

$$
\begin{aligned}
& (\mathbf{1} \otimes \ldots \otimes|0\rangle\langle 0| \otimes \ldots \otimes \mathbf{1})=\frac{1}{2}\left(1+\sigma_{3}^{k}\right) \equiv \mathbf{E}_{+}^{k} \\
& (\mathbf{1} \otimes \ldots \otimes|1\rangle\langle 1| \otimes \ldots \otimes \mathbf{1})=\frac{1}{2}\left(1-\sigma_{3}^{k}\right) \equiv \mathbf{E}_{-}^{k},
\end{aligned}
$$

we can use the anticommutivity of $\sigma_{1}^{k} \& \sigma_{3}^{k}$ to show that this NOT gate maps the $|0\rangle$ state of the k-th spin to the $|1\rangle$ state:

$$
\sigma_{1}^{k} \mathbf{E}_{+}^{k} \sigma_{1}^{k}=\sigma_{1}^{k} \frac{1}{2}\left(1+\sigma_{3}^{k}\right) \sigma_{1}^{k}=\left(\sigma_{1}^{k}\right)^{2} \frac{1}{2}\left(1-\sigma_{3}^{k}\right)=\mathbf{E}_{-}^{k}
$$

- Another important one-bit, but nonboolean, gate is the Hadamard transform HAD:

$$
\exp \left(\imath \frac{\pi}{2}\left(1-\sqrt{2}\left(\sigma_{1}^{k}+\sigma_{3}^{k}\right)\right)\right)=\sqrt{2}\left(\sigma_{1}^{k}+\sigma_{3}^{k}\right)
$$

which can be show to map $\sigma_{1}^{k} \leftrightarrow \sigma_{3}^{k} \& \sigma_{2}^{k} \leftrightarrow-\sigma_{2}^{k}$. It also maps $|0\rangle \leftrightarrow(|0\rangle+|1\rangle) / \sqrt{2} \&|1\rangle \leftrightarrow(|0\rangle-|1\rangle) / \sqrt{2}$, and so can be used to prepare a uniform superposition over all spins as above.

The multi-bit boolean logic gates:

Interesting computations require feedback, i.e. the state of one bit must influence what happens to another, but the usual AND \& OR gates are not reversible (only one output!).

An important two-bit gate is the controlled-NOT:

$$
\exp \left(\frac{\pi}{2}\left(1-\sigma_{1}^{1}\right) \mathbf{E}_{-}^{2}\right)=\sigma_{1}^{1} \mathbf{E}_{-}^{2}+\mathbf{E}_{+}^{2}
$$

This "c-NOT" is readily shown to flip the first spin in states where the second is down (just as we considered earlier), i.e.

$$
|00\rangle \leftrightarrow|00\rangle \quad|10\rangle \leftrightarrow|10\rangle \quad|01\rangle \leftrightarrow|11\rangle \quad|11\rangle \leftrightarrow|01\rangle,
$$

or more compactly: $\left|\delta^{1} \delta^{2}\right\rangle \leftrightarrow\left|\left(\delta^{1}+\delta^{2} \bmod 2\right)\left(\delta^{2}\right)\right\rangle$. Thus idempotents also describe the conditionality of operations.

Another obvious gate is the SWAP of two bits,

$$
p\left(\imath \frac{\pi}{2} \Pi^{12}\right)=\Pi^{12} \equiv \frac{1}{2}\left(1+\sigma_{1}^{1} \sigma_{1}^{2}+\sigma_{2}^{1} \sigma_{2}^{2}+\sigma_{3}^{1} \sigma ;\right.
$$

Π^{12} is also called the particle interchange operator.
These can be extended to N bits; e.g., the Toffoli gate is:

$$
\exp \left(\left(\frac{\pi}{2}\left(1-\sigma_{1}^{1}\right) \mathbf{E}_{-}^{2} \mathbf{E}_{-}^{3}\right)=\sigma_{1}^{1} \mathbf{E}_{-}^{2} \mathbf{E}_{-}^{3}+\left(1-\mathbf{E}_{-}^{2} \mathbf{E}_{-}^{3}\right)\right.
$$

The TOF alone is universal for boolean logic; more generally, the c-NOT and one-bit rotations generate all of $\operatorname{SU}\left(2^{N}\right)$.

NMR Implementations of Gates

Radio-frequency pulse sequences:

The NOT gate is easily implemented by a strong RF pulse, in phase with the x-axis, whose frequency range spans only the resonance of the target spin, and whose duration is sufficient to rotate it by π (note the global phase offset of \imath has no effect on the density operator).

The HAD gate is similarly obtained from the pulse sequence (written in left-to-right temporal order):
$\left[\frac{\pi}{8} \sigma_{2}^{k}\right] \rightarrow\left[\frac{\pi}{2} \sigma_{1}^{k}\right] \rightarrow\left[-\frac{\pi}{8} \sigma_{2}^{k}\right] \Leftrightarrow \exp \left(\mathrm{l} \frac{\pi}{8} \sigma_{2}^{k}\right) \exp \left(-\mathrm{l} \frac{\pi}{2} \sigma_{1}^{k}\right) \exp \left(-1 \frac{\pi}{8} \sigma_{2}^{k}\right)$
To implement the c-NOT gate, we proceed as follows:

$$
\begin{aligned}
& \exp \left(\mathrm{\imath} \frac{\pi}{2}\left(1-\sigma_{1}^{1}\right) \mathbf{E}_{-}^{2}\right)=\exp \left(-\mathrm{\imath} \frac{\pi}{4} \sigma_{2}^{1}\right) \exp \left(\imath \pi \mathbf{E}_{-}^{1} \mathbf{E}_{-}^{2}\right) \exp \left(\mathrm{\imath} \frac{\pi}{4} \sigma_{2}^{1}\right) \\
& \quad=\exp \left(-\mathrm{\imath} \frac{\pi}{4} \sigma_{2}^{1}\right) \exp \left(-\mathrm{l} \frac{\pi}{4}\left(\sigma_{3}^{1}+\sigma_{3}^{2}\right)\right) \exp \left(\mathrm{\imath} \frac{\pi}{4} \sigma_{3}^{1} \sigma_{3}^{2}\right) \exp \left(\mathrm{\imath} \frac{\pi}{4} \sigma_{2}^{1}\right) \sqrt{\mathrm{l}} \\
& \quad=\exp \left(-\mathrm{l} \frac{\pi}{4}\left(\sigma_{3}^{1}+\sigma_{3}^{2}\right)\right) \exp \left(-\mathrm{l} \frac{\pi}{4} \sigma_{1}^{1}\right) \exp \left(\mathrm{\imath} \frac{\pi}{4} \sigma_{3}^{1} \sigma_{3}^{2}\right) \exp \left(\mathrm{l} \frac{\pi}{4} \sigma_{2}^{1}\right) \sqrt{\mathrm{l}}
\end{aligned}
$$

This is a ($\pi / 2$)-rotation about y , a weak coupling evolution for $1 /\left(2 J^{12}\right)$, a $(\pi / 2)$-rotation about x , and a Zeeman evolution.

Geometric Algebra: Parallelprocessing for thermind

Vector diagram description:

- This pulse sequence may be depicted as follows:

In terms of Bloch diagrams, we have:

Caption: Here, red is magnetization of 1 spin in molecules where 2 spin is up, and green that of 1 spin where 2 down.

Pseudo-Pure States

Starting from equilibrium:

Since $|2 \pi J| \ll\left|\omega_{0}\right| \ll k_{\mathrm{B}} T$, the equilibrium state of a homonuclear spin system (\& its partition function $Q \approx 2^{N}$) is:

$$
\begin{aligned}
\Psi_{\mathrm{eq}} & =\frac{\exp \left(-\mathbf{H}_{\mathrm{Z}} / k_{\mathrm{B}} T\right)}{\operatorname{tr}\left(\exp \left(-\mathbf{H}_{\mathrm{Z}} / k_{\mathrm{B}} T\right)\right)}=\frac{\exp \left(-\sum_{l} \omega_{0}^{l} \sigma_{3}^{l} / 2 k_{\mathrm{B}} T\right)}{Q} \\
& \approx\left(1-\sum_{l} \omega_{0}^{l} \sigma_{3}^{l} / 2 k_{\mathrm{B}} T\right) 2^{-N} \approx\left(1-\frac{\omega_{0} \sum_{i} p_{i}|i\rangle\langle i|}{k_{\mathrm{B}} T}\right) 2^{-N}
\end{aligned}
$$

Here $|0101 \ldots 0\rangle$ is a binary expansion of $|i\rangle, \& p_{i}=h(i)-N / 2$ where $h(i)$ is the Hadamard weight (number of 1 's) of i.

The problem with $\Psi_{\text {eq }}$ is that logical operations performed on the spins at the microscopic level do not effect the same operations on their macroscopic polarizations; for two spins:

	$P O$	$\langle 00\| P O\|00\rangle\langle 10\| P O\|10\rangle$	$\langle 01\| P O\|01\rangle$	$\langle 11\| P O\|11\rangle$	
	ρ_{eq}	$\sigma_{3}^{1}+\sigma_{3}^{2}$	1	0	0
$\rho_{\mathrm{eq}}^{\prime}$	$\mathbf{E}_{+}^{1} \sigma_{3}^{2}$	1	0	-1	0

Spin 1's polarization, i.e. the alternating row sum, goes to 0 .

So we average yet more!

A pseudo-pure state is one whose density operator has exactly one nondegenerate eigenvalue, e.g.

$$
\Psi_{\mathrm{pp}}=\left(1-\frac{\omega_{0} p_{0}|\mathbf{0}\rangle\langle\mathbf{0}|}{k_{\mathbf{B}} T}\right) 2^{-N} \equiv(1+\alpha|\mathbf{0}\rangle\langle\mathbf{0}|) 2^{-N}
$$

Note that the microscopic state $|\mathbf{0}\rangle=|00 \ldots 0\rangle$ is canonically associated with ρ_{pp}.

Because the identity component is unitarily invariant, the state $|i\rangle$ provides a spinorial representation of $\operatorname{SU}\left(2^{N}\right)$:

$$
\mathbf{U} \Psi_{\mathrm{pp}} \tilde{\mathbf{U}}=(1+\alpha(\mathbf{U}|\mathbf{0}\rangle)(\langle\mathbf{0}| \tilde{\mathbf{U}})) 2^{-N} \quad\left(\mathbf{U} \in \mathrm{SU}\left(2^{N}\right)\right)
$$

Similarly, because the identity component does not contribute to the magnetization (population differences), the ensemble average expectation value of the observables is proportional to their ordinary expectation values:
$\frac{1}{2} \operatorname{tr}\left(\Psi_{\mathrm{pp}} \sigma_{1}^{k}\right)=\left(\operatorname{tr}\left(\sigma_{1}^{k}\right)+\alpha \operatorname{tr}\left(\sigma_{1}^{k}|\mathbf{0}\rangle\langle\mathbf{0}|\right)\right) 2^{-N-1}=\frac{\alpha}{2^{N+1}}\langle\mathbf{0}| \sigma_{1}^{k}|\mathbf{0}\rangle$
Since their eigenstructures differ, Ψ_{pp} must be prepared from $\Psi_{\text {eq }}$ by a nonunitary process, e.g. by averaging the popu-lations over all permutations of the states $|i\rangle\langle i|(i>0)$ (more efficient methods exist, which rely upon magnetic gradients).

