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THE BASICS OF NMR
A macr oscopic quantum system:
Although the magnetic dipoles of near-by spins interact, the rapid
rotational diffusion of the molecules in liquids average these
interactions to zero. Hence to an excellent first-order approx-
imation, spins in different molecules do not interact. It follows that
if the state of the spins in the -th molecule is , then density
operator of an  molecule ensemble factorizes as follows:

Thus the kinematics is identical to that of a single molecule!

The dynamics and observables are also identical, since:

m ψm| 〉
M

Ψ ψ1ψ2…ψM| 〉 ψ1ψ2…ψM〈 |=

ψ1| 〉 ψ1〈 | … ψM| 〉 ψM〈 | ψ1| 〉 ψ1〈 | … ψM| 〉 ψM〈 |= =

Ψ1Ψ2…ΨM Ψ⊗M Ψ M
1– ψm| 〉 ψm〈 |

m∑≡ 
 ≈=

)

e
i– tΣm

� m

Ψ⊗M
 
  e

itΣm
� m

e i– t
�

Ψeit
�

 
 

⊗M
=

tr Ψ⊗M σα
m

m∑ 
  M tr Ψσα

m( )=



G e o m e t r i c  A l g e b r a :  P a r a l l e l  P r o c e s s i n g  f o r  t h e  M i n d

T I M O T H Y F . H A V E L

L E C T U R E # 4

2 of 10Jan. 18, 2000

The weak-coupling Hamiltonian:

The Hamiltonian of liquid-state NMR has the form:

The first term is the Zeeman interaction (in rad/sec) with the
external magnetic field (along ) as before; the second is the
scalar coupling of pairs of spins across chemical bonds.

It follows from first-order perturbation theory that if
(weak coupling), the scalar coupling

terms may be replaced by their secular parts . Now
since  is diagonal,  may be given in closed form.

Radio-frequenc y fields:

Given a strong RF-field on-resonance with the -th spin,

with , it follows from the Liouville-von Neumann
equation that in a co-rotating frame

 ,

the (spin vector of) the spin rotates about the axis according
to . Henceforth, all our transform-ations will be
referred to such a rotating frame (w/o primes).
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In-Phase & Anti-phase Coherence

The eff ect of scalar coupling:
The (weak) scalar coupling propagator has the form:

Applied to a transverse state of e.g. spin , this yields:

This is a rotation between in-phase ( ) and anti-phase ( )
coherence on spin .

A classical interpretation is found on rotating to the -axis,
where the diagonal matrix elements in the basis ( ,

) are deviations from equal populations:

The anti-phase population difference between & states of
spin  is inverted in the subensemble where spin  is down.
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Spectra & vector dia grams:

Thus in- / anti-phase coherence corresponds to classical
ensembles, characterized by these relative populations, which
are in transition between spin “up” & “down”. Moreover, spin

’s magnetization (population difference) precesses at the rate
as spin is “up” or “down”, resp. The spectrum

(real part of the Fourier transform) is,

in which the anti-phase population inversion may be seen.

The rotation of  into  may be visualized as follows:
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2 Magnetization of spin
1 in subensemble with
spin 2 “up” & “down”.



G e o m e t r i c  A l g e b r a :  P a r a l l e l  P r o c e s s i n g  f o r  t h e  M i n d

T I M O T H Y F . H A V E L

L E C T U R E # 4

5 of 10Jan. 18, 2000

The one-bit quantum logic gates:

The simplest logic gate is the NOT, which is a -rotation about
the x-axis combined with a phase shift,

;

recalling that the density operators of the basis states of the -
th spin (with a totally mixed state everywhere else) are

,

we can use the anticommutivity of & to show that this NOT
gate maps the  state of the -th spin to the  state:

◆ Another important one-bit, but nonboolean, gate is the
Hadamard transform HAD:

,

which can be show to map & . It also maps

& , and so can be used
to prepare a uniform superposition over all spins as above.
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The multi-bit boolean logic gates:
Interesting computations require feedback, i.e. the state of one
bit must influence what happens to another, but the usual AND
& OR gates are not reversible (only one output!).

An important two-bit gate is the controlled-NOT:

This “c-NOT” is readily shown to flip the first spin in states where
the second is down (just as we considered earlier), i.e.

,

or more compactly: . Thus idem-
potents also describe the conditionality of operations.

Another obvious gate is the SWAP of two bits,

;

 is also called the particle interchange operator.

These can be extended to  bits; e.g., the Toffoli gate is:

The TOF alone is universal for boolean logic; more generally, the
c-NOT and one-bit rotations generate all of .
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NMR Implementations of Gates

Radio-frequenc y pulse sequences:
The NOT gate is easily implemented by a strong RF pulse, in
phase with the x-axis, whose frequency range spans only the
resonance of the target spin, and whose duration is sufficient to
rotate it by (note the global phase offset of has no effect on
the density operator).

The HAD gate is similarly obtained from the pulse sequence
(written in left-to-right temporal order):

To implement the c-NOT gate, we proceed as follows:

This is a -rotation about y, a weak coupling evolution for

, a -rotation about x, and a Zeeman evolution.
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Vector dia gram description:
◆ This pulse sequence may be depicted as follows:

In terms of Bloch diagrams, we have:

Caption: Here, red is magnetization of 1 spin in molecules
where 2 spin is up, and green that of 1 spin where 2 down.
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PSEUDO-PURE STATES
Star ting fr om equilibrium:

Since , the equilibrium state of a
homonuclear spin system (& its partition function ) is:

Here is a binary expansion of , &
where  is the Hadamard weight (number of 1’s) of .

The problem with is that logical operations performed on
the spins at the microscopic level do not effect the same
operations on their macroscopic polarizations; for two spins:

Spin 1’s polarization, i.e. the alternating row sum, goes to 0.
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So we average yet more!

A pseudo-pure state is one whose density operator has exactly
one nondegenerate eigenvalue, e.g.

.

Note that the microscopic state is canonically
associated with .

Because the identity component is unitarily invariant, the
state  provides a spinorial representation of :

Similarly, because the identity component does not contribute to
the magnetization (population differences), the ensemble
average expectation value of the observables is proportional to
their ordinary expectation values:

Since their eigenstructures differ, must be prepared from
by a nonunitary process, e.g. by averaging the popu-lations

over all permutations of the states ( ) (more efficient
methods exist, which rely upon magnetic gradients).
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