GEOMETRIC ALGEBRA:

Parallel Processing for the Mind

Timothy F. Havel (Nuclear Engineering)

AN IAP-2002 PRODUCTION

For geometry, you know, is the door to Science; but this door is so low and small that one can only enter it as a child.

William Kingston Clifford.
The Time is 1844

The place, the rural town of Stettin, in what is now a part of Poland

A second generation gymnasium Lehrer by the name of Hermann Gunther Grassmann has just completed his Magnum Opus, the Ausdehnungslehre, or Calculus of Extension. In it, he lays forth a general theory of forms which today would be called abstract algebra, and applies it to geometry, mechanics, electro-dynamics and crystallography. He sends copies to all the leading mathematicians of his time, including Gauss, Möbius, and Cauchy, none of whom were willing or able to read it.
The following excerpt gives some idea of why:

The primary division in all the sciences is into the real and the formal. The former represents in thought the existent as existing independently of thought, and their truth consists in their correspondence with the existent. The formal sciences on the other hand have as their object what has been produced by thought alone, and their truth consists in the correspondence between the thought processes themselves. Pure mathematics is thus the science of the particular existent which has come to be through thought. The particular existent, viewed in this sense, we name a thought form or simply a form. Thus pure mathematics is the theory of forms.

This provoked the following comment from his contemporary Heinrich Baltzer:

It is not possible for me to enter into those thoughts; I become dizzy & see sky-blue before my eyes when I read them.

Grassmann tried repeatedly but never received a university post (he was rather more successful as a scholar of Sanskrit), and in 1860 the remaining copies of his book were shredded by the publisher. A second edition in 1862 did no better.
October 16, to be precise. The place is Brougham Bridge in Dublin, Ireland

The gentleman shown here is William Rowan Hamilton, a poet, philologist *par excellence*, the Royal Astronomer of Ireland since the age of 21, knighted at 28 and now President of the Royal Society of Ireland. Walking to work, he suddenly stops and in great agitation scratches with his pocket knife the following equations on the stonework of Brougham bridge:

\[i^2 = j^2 = k^2 = ijk = -1 \]

Quaternions, which Hamilton regards as the *algebra of pure time*, have been born.
Hamilton spent the last 22 years of his life developing Quaternions, publishing his results in 109 papers and a 735 page book *Lectures on Quaternions*. In the process he introduced such now common terms as scalar, vector, real and imaginary. Despite his fame (Hamilton’s equations!), his new ideas were only slowly assimilated, as indicated by the following comment from his contemporary J. T. Graves:

> There is still something in this system which gravels me. I have not yet any clear views on the extent to which we are at liberty to arbitrarily create new imaginaries, and to endow them with supernatural properties (such as noncommutativity).

This is also indicated by Hamilton’s own remarks:

> ... it required a certain capital of scientific reputation, amassed in former years, to make it other than dangerously imprudent to hazard the publication of a work which has, although at bottom quite conservative, a highly revolutionary air. It was a part of the ordeal through which I had to pass, an episode in the battle of life, to know that even candid and friendly people secretly, or, as it might happen, openly censured or ridiculed me for what appeared to them my monstrous invention.

This eventually got to him, for he died of alcoholism at the age of 60, still working on *Elements of Quaternions*.
WE ARRIVE IN THE LATE 19TH CENTURY

A Few People Begin to Take Interest

William Kingston Clifford realizes the connections between Grassmann and Hamilton’s works, develops biquaternions, applies them to non-Euclidean geometry, and anticipates Einstein’s theory of relativity in 1870. But he dies at the age of 35.

Arthur Cayley, a lawyer before accepting a chair at Cambridge and the supreme master of determinants, discovers in 1885 something that escaped Hamilton and Clifford, namely how to express general 3-D rotations using quaternions. But he finds them unintuitive!
ANOTHER CENTURY PASSES

In it, the Only Good Mathematician is an Abstract Mathematician

Oliver Heaviside & Josiah Gibbs succeed in getting a very small part of Grassmann & Hamilton’s ideas incorporated into physics and engineering under the name of “vector algebra”.

In pure mathematics, pieces of “geometric algebra” are rediscovered by Marcel Riesz & Elie Cartan, but cloaked in a new notation and vocabulary so as to be completely unrecognizable.

These new names include “tensor algebra”, “differential forms” and “spinor calculus”.

A NEW DAWN COMES

In a Way as Unlikely as Anything Else

David Hestenes, the son of a well-known mathematician, a student of the physicist John Archibald Wheeler, and a dedicated physics teacher in at Arizona State University, Tempe, recognizes that all these seemingly different formalisms are, like life itself, pieces of the same thing united by their common lineage. Moreover, he sees that geometric algebra provides a language which, due it is geometric content, captures much of the logic that makes physics what it is. His first book, *Space-Time Algebra*, appears in 1966, and applies geometric algebra to relativity and quantum mechanics.
Together with his first student, **Garret Sobczyk**, he writes a comprehensive treatise on the underlying mathematics, *From Clifford Algebra to Geometric Calculus*. An editor at his first publisher sits on it for several years, until they give up and try another publisher. Unbeknownst to them, the editor takes a new job at that same publisher and continues to delay its publication several more years.

Finally, they send a copy to Gian Carlo Rota in the MIT mathematics department. Rota, who uses higher algebra to study probability and combinatorics, but also has an appreciation for physics through long association with Los Alamos, recognizes the value of the work and gets it published soon thereafter by D. Reidel. Rota’s recent & untimely death, however, prevented them from ever meeting each other.

We have arrived in the present. This woefully incomplete history will close with Rota’s remarks on Grassmann in his collection of autobiographical sketches, *Indiscrete Thoughts*:
Mathematicians can be divided into two types: problem solvers and theorizers. Most mathematicians are a mixture of the two although it is easy to find extreme examples of both types.

To the problem solver, the supreme achievement in mathematics is the solution of a problem that had been given up as hopeless. It matters little that the solution may be clumsy; all that counts is that it is correct. Once the problem solver finds the solution, he will permanently lose interest in it ... The problem solver is the role model for budding young mathematicians. When we describe to the public the conquests of mathematics, our shining heroes are problem solvers.

To the theorizer, the supreme achievement of mathematics is a theory that sheds sudden light on some incomprehensible phenomenon. Success in mathematics does not lie in solving problems, but in their trivialization. The moment of glory comes with the discovery of a new theory that does not solve any old problems, but renders them irrelevant. To the theorizer, the only mathematics that will survive are the definitions. Great definitions are what mathematics contributes to the world. Theorems are tolerated as a necessary evil since they play an essential role in understanding the definitions.

Grassmann was a theorizer all the way. His great contribution was the definition of geometric algebra. Evil tongues whispered that there was really nothing new in Grassmann’s algebra: “What can you prove with it that you can’t prove without it?” they asked. Whenever you hear this question, be assured that you are likely to be in the presence of something important.
WHAT’S GOING ON HERE?

First, who am I?

◆ My name is Tim Havel, and I am a research scientist now working on a quantum computing project in the Nuclear Engineering Dept. at MIT.

◆ I am however a biophysicist by training, who has worked extensively on a geometric theory of molecular conformation based on an area of mathematics called “distance geometry”.

◆ I first learned about geometric algebra through some of Rota’s students who were studying the mathematical aspects of distance geometry, which I subsequently related to some of Hestene’s work.

Second, why am I telling you this?

◆ I am more of a theorizer than a problem solver, and this course will be mainly about definitions. It will also show you some of the neat things you can do with them, and I expect all of you will quickly find new uses of your own.

◆ The “course” is absolutely informal, and is based on the philosophy that once students get interested in something, they’ll quickly teach it to themselves ... and probably you too!
Third, what will these lectures try to cover?

1) Historical introduction (which you’ve just had!), and then an introduction to the basic notions of geometric algebra in one, two, three and \(n \)-dimensional Euclidean space.

2) Geometric calculus, some examples of how one can do classical statics and mechanics with geometric algebra, and how these fields of “physics” can be regarded as geometry.

3) Introduction to the space-time algebra: Special relativity, Maxwell’s equations, and multispin quantum mechanics.

4) Nuclear magnetic resonance and quantum computing in the language of geometric algebra.

Fourth, where you can find out (lots) more:

◆ Hestenes’ book *New Foundations for Classical Mechanics* (2nd ed., Kluwer, 1999) is a great introduction and exposition of classical mechanics using geometric algebra; his web site also contains most of his papers ready to be downloaded:

 http://ModelingNTS.la.asu.edu

◆ The geometric algebra group at the Cavendish Labs of Cambridge Univ. also has a great web site for the physics, including the notes and overheads to a much more complete course:

 http://www.mrao.cam.ac.uk/~clifford
ONE-DIMENSIONAL SPACE

• Recall that a vector space \mathbf{V} over the real numbers \mathbb{R} is defined by the following operations:

1) An associative multiplication by scalars, $(\alpha, \mathbf{v}) \rightarrow \alpha \mathbf{v}$ with $(\alpha \beta)\mathbf{v} = \alpha(\beta \mathbf{v})$; multiplying by zero gives a distinguished element called the origin: $\mathbf{0} = 0\mathbf{v}$ for all $\mathbf{v} \in \mathbf{V}$.

2) An associative and commutative addition of vectors, $(u, v) \rightarrow u + v = v + u$, such that $\mathbf{0} + \mathbf{v} = \mathbf{v}$ for all $\mathbf{v} \in \mathbf{V}$.

3) These operations are distributive, i.e. $\alpha(u + v) = \alpha u + \alpha v$ and $(\alpha + \beta)v = \alpha v + \beta v$ for all $\alpha, \beta \in \mathbb{R}$ and $u, v \in \mathbf{V}$.

• The vector space is **one-dimensional** if in addition for all $a, u \in \mathbf{V}$ with $u \neq \mathbf{0}$ there exists $\alpha \in \mathbb{R}$ such that $\alpha u = a$.

• On choosing an arbitrary unit $\mathbf{0} \neq u \in \mathbf{V}$, we obtain a one-to-one mapping between \mathbb{R} and \mathbf{V}: $(\alpha \leftrightarrow a) \Leftrightarrow (\alpha u = a)$.

• This mapping allows us to define the **length** of a as $|\alpha|$. Note the scalars are the linear transformations of \mathbf{V}, while the vectors are the objects on which the scalars act.
How to Multiply Vectors

It’s so simple, so very simple, that only a child can do it!

Tom Lear

- Let \(a, u \in V\) with \(a = \alpha u\) as above.
- Suppose that we can “solve” this equation for \(\alpha = au^{-1}\), and see where this leads us.
- On setting \(a \equiv u^{-1}\), we get \(\alpha = u^{-2}\), so \(u^2 = \alpha^{-1}\) is a scalar.
- Assuming further that \(u \equiv u^{-1}\), the product of any two vectors becomes the product of their lengths (up to sign).

A Perhaps Yet Stranger Idea

- Both the real numbers \(\mathbb{R}\) and \(V\) are 1-D spaces, and we can regard them as two orthogonal axes in a 2-D space. This 2-D “space” consists of formal \textit{sums of scalars and vectors}.
- A product of two such entities (if associative & distributive) is:
 \[
 (\alpha + \beta u)(\gamma + \delta u) = (\alpha \gamma + \beta \delta) + (\alpha \delta + \beta \gamma)u
 \]
- This is our first geometric algebra \(\mathcal{G}(1)\), which looks a lot like the complex numbers except that \(u^2 = 1\) not \(-1\).
- In fact if we throw reflection in the origin into our transformation, i.e. \(-\alpha = au^{-1}\), we do get \(u^2 = -1\) & \(\mathcal{G}(0, 1)\).
- The only geometrically interesting alternative is \(u^2 = 0\).
THE 4 DIMENSIONS OF 2D

And the geometry behind complex numbers:

- Let us now suppose we can something similar in 2-D, i.e. that the square of a vector is its length squared: $a^2 = \|a\|^2$.
- There is one thing we won't assume: That the product of vectors is commutative (it was in 1-D, but nevermind...).
- We can still get a commutative product by averaging the results of multiplying both ways around, i.e. $(ab + ba)/2$, which we call the symmetric part of the product.
- This is interpreted using the law of cosines, as follows:

$$\frac{1}{2}(ab + ba) = \frac{1}{2}(a^2 + b^2 - (a - b)^2)$$
$$= \frac{1}{2}(\|a\|^2 + \|b\|^2 - \|a - b\|^2) = a \cdot b$$

We see have rediscovered the usual vector inner product!
- The antisymmetric part $a \wedge b = (ab - ba)/2 = ab - a \cdot b$ by way of contrast, is called the outer product. This is:

- **Nilpotent**, i.e. $a \wedge a = 0$.
- **Alternating**, i.e. $a \wedge b = -(b \wedge a)$.
- Has nonpositive square, since by Cauchy-Schwarz:
\[(a \wedge b)^2 = -(a \wedge b)(b \wedge a) = -(ab - a \cdot b)(ba - a \cdot b) \]
\[= -(abba - (a \cdot b)(ab + ba) + (a \cdot b)^2) \]
\[= -(\|a\|^2\|b\|^2 - (a \cdot b)^2) < 0 \]

NB: This last property shows that the outer product of two vectors cannot itself be a vector! This new entity is called a **bivector**.

- This shows that the magnitude \(\|a \wedge b\|^2 = -(a \wedge b)^2\) of a bivector is the area of the parallelogram spanned by \(a, b\), justifying its geometric interpretation as a **oriented plane segment** (just as a vector is an oriented line segment).
- The outer product of orthonormal vectors \(\sigma_1, \sigma_2\) is in fact a square root of \(-1\), as \(\iota = \sigma_1 \wedge \sigma_2 = \sigma_1 \sigma_2 - \sigma_1 \cdot \sigma_2 = \sigma_1 \sigma_2\) so \(\iota^2 = -(\sigma_1 \sigma_2)(\sigma_2 \sigma_1) = -\sigma_1 (\sigma_2 \sigma_2) \sigma_1 = -\sigma_1 \sigma_1 = -1\).
- It follows that the products of pairs of vectors generate a subalgebra \(\mathcal{G}^+(2)\), called the **even subalgebra**, which in 2-D is **isomorphic** to the complex numbers.
- The usual mapping of the plane onto the complex numbers \(C\) is obtained by multiplication by a unit vector \(u\), i.e.
 \[a \rightarrow au = a \cdot u + a \wedge u = a_\| + a_\perp \iota.\]
- Thus the unit bivector can also be interpreted as a half-turn in the plane, or as the **generator** of rotations via the polar form: \(\exp(\theta \iota) = \cos(\theta) + \iota \sin(\theta)\).
THE ALGEBRA OF 3D SPACE

The outer product of three 3-D vectors:

◆ Now consider the symmetric part of the Clifford product of a vector \(a \) and a bivector \(b \wedge c \), which we denote as

\[
a \wedge (b \wedge c) = \frac{1}{2} \left(a(b \wedge c) + (b \wedge c)a \right).
\]

Setting \(b \wedge c = bc - b \cdot c \) & \(b \wedge c = b \cdot c - cb \) on the r.h.s. gives

\[
a \wedge (b \wedge c) \equiv \frac{1}{2} \left(abc - cba \right) \equiv (a \wedge b) \wedge c,
\]

Since \(\star \) is clearly antisymmetric in \(b \) and \(c \), swapping them in \(\star \) shows that it is equal to

\[
b \wedge (c \wedge a) \equiv \frac{1}{2} \left(bca - acb \right) \equiv (b \wedge c) \wedge a.
\]

Similarly, swapping \(a \) and \(b \) shows \(\star \) to be the same as

\[
c \wedge (a \wedge b) \equiv \frac{1}{2} \left(cab - bac \right) \equiv (c \wedge a) \wedge b.
\]

It follows that we have found an outer product of three vectors \(a \wedge b \wedge c \), which is:

◆ Multi-linear (because the Clifford product is).
◆ Associative (according to the above definitions).
◆ Alternating (just take the average of \(\star, \rhd \) and \(\star \)).
Coordinates (ugh!)

◆ A big advantage of these techniques is that they do not require coordinate expansions relative to a basis.

◆ Nevertheless, dimensionality is most easily established in this way; thus let \(\sigma_1, \sigma_2, \sigma_3 \in V \) be an orthonormal basis, and

\[
a = a_1 \sigma_1 + a_2 \sigma_2 + a_3 \sigma_3, \quad b = b_1 \sigma_1 + b_2 \sigma_2 + b_3 \sigma_3 .
\]

Then their outer product can be expanded to

\[
a \wedge b = (a_1 b_2 - a_2 b_1) \sigma_1 \sigma_2 + (a_1 b_3 - a_3 b_1) \sigma_1 \sigma_3
\]

\[
+ (a_2 b_3 - a_3 b_2) \sigma_2 \sigma_3
\]

since \(\sigma_1 \sigma_2 = \sigma_1 \cdot \sigma_2 + \sigma_1 \wedge \sigma_2 = \sigma_1 \wedge \sigma_2 = -\sigma_2 \sigma_1 \), & so on.

Thus any outer product can be expanded in the basis bivectors \(\sigma_1 \sigma_2, \sigma_1 \sigma_3, \sigma_2 \sigma_3 \), and the space of bivectors is again 3-D.

◆ For three vectors, a similar but longer calculation shows

\[
a \wedge b \wedge c = \det(a, b, c) \sigma_1 \sigma_2 \sigma_3 ,
\]

so that the space of trivectors is 1-D. The unit trivector \(\mathbf{i} = \sigma_1 \sigma_2 \sigma_3 \) is again a square-root of \(-1\), since:

\[
\mathbf{i}^2 = -(\sigma_1 \sigma_2 \sigma_3)(\sigma_3 \sigma_2 \sigma_1) = -(\sigma_1 \sigma_2)\sigma_3^2(\sigma_2 \sigma_1) = ... = -1
\]

Because they commute with everything but change sign under inversion, trivectors are also called pseudo-scalars.

◆ The outer products of four or more vectors is always 0, and hence the dimension of the whole algebra is \(1 + 3 + 3 + 1 = 8 \).
GEOMETRIC INTERPRETATION

The Point of It All

- Any element of $G(3)$ is simultaneously an additive operator, a (right, left, two-sided, inner, outer) multiplicative operator, and also an operand in the carrier space of the corresponding (semi)group representations.

- A positive scalar, for example, is both a magnitude as well as a dilatation about the origin.

- A vector can be viewed as a lineal magnitude, a translation, or a reflection-dilatation, since for $u, x \in \mathcal{V}$ with $u^2 = 1$,

$$-uxu = -u(x_\perp + x_\parallel)u = u^2x_\perp - u^2x_\parallel = x_\perp - x_\parallel$$

(where $x_\parallel = (x \cdot u)u$ and $x_\perp = x - (x \cdot u)u = (x \wedge u)u$).

- Thus a product of unit vectors $R \equiv uv$ represents the composition of their reflections, which is a rotation $Rx\tilde{R}$ by twice the lesser angle between the normal planes (where $\tilde{R} \equiv vu$ is the reverse of R). Left multiplication by a vector maps other vectors into a rotation-dilatation in their mutual plane.
The even subalgebra $G^+(3)$ is isomorphic to Hamilton’s quaternions Q, since the basis elements $I \equiv \sigma_2\sigma_3$, $J \equiv \sigma_3\sigma_1$, $K \equiv \sigma_1\sigma_2$ anticommute, square to -1, and satisfy the relations

$$IJ = -K, \quad JK = -I, \quad IK = -J \quad \& \quad IJK = 1$$

(the signs are in accord with a right-handed basis $\sigma_1, \sigma_2, \sigma_3$).

Next, consider the unit trivector \mathbf{t}: the two-sided operation is trivial ($\mathbf{t}\mathbf{x} = \mathbf{x}$), but right and left-multiplication are the orthogonal complement operation, e.g.

$$\mathbf{t}\sigma_1 = -\sigma_3\sigma_2\sigma_1^2 = \sigma_2\sigma_3; \text{ similarly, } \mathbf{t}\sigma_2 = \sigma_3\sigma_1, \mathbf{t}\sigma_3 = \sigma_1\sigma_2.$$

A vector \mathbf{a} operates by outer multiplication on some other vector \mathbf{b} by mapping it to the bivector $\mathbf{a} \wedge \mathbf{b}$, which has dimensions of area and so is best visualized as the oriented parallelogram swept out by \mathbf{b} as it is translated by \mathbf{a}.

Similarly, the trivector $\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}$ is the oriented volume element swept out by $\mathbf{a} \wedge \mathbf{b}$ as it is translated by \mathbf{c}; the associativity of the outer product means that the same volume is obtained on sweeping $\mathbf{b} \wedge \mathbf{c}$ by \mathbf{a}.
Relations to Other Mathematical Notions

The foregoing geometric interpretations show that Gibbs’ cross product is related to the outer product as follows:

\[a \wedge b = \mathbf{v}(a \times b) \quad \iff \quad a \times b = -\mathbf{v}(a \wedge b) \]

(NB: the cross product changes sign on inversion in the origin, but the outer product is fully basis independent).

It also follows that the triple product is the same as

\[a \cdot (-\mathbf{v}(b \wedge c)) = a \cdot (b \times c) = -\mathbf{v}(a \wedge b \wedge c) \]

Writing \(\mathbf{i}d \equiv b \wedge c \) allows this to be rewritten as

\[\mathbf{v}(a \cdot d) = a \wedge (\mathbf{i}d). \]

The inner product of a vector and a bivector is defined so that the reciprocal relation is also true, i.e.

\[\mathbf{v}(a \wedge d) = \mathbf{v}(ad - da)/2 = (a(\mathbf{i}d) - (\mathbf{i}d)a)/2 = a \cdot (\mathbf{i}d). \]

Thus one can regard the space of bivectors as the dual space \(\mathcal{V}^* \), and multiplication by \(\mathbf{v} \) as the isomorphism defined by the given metric with \(\mathcal{V} \) (which Gibbs identified with \(\mathcal{V}^* \)).

Finally, consider the commutator product of bivectors:

\[[\mathbf{i}a, \mathbf{i}b] \equiv (ba - ab)/2 = -\mathbf{v}(a \times b). \]

This shows that the Lie algebra \(\text{so}(3) \) is (isomorphic to) the commutator algebra of bivectors. The exponential map

\[\exp(-\mathbf{i}a/2) = \cos(\|a/2\|) - \mathbf{i} \sin(\|a/2\|) a/\|a\| \]

is the quaternion for a rotation about \(a \) by the angle \(\|a\| \).
GENERAL DEFINITIONS

Sylvester’s Law of Inertia:

Definition: A metric vector space \((V, Q)\) is a real v.s. with a quadratic form \(Q: V \to R\), usually written as \(\|v\|^2 = Q(v)\).

Theorem: Any quadratic form can, by a suitable choice of coordinates, be written in the canonical form:

\[
Q(v_1 \sigma_1 + \cdots + v_n \sigma_n) = v_1^2 + \cdots + v_p^2 - v_{p+1}^2 - \cdots - v_n^2
\]

Definition: \((p, q)\) is the signature of the form, which is nondegenerate if \(p + q = n\).

Geometric algebra of metric vector spaces:

Definition: An associative algebra over \(R\) is the geometric algebra \(G(Q)\) of a nondegenerate metric vector space \((V, Q)\) if it contains \(V\) and \(R\) as distinct subspaces such that:

1) \(v^2 = Q(v)\) for all \(v \in V\);

2) \(V\) generates \(G(Q)\) as an algebra over \(R\);

3) \(G(Q)\) is not generated by any proper subspace of \(V\).

Theorem: All Clifford algebras are isomorphic to a direct sum of matrix algebras over \(R, C\) or \(Q\).
PARTING SHOTS

The following is an opinion gained by experience; it cannot be “proven” save to oneself: The merger of geometric and algebraic notions provided by GA allows one to more directly and efficiently use one’s geometric intuition to formulate and solve mathematical problems than any other mathematical system (tensors, differential forms, etc.). In essence, this means using the brain’s visual information processing abilities to solve mathematical problems by parallel, rather than sequential, reasoning. It is amazing how long it has taken the scientific community to grasp this simple idea! But as Grassmann himself said:

I know and feel obliged to state (though I run the risk of seeming arrogant) that even if this work should again remain unused for another seventeen years or even longer, still that time will come when it will be brought forth from the dust of oblivion, and when the ideas now dormant will bring forth fruit ... For truth is eternal and divine, and no phase in the development of truth, however small may be the region encompassed, can pass on without leaving a trace; truth remains, even though the garment in which poor mortals clothe it may fall to dust.

Hermann Grassmann, forward to the 2nd Ausdehnungslehre, 1862.