
This is page 1
Printer: Opaque this

Chapter 1

Geometric Algebra Methods
in Quantum Information
Processing by NMR
Spectroscopy

Timothy F. Havel, David G. Cory, Shyamal S.
Somaroo, Ching-Hua Tseng

1.1 Introduction

The relevance of information theoretic concepts to quantum mechanics has
been apparent ever since it was realized that the Einstein-Podolsky-Rosen
paradox does not violate special relativity because it cannot be used to
transmit information faster than light [22, 39]. Over the last few years,
physicists have begun to systematically apply these concepts to quantum
systems. This was initiated by the discovery, due to Benioff [3], Feynman
[25] and Deutsch [17], that digital information processing and even univer-
sal computation can be performed by finite state quantum systems. Their
work was originally motivated by the fact that as computers continue to
grow smaller and faster, the day will come when they must be designed with
quantum mechanics in mind (as Feynman put it, “there’s plenty of room
at the bottom”). It has since been found, however, that quantum infor-
mation processing can accomplish certain cryptographic, communication,
and computational feats that are widely believed to be classically impos-
sible [5, 9, 19, 23, 40, 53], as shown for example by the polynomial-time
quantum algorithm for integer factorization due to Shor [45]. As a result,
the field has now been the subject of numerous popular accounts, including
[1, 11, 37, 60]. But despite these remarkable theoretical advances, one out-
standing question remains: Can a fully programmable quantum computer
actually be built?

Most approaches to this problem (loc. cit.) have attempted to isolate
a single submicroscopic system completely from its environment, so that
it can be placed in a known quantum state and coherently controlled, for
example by laser light. Although such precise state preparation will cer-
tainly be needed to implement a quantum computer that can be scaled
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to problems beyond the reach of classical computers, it is not an absolute
prerequisite for the coherent control and observation of quantum dynamics.
The most complex demonstrations of quantum information processing to
date have in fact been achieved by nuclear magnetic resonance or NMR
spectroscopy on the spin 1/2 nuclei in macroscopic liquid samples contain-
ing an ensemble of molecules at room-temperature. [12, 13, 15, 28]. Under
these conditions the state of the nuclear spins is almost completely random,
but information can nevertheless be stored in their joint statistics. This in-
formation is processed by combining the intra-molecular spin Hamiltonian
with external radio-frequency fields. These fields are microscopically coher-
ent, and can be engineered so as to act coherently across the entire sample.
Special statistical states, called pseudo-pure states, can be prepared so that
the macroscopic dynamics mirrors the microscopic dynamics of the spins.
Finally, the spin degrees of freedom are remarkably well-isolated from the
motional and electronic degrees of freedom, so that their decoherence times
(i.e. the decay time for a quantum superposition) is typically on the order
of seconds in the liquid state. Such decoherence is not only the chief obsta-
cle to performing nontrivial quantum computations by any technology, but
is increasingly recognized as playing a fundamental role in how quantum
mechanics must be reconciled with classical physics [29].

Nuclear magnetic resonance also provides an experimental paradigm
for the study of multiparticle geometric algebra, as elegantly developed
in [20, 21, 48]. The reason is that the so-called product operator formal-
ism, on which the modern theory of NMR spectroscopy is largely based
[7, 8, 16, 24, 46, 47, 51, 57], is a nonrelativistic quotient of the multipar-
ticle Dirac (i.e. space-time [33]) algebra. Thus NMR provides a natural
and surprisingly easy way to experimentally verify some of the predictions
of multiparticle quantum mechanics, as derived by geometric algebra. The
existence of a concrete physical application for the theory is also likely to
inspire new problems with a more general significance. In addition, NMR
is perhaps the most broadly useful form of spectroscopy in existence to-
day, and should greatly benefit from the adoption of the algebraic tech-
niques and geometrical insights afforded by geometric algebra methods.
These same benefits have already been shown to apply to the theory of
quantum information processing, regardless of its physical realization [49].
The numerous connections between quantum information processing and
foundational issues in quantum mechanics, particularly those pertaining to
nonlocality and entanglement, bring the circle to a close.

This paper is intended to introduce physicists and mathematicians to the
main ideas behind quantum information processing by liquid-state NMR
spectroscopy, using the language and techniques of geometric algebra. The
first section provides a brief overview of multiparticle geometric algebra,
mainly to set the notation and terminology (more complete accounts may
be found in the above references). The next section gives a quick introduc-
tion to quantum information processing, again referring to the literature for
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more complete accounts. This is followed by a detailed presentation of the
basics of liquid-state NMR spectroscopy, using the product operator for-
malism, and how NMR can be used to perform universal logical operations
on quantum information. The paper concludes with the results of recent
experiments which show how geometric algebra can be used to “program”
an NMR spectrometer to perform analog information processing, i.e. to
directly simulate general quantum systems.

1.2 Multiparticle Geometric Algebra

Ever since Hestenes’ pioneering work on the applications of geometric al-
gebra to relativistic physics [33], it has been known that the Pauli algebra
G3 is isomorphic to the even subalgebra G+

1,3 of the Dirac algebra G1,3 (also
called the space-time algebra). This isomorphism is obtained by choosing
an inertial frame [γ0,γ1,γ2,γ3], where γ2

0 = −γ2
µ = 1 and γµγν = −γνγµ

for all 0 ≤ ν < µ ≤ 3, and defining the Pauli operators as:

σµ ≡ γµγ0 (1.1)

Note that σµ σν = −σν σµ (1 ≤ ν < µ ≤ 3) and σµ σµ = 1 (1 ≤ µ ≤ 3),
thus showing that this mapping gives the desired isomorphism.

The Dirac multiparticle algebra GN,3N [20, 21, 48] is designed to model
the internal degrees of freedom of spin 1/2 particles like electrons, protons
and the atomic nuclei typically observed by NMR. It is obtained simply by
taking a different orthogonal copy of space-time for each of the N distin-
guishable particles, with bases[

γk0 ,γ
k
1 ,γ

k
2 ,γ

k
3 | k = 1, . . . , N

]
, (1.2)

and considering the geometric algebra that they generate (note the use of
Roman superscripts to label particle spaces). This algebra has dimension
24N . The subalgebra (G+

1,3)N of dimension 23N generated by the even sub-
algebras G+

1,3 from each particle space is endowed with a natural tensor
product structure, since

σkµ σ
`
ν = γ`ν(γkµ γ

k
0)γ`0 = σ`ν σ

k
µ (1.3)

commutes for all 1 ≤ k ≤ ` ≤ N . This plus the fact that it is the algebra,
rather than just the underlying vector space, which is physically relevant,
explains why the state space of a system of distinguishable particles is the
tensor product (G3)⊗N of their individual state spaces G3.

Nevertheless, this particular tensor product space appears to be larger
than is actually needed, since physicists make do with the complex tensor
product of the Pauli algebras, which has real dimension 22N+1. These su-
perfluous degrees of freedom are due to the fact that the Pauli multiparticle
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algebra contains a different unit pseudo-scalar in every particle space. They
may be removed by projecting everything onto the ideal generated by the
correlator,

C ≡ 1
2 (1− ι1ι2) · · · 1

2 (1− ι1ιN ) , (1.4)

where ιk ≡ σk1σ
k
2σ

k
3 is the unit pseudo-scalar associated with the k-th

particle space. This primitive idempotent is easily seen to commute with the
entire multiparticle Pauli algebra, and hence defines a homomorphism into
an algebra (G3)⊗N/C of the correct dimension. This C-correlated product
of Pauli algebras, in turn, is isomorphic to the algebra of all 2N×2N complex
matrices, and so capable of representing all the operations of nonrelativistic
multiparticle quantum mechanics.

Interestingly, when restricted to the product of the even subalgebras
of the embedded Pauli algebras, (G+

3 )⊗N , factorization by C acts as an
isomorphism. This C-correlated even algebra is isomorphic to a real tensor
product of N quaternion algebras (G+

3 )⊗N , and so has dimension 22N —
the same as the real linear space of Hermitian matrices as well as the
Lie algebra u(2N ) of the unitary group. Henceforth, the factor of C in all
expressions will be dropped unless there is a specific reason to include it,
and the pseudo-scalars from different particle spaces will be identified with
the single unit imaginary

ι ≡ ι1C = · · · = ιNC . (1.5)

One can further define spinor representations of the rotation group SO(3)
within the multiparticle geometric algebra [20, 21, 33, 48]. This relies upon
the fact that spinors can be regarded as a minimal left-ideal in the algebra,
which is generated by a primitive idempotent E. Including the correlator
C, this idempotent may be written in product form as:

EC ≡ E1
+E

2
+ · · ·E

N
+C (Ek

+ ≡ 1
2 (1 + σk3), k = 1, . . . , N) (1.6)

The left-ideal itself consists of those elements Ψ ∈ (G3)⊗N such that
Ψ = ΨEC, which in the Pauli matrix representation of the C-correlated
algebra corresponds to matrices with nonzero entries only in their left-
most column. These may be identified with the usual state vectors |ψ 〉 of
a (2N )-dimensional Hilbert space.

Using the relation E = σk3E for all k, we can redefine our correlator C
in this left-ideal to be

D ≡ 1
2 (1− ισ1

3ισ
2
3) · · · 1

2 (1− ισ1
3ισ

N
3 ) , (1.7)

which will be referred to as the directional correlator. It can be shown that,
in contrast to C, right-multiplication by D maps the tensor product of
quaternion algebras (G+

3 )⊗N onto a subalgebra of the correct dimension
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2N+1, and that the quaternion algebra in every particle space acts by left-
multiplication to give a spinorial representation of the rotation group [21].
Thus this subalgebra provides a covariant parametrization for the space of
N -particle states, and for most purposes one can drop the idempotent E
and work directly in this subalgebra. Its elements ψ = ψD are accordingly
called spinors.

The Pauli operators themselves act on the corresponding one-particle
spinors according to

σµ|ψ 〉 ↔ σµ ◦ψ ≡ σµψσ3 (1 ≤ µ ≤ 3)
ı |ψ 〉 ↔ ι ◦ψ ≡ ιψσ3 = ψ ισ3 ,

(1.8)

where right-multiplication by σ3 keeps the results in the Pauli-even subal-
gebra. This can be viewed as a projection of the geometric product times
E+ back into the even subalgebra, since

σµψσ3 = σµψ(E+ −E−) = σµψE+ + ( ̂σµψE+) , (1.9)

where the hat “̂” denotes the main involution or parity operation in G3,
which changes the sign of the odd components. This action is readily ex-
tended, in a well-defined fashion, to an action of the C-correlated products
of the Pauli operators on the D-correlated products of elements from the
even subalgebras of multiple particles.

The multiparticle Dirac algebra is essential to understanding the geomet-
ric origin of the tensor product in multi-spin quantum physics, which in turn
plays a central role in both quantum computing and NMR (vide infra). The
remainder of this paper, however, will make direct use of only the nonrel-
ativistic quotient algebra. In this regard, it is important to note that the
Dirac reverse Γ̃ of any Γ ∈ (G+

1,3) corresponds to the conjugate (i.e. rever-
sion composed with the main involution) in G3, whereas the Pauli algebra
reverse corresponds to the frame-dependent operation γ0 Γ̃γ0. Henceforth,
the notation Γ̃ will be used exclusively for the Pauli algebra reverse. This
operation is readily extended to the multiparticle Pauli algebra by defining
(Γ1Γ2)∼ ≡ Γ̃1Γ̃2, and remains well-defined after correlation. In the usual
matrix representation, this operation is just the Hermitian conjugate.

1.3 Algorithms for Quantum Computers

Because of the tensor product involved, the exact representation of a col-
lection of finite-state quantum systems on a classical computer takes an
amount of memory which grows exponentially with the number of systems.
As first noted by Feynman [25], this implies that it may be possible to
simulate the evolution of one collection of finite-state quantum systems by
another, using only polynomial resources (i.e. time and memory). The idea



6 Geometric Algebra Methods in Quantum

of operating on digital information stored in finite-state quantum systems
originated with Benioff [3], and was extended by Deutsch [17] to show that
discrete problems can also be solved more rapidly on a quantum computer.
At this time, however, very few problems are known which can be solved
exponentially more rapidly, the most notable being Shor’s integer factoriza-
tion algorithm [45]. A quantum algorithm for solving general search prob-
lems with a quadratic speed-up over linear search is available [30], but it
is now widely believed that the important class of NP-complete problems
[27] cannot be solved in polynomial time even on a quantum computer [4].
The advantages that have been demonstrated are nevertheless significant,
and much remains to be learned.

In its standard form, a quantum computer stores binary information in
an ordered array of distinguishable two-state quantum systems, e.g. spin
1/2 nuclei . These are usually referred to as qubits. In keeping with their
usage, the two orthogonal basis states that represent binary “0” and “1” are
denoted by | 0 〉 and | 1 〉, respectively. Thus a two-bit quantum computer
stores the integers 0, 1, 2 and 3 in binary notation as | 00 〉, | 01 〉, | 10 〉 and
| 11 〉, where

| δ1δ2 〉 ≡ | δ1 〉| δ2 〉 ≡ | δ1 〉 ⊗ | δ2 〉 (1.10)

(δ1, δ2 ∈ {0, 1}). This extends in the obvious way to an arbitrary number
of qubits N . The interesting feature of qubits is their ability to exist in
superposition states, c0| 0 〉 + c1| 1 〉 (c0, c1 ∈ C, |c0|2 + |c1|2 = 1). Such a
state is not between | 0 〉 and | 1 〉, as in an analog classical computer with
continuous voltages, nor is it really in both states at once, as sometimes
stated. It can most accurately be said to be in an indeterminate state,
which specifies only the probability |c0|2 and |c1|2 with which | 0 〉 and | 1 〉
will be observed on testing it for this property.

By itself, this is nothing that could not be done on a classical computer
with a good random number generator, but things get more interesting
when one considers superpositions over multiple qubits, e.g.

|ψ 〉 ≡ 1
2 (| 00 〉 − | 01 〉+ | 10 〉 − | 11 〉)

= 1
2 (| 0 〉+ | 1 〉)(| 0 〉 − | 1 〉) .

(1.11)

Let Uf be a unitary transformation of the two qubits, which is defined on
the computational basis by

Uf | 00 〉 = | 0 〉| f(0) 〉 , Uf | 01 〉 = | 0 〉| 1− f(0) 〉 ,
Uf | 10 〉 = | 1 〉| f(1) 〉 , Uf | 11 〉 = | 1 〉| 1− f(1) 〉 ,

(1.12)

where f : {0, 1} → {0, 1} is one of the four possible invertible boolean func-
tions of a single bit, and extended to all superpositions by linearity. This
implies that the application of Uf to a superposition over its input (left)
qubit effectively computes the value of f on both inputs at once. Applied
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to the superposition state |ψ 〉 above, where the output (right) qubit is also
in a superposition, we obtain after straightforward rearrangements:

Uf |ψ 〉 = 1
2

(
(−1)f(0)| 0 〉+ (−1)f(1)| 1 〉

)
(| 0 〉 − | 1 〉) (1.13)

Now consider a second unitary transformation of the qubits RH, which
is called the Hadamard transform and defined on a basis for each bit by

RH| 0 〉 = 1√
2
(| 0 〉+ | 1 〉), RH| 1 〉 = 1√

2
(| 0 〉 − | 1 〉) . (1.14)

This is easily seen to transform the above as follows:

RHUf |ψ 〉 = 1√
2

(
((−1)f(0) + (−1)f(1))| 0 〉+

((−1)f(0) − (−1)f(1))| 1 〉
)
| 1 〉

(1.15)

Thus if f(0) = f(1) (i.e. f is a constant function), testing the “input”
qubit will yield | 0 〉 with probability 1, whereas if f(0) = 1− f(1) (i.e. f is
a “balanced” function), it will yield | 1 〉 with probability 1. The interesting
thing is that this is done with but a single “evaluation” of the function f
(via Uf ), whereas distinguishing these two cases classically would require
two evaluations. This quantum algorithm is due to Deutsch & Jozsa [18].

The feature of quantum mechanics that makes this possible is the coher-
ent mixing of the basis states by the Hadamard transform, so that those
corresponding to the desired solution are amplified and the phase differ-
ences among the remainder result in cancellation. Because this can also
occur when the state of a qubit is correlated with its spatial coordinate, as
in optical diffraction, this is often referred to as interference. By itself, it
does not yield an asymptotic reduction in the computation time required,
but when combined with the exponential growth in the state space with the
number of particles, it becomes possible to cancel exponentially large num-
bers of possibilities and hence attain exponential speed-ups, as in Shor’s
algorithm.

It should be noted that factorizable states, i.e. those that can written as
a product of superpositions over the individual qubits (as in |ψ 〉 above)
are effectively parametrized by the coefficients ck0 and ck1 of the qubits.
Taking the constraints |ck0 |2 + |ck1 |2 = 1 (1 ≤ k ≤ N) and the fact that
there is but a single global phase into account, this implies that the dimen-
sion of the manifold of such states increases as 2N + 1, not exponentially.
The exponential growth in the dimension thus requires that states can be
created which are nonfactorizable, or entangled . Entangled states are not
only required for efficient quantum computing, but are the source of many
quantum “paradoxes” as well [39].

The Hadamard transform is a simple example of a quantum logic gate,
which maps basis states to superpositions. Unitary transformations like
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Uf , on the other hand, constitute logical operations with classical boolean
analogues, which must however be reversible (since unitary transformations
are always invertible). The simplest example is the NOT gate: N | 0 〉 = | 1 〉
andN | 1 〉 = | 0 〉. More interesting calculations require feedback, i.e. opera-
tion on one qubit conditional on the state of another. Although reversibility
precludes operations like AND, which have two inputs but only one output,
the XOR gate, with the second qubit passed through unchanged, can be
realized as a unitary transformation:

S1|2| 00 〉 = | 00 〉 , S1|2| 10 〉 = | 10 〉 ,

S1|2| 01 〉 = | 11 〉 , S1|2| 11 〉 = | 01 〉 .
(1.16)

For obvious reasons, this is sometimes called a controlled-NOT , or c-NOT,
gate. The corresponding three-qubit analog T 1|23, which NOT’s the first
qubit if the other two are both | 1 〉, is known as the Toffoli gate after the
person who first realized that it is universal for boolean logic [55]. This
follows from the fact that, if one sets the first (target) input bit to 1, the
output is the NAND of the other two inputs.

More generally, the c-NOT gates, together with all one-qubit quantum
gates, generate the entire unitary group U(2N ) on N qubits [2]. The gen-
eral problem of “compiling” any given gate U whose generator log(U)/(πι)
can be factorized into commuting product operators will be solved con-
structively by geometric algebra below. Nevertheless, the important issue
is to characterize those unitary transformations which admit efficient imple-
mentations, meaning that the number of “elementary operations” involved
grows only polynomially in the number of qubits affected. Such elementary
operations are usually required to be “local”, in that they involve only a
few qubits at a time. The natural Hamiltonians of NMR, for example, have
at most two spins in any term, but can only be simulated classically using
exponential resources.

1.4 NMR and the Product Operator Formalism

In liquid-state NMR one deals with thermodynamic ensembles of molecules
whose spins are in a mixed state with no effective interactions between
spins in different molecules. A concise description of the relevant statistics
is given by the density operator [6]. A matrix for the density operator of a
pure state is obtained from the corresponding state vector by forming the
dyadic product |ψ 〉〈ψ | (〈ψ |ψ 〉 = 1). As shown in Refs. [32, 48, 49], the
geometric algebra analog of the dyadic product is ψEψ̃ (〈ψψ̃ 〉 = 1). The
density operator of a general mixed state is a convex combination of the
density operators of its constituent spin states, namely

ρ = 2N
∑

j
pj ψjE ψ̃j , (1.17)
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where pj ≥ 0,
∑
j pj = 1 can be interpreted as the probabilities of the spin

states in the ensemble.1 Such a representation is, in general, highly redun-
dant. Because the density operator is necessarily Hermitian (reversion sym-
metric in the product Pauli algebra), a nonredundant, real parametrization
can be obtained by expanding it in the product operator basis

ρ =
∑

µ∈{0,... ,3}N
%µ σ

1
µ1 · · ·σNµN , (1.18)

where σ0 ≡ 1 ≡ 1.
Evolution of a spinor under a time-independent Hamiltonian H is de-

scribed by operation with the corresponding propagator as in Eq. 1.8:

|ψ 〉 ↔ ψ −→ exp(−tιH) |ψ 〉 ↔ exp(−tιH) ◦ψ (1.19)

Since σk3E = E = Eσk3 for all 1 ≤ k ≤ N , it follows that the density
operator itself evolves by two-sided multiplication with the propagator and
its reverse (i.e. conjugation in the multiplicative group):

ρ −→ exp(−tιH)ρ exp(tιH) =

2N
∑

j
pj exp(−tιH)ψjE ψ̃j exp(tιH)

(1.20)

Similarly, the expected value of an observable with Hermitian operator
A is given by the average of its quantum mechanical expectation values
〈ψj |A |ψj 〉 ↔ 2N 〈Aψj E ψ̃j 〉 over the ensemble (where 〈 · 〉 denotes the
scalar part). It follows that these averages may be obtained directly from
the density operator itself as

2N
∑

j
pj 〈AψjE ψ̃j 〉 =

2N
〈
A
∑

j
pj ψjE ψ̃j

〉
= 〈Aρ 〉 .

(1.21)

It may be seen that the factor of 2N in our definition of the density operator
(Eq. 1.17) compensates for the factor of 2−N in the idempotent E, so that
〈ρ 〉 = 1. This normalization of ρ differs from the usual normalization to a
trace of unity in a matrix representation, but saves on factors of 2N when
using geometric algebra.

By our remark following Eq. 1.4, it is also possible to represent the
Hamiltonians of NMR in product operator notation. The dominant term
in these Hamiltonians is the Zeeman interaction of the magnetic dipoles of

1One might hope that one could drop the idempotent in these definitions, as was done
previously for spinors, and work with the convex span of products of the form ψψ̃. Since

these products are even and reversion symmetric, however, they have no bivector part,

and thus they do not span enough degrees of freedom to encode for density operators.
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the spins with the applied magnetic field B0. Assuming as usual that the
field is directed along the z-axis, this term may be written as

HZ ≡ − ~

2 ‖B0‖
∑N

k=0
γk(1− δk)σk3 ≡ − 1

2

∑N

k=0
ωk0 σ

k
3 , (1.22)

where γk here denotes the gyromagnetic ratio of the k-th nucleus, and
δk � 1 is an empirical correction called the chemical shift which describes
the diamagnetic shielding of the nucleus by the electrons in the molecule.
In most of what follows, it will be assumed that we are working with a
homonuclear system, wherein γk = γ` ≡ γ for all 1 ≤ k < ` ≤ N .

In accord with the forgoing observations, the density operator of an en-
semble of N -spin systems evolves under the Zeeman Hamiltonian as

ρ −→ exp(−tιHZ)ρ exp(tιHZ) =∑
µ∈{0,... ,3}N

%µ exp(−tιω1
0σ

1
3/2)σ1

µ1 exp(tιω1
0σ

1
3/2)

· · · exp(−tιωN0 σN3 /2)σNµN exp(tιωN0 σ
N
3 /2) .

(1.23)

Thus the vector given by those terms depending on just a single spin index,
e.g. %k1σ

k
1 + %k2σ

k
2 + %k3σ

k
3 (%kνk ≡ %0...νk...0), precesses about the applied

magnetic field at a constant rate ωk0 . This so-called Bloch vector describes
the observable macroscopic magnetization due to polarization of the k-th
spin over all molecules of the ensemble [24, 26].

In NMR spectroscopy, the spins are controlled by pulses of RF (radio-
frequency) radiation about the z axis. The corresponding Hamiltonian

HRF = − 1
2

∑N

k=1
ωk1
(
cos(ωt)σk1 + sin(ωt)σk2

)
(1.24)

is time-dependent, which normally makes it impossible to give a closed-
form solution. Fortunately, in the present case it is possible to transform
everything into frame which rotates along with the RF field B1, so that if
~γ‖B1‖ ≡ ωk1 � |ωk0 −ω| for all k (i.e. the pulse is strong and hence can be
made short enough that the relative precession of the spins over its duration
is negligible), we can regardHRF as a time-independent Hamiltonian which
rotates each spin at the constant rate ωk1 about the x-axis in the rotating
frame. By changing the phase of the pulse, one can rotate about any desired
axis in the transverse (xy) plane. Henceforth all our transformations will
be relative to such a rotating frame (cf. [34]).

The spins, of course, also interact with one another. This paper is ex-
clusively concerned with the NMR of molecules in liquids, where the rapid
diffusional motion of the molecules averages the through-space interactions
between their nuclear magnetic dipoles to zero much more rapidly than
those interactions can have any net effect. Thus the only effective inter-
action between the nuclei is a through-bond interaction known as scalar
coupling . Assuming the differences in the resonance frequencies ωk0 − ω`0 of
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the spins are substantially larger than the scalar coupling constants Jk`

among them, the transverse components Jk`(σk1σ
`
1 + σk2σ

`
2) in each term

of this Hamiltonian are similarly averaged to zero by their rapid differ-
ential precession. It follows that its effects are well-approximated by the
remaining terms parallel to the B0 field, i.e.

HJ ≡ π
2

∑
k<`

Jk` σk3σ
`
3 (1.25)

(this is known as the secular, or weak-coupling, approximation). This Hamil-
tonian transforms the observable “single quantum” (i.e. single Pauli oper-
ator) terms according to

σk1 −→ cos(tπJk`)σk1 + sin(tπJk`)σk2σ
`
3

= exp(−tιπJk`σk3)σk1E
`
+ + exp(tιπJk`σk3)σk1E

`
− .

(1.26)

In terms of Bloch diagrams (see Figure 1.1), this later form also shows that
the magnetization vectors due to spin 1 in those molecules wherein spin
2 is | 0 〉 and | 1 〉 turn clockwise and counterclockwise in a frame which
co-rotates with spin 1, respectively, at a rate of Jk`/2 sec−1. It will be
shown shortly how this interaction can be used to perform conditional
logic operations on the spins.

The final issue to be dealt with is how the density operator and Hamil-
tonian are manifest in the spectra obtained by NMR. As mentioned above,
the precessing magnetic dipole of each spin is described by those compo-
nents of the density operator which depend on just that spin index. The
transverse component of this dipole produces an oscillating signal in the
receiver coils, whose Fourier transform contains a peak at the precession fre-
quency ωk0 of each spin. According to the usual phase conventions of NMR,
the peak from σk1 has an absorptive shape, while that from σk2 is dispersive
(see Figure 1.2). The frequencies of the spins are further modulated by the
scalar coupling interactions, which split each peak into a multiplet of at
most 2N−1 peaks at frequencies of ωk0 ±πJk1±· · ·±πJkN . By multiplying
Eq. 1.26 through by σ`3 and using the fact that E`

±σ
`
3 = ±E`

±, it can be
shown that transverse-longitudinal correlations (e.g. σk1σ

`
3) evolve into ob-

servable terms (e.g. σk2) at frequencies of ±πJk`, but with opposite signs.
It follows that the pairs of peaks they generate likewise have opposite sign,
or are anti-phase, as opposed to in-phase peaks with the same signs (see
Figure 1.2).

Thus, in effect, an NMR spectrum enables us to directly readout all terms
of the density operator with just one transverse component. By collecting
spectra following π/2 readout pulses selective for each spin, it is possible
to reconstruct the density operator completely. Note that such transverse
components, or coherences, are necessarily associated with superpositions
over the Zeeman basis states. This kind of measurement contrasts starkly
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In-phase
Absorptive

In-phase
Dispersive

Anti-phase
Absorptive

Anti-phase
Dispersive

FIGURE 1.1. Bloch diagrams depicting the “single quantum” in-phase
absorptive (σ1

1), dispersive (σ1
2) and anti-phase absorptive (σ1

1σ
2
3), dis-

persive (σ1
2σ

2
3) states of a two-spin system. Vectors with an empty head

represent the magnetization from spin 1 in those molecules wherein the
second spin is “up” (i.e. σ1

µE
2
+, µ = 1, 2) while vectors with a filled head

represent the magnetization from spin 1 in those molecules wherein
the second spin is “down” (i.e. σ1

µE
2
−, µ = 1, 2). Under scalar coupling,

these two components of the magnetization counter-rotate at a rate
of 2/J, where J is the scalar coupling strength in Hz, thereby trans-
forming in-phase absorptive into anti-phase dispersive and in-phase
dispersive into anti-phase absorptive (see text).

with measurements on the superposition states of single quantum systems,
which induce “wave function collapse” to a random eigenstate of the observ-
able so that the density operator can only be reconstructed by collecting
statistics over repeated experiments. That wave function collapse does not
occur is due to the fact that averages over the ensemble contain insignif-
icant information on any one system in it. Such ensemble measurements
are sometimes called weak measurements, to distinguish them from strong
measurements on single quantum systems [39].

1.5 Quantum Computing by Liquid-State NMR

Even at the highest available magnetic fields, the energy of the nuclear
Zeeman interaction is at most about 10−5 of mean thermal energy per
degree of freedom kBT/2 (where kB is Boltzmann’s constant and T the
absolute temperature). Thus in liquid-state NMR the equilibrium state of
the spins is almost totally random, so that the probabilities of finding a
spin “up” (parallel the field) and “down” are nearly equal. According to
the principles of statistical mechanics, these probabilities are given by 2−N
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In-phase
Absorptive

In-phase
Dispersive

Anti-phase
Absorptive

Anti-phase
Dispersive

FIGURE 1.2. Simulated NMR spectra for a weakly coupled two-spin
molecule (amplitude of the real part versus frequency). On the left is
the spectrum of the spin state σ1

1 + σ2
2, which gives a pair of in-phase

absorptive peaks for spin 1 (left) and a pair of in-phase dispersive
peaks for spin 2 (right). On the right is the spectrum of the spin state
σ1

1σ
2
3 +σ1

3σ
2
2, which gives a pair of anti-phase absorptive peaks for spin

1 (left) and a pair of anti-phase dispersive peaks for spin 2 (right). Fits
to the peak shapes in such spectra after various π/2 rotations of the
individual spins yield sufficient information to uniquely reconstruct
the complete density operator.

times the eigenvalues of

ρeq =
exp(−HZ/(kBT ))
〈 exp(−HZ/(kBT )) 〉

≈ 1−HZ/(kBT ) , (1.27)

where the right-hand side is known as the high-temperature approximation.
Expanding the Zeeman Hamiltonian yields the (high-temperature) equilib-
rium density operator in product operator notation:

ρeq = 1 +
∑

k
ωk0σ

k
3/(2kBT ) (1.28)

Since the observables of NMR σk1 and σk2 have no scalar part, it follows
from Eq. 1.21 that the scalar part of any density operator produces no net
NMR signal. It also does not evolve under unitary operations, and hence
NMR spectroscopists usually drop it altogether. Assuming a homonuclear
system (so that ωk0 ≈ ω`0 ≡ ω0 ≡ ~γ‖B0‖ for all 1 ≤ k, ` ≤ N), it is
also common practice to drop the constant factor ∆0 ≡ ω0/(2kBT ) in the
above. Then the eigenvalues of this “density operator” ρ̌eq are given by
%̌i = N − 2#i, where #i is the Hadamard weight (number of ones in the
binary expansion) of the integer i = 0, . . . , 2N − 1. Their multiplicities are
the binomial coefficients

(
N
#i

)
. For example, the Pauli matrix representation
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of the homonuclear two-spin equilibrium density operator is:

ρ̌eq ≡ σ1
3 + σ2

3 ↔ 2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 (1.29)

The obvious way to store binary information in an ensemble of spin
systems at equilibrium is to regard each chemically distinct type of spin
as a “bit” which represents 0 or 1 as its net polarization is up or down,
respectively, so that the integers from i = 0, . . . , 2N − 1 are stored in the
states ±σ1

3±· · ·±σN3 . This is, however, a very different thing than storing
these integers in the pure states | i 〉 (the Zeeman basis vector obtained by
binary expansion of the integer i), the density operators of which are signed
sums over all possible products of the form σk1

3 · · ·σ
kn
3 (1 ≤ k1 < · · · <

kn ≤ N), as in Eq. 1.18 with %µ = ±1 for all µ ∈ {0, 3} and 0 otherwise.
The problem is that, without these higher-order (n > 1) product terms, it is
not possible to perform conditional operations on the state, for the simple
reason that by linearity these operations act independently on each term
of the sum. These higher-order terms are nonnegligible in the equilibrium
state only at temperatures approaching absolute zero — which is not an
option available in liquid-state NMR!

A class of weakly polarized nonequilibrium states nevertheless exists in
which the linear and higher-order terms are all present with equal magni-
tudes, as they are in pure states. These states, usually known as pseudo-pure
states [13, 15, 28, 32, 36], are also characterized by having a single non-
degenerate eigenvalue in the standard matrix representation, so that they
may be written as a trace-preserving rank 1 perturbation on the identity:

ρpp = (1−∆) + 2N∆|ψ 〉〈ψ |

↔ (1−∆) + 2N∆ψEψ̃
(1.30)

The perturbation parameter ∆ is restricted by the requirement that the
density operator be positive-semidefinite to −1/(2N − 1) ≤ ∆ ≤ 1. Assum-
ing that the pseudo-pure state is at equilibrium versus a Hamiltonian of
the form H0(E − 2−N ), this is related to the polarization −1 ≤ ∆0 ≤ 1
of a single spin versus H0 σz/2 by ∆ = ∆0/((1−∆0)2N−1 + ∆0). For ex-
ample, the two-spin pseudo-pure ground state is given by the above with
|ψ 〉 = | 00 〉 ↔ ψ = 1, i.e.

ρ00 = 1 + ∆
(
22E − 1

)
= 1 + ∆

(
4E1

+E
2
+ − 1

)
= 1 + ∆

(
σ1

3 + σ2
3 + σ1

3σ
2
3

)
.

(1.31)

Since the identity 1 commutes with everything, pseudo-pure states are nec-
essarily mapped to pseudo-pure states by unitary operations, and so provide
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a carrier space for a representation of SU(2N ) (modulo phase) just like true
pure states.

In addition, the fact that pseudo-pure states are realized in the statistics
of macroscopic ensembles of identical quantum systems implies that the
available measurements are weak (section 1.4). Thus NMR measurements
on pseudo-pure states actually enable one to directly obtain the expectation
value of any observable A relative to the perturbation spinor ψ, i.e.

〈ρA〉 = (1−∆)〈A〉+ 2N∆〈AψEψ̃〉 ↔ ∆〈ψ |A |ψ 〉 , (1.32)

which follows from the fact that NMR observables have no scalar part.
The ensemble nature of NMR also permits certain types of non-unitary
operations to be performed on the system. Since the eigenvalues of the high-
temperature equilibrium and pseudo-pure density operators are different,
the preparation of pseudo-pure states necessarily involves such non-unitary
operations. There are presently four methods of implementing non-unitary
operations in NMR, each of which leads to a physically different (though
mathematically equivalent) type of pseudo-pure state.

The conceptually simplest type is a temporal pseudo-pure state, which is
obtained by averaging the results (signals or spectra) of experiments per-
formed at different times on different states, such that the sum of their
density operators is pseudo-pure. This is analogous to phase-cycling in
NMR [24, 26]. For example, up to a factor of 2/3, the average of the follow-
ing three two-spin states clearly has the same nonscalar part as the above
pseudo-pure ground state:

ρA = 1 + ∆
(
σ1

3 + σ2
3

)
ρB = 1 + ∆

(
σ1

3 + σ1
3σ

2
3

)
ρC = 1 + ∆

(
σ1

3σ
2
3 + σ2

3

) (1.33)

The first state is the equilibrium state, while the other two may be obtained
by permuting the populations in the equilibrium state by the c-NOT gates
S2|1 and S1|2, respectively.

Another way to perform non-unitary operations in NMR relies upon
the fact that the observed signal is an integral over the sample volume.
Thus if one can create a distribution of states across the sample such that
their average is pseudo-pure, one obtains a spatial pseudo-pure state. The
most straightforward way to do this is to apply a magnetic field gradient
across the sample, usually a linear gradient along the z-axis parallel to the
applied magnetic fieldB0. This causes the spins to precess at differing rates,
depending on their z-coordinates, so that the net transverse magnetization
vector perpendicular to the z-axis is wound into a spiral whose average
is zero. The transverse phase information thus rendered unobservable is
exactly that which would be lost in a strong measurement of the spins
along the z-axis, but with the rather striking difference that this phase
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information can be recovered by inverting the gradient. The next section
will present specific RF and gradient pulse sequences for spatial pseudo-
pure states.

A rather different approach is to “label” a pseudo-pure subensemble of
the spins by a specific state of one or more “ancilla” spins. This approach
was used over 20 years ago to demonstrate spinor behavior under rotations
by NMR [54], and was first applied to NMR computing by Chuang et al.
[28, 58]. The correlation with ancilla spin states permits the signal from
the pseudo-pure subensemble to be isolated by filtering based on the fre-
quency shifts induced by scalar-coupling. The simplest example of such a
conditional pseudo-pure state is

ρ = 1 + ∆(σ1
3 + σ2

3 + σ1
3σ

2
3)σ3

3

=
(
1 + ∆(4E1

+E
2
+ − 1)

)
E3

+ +(
1−∆(4E1

+E
2
+ − 1)

)
E3
− .

(1.34)

It can be shown that this state is related to the equilibrium state by unitary
c-NOT operations. The latter expression in the equation makes it clear that
in the subensemble wherein spin 3 is “up” (i.e. in its ground state E3

+)
the spins 1 & 2 have a population excess in their ground state (assuming
∆ > 0). Similarly, in the subensemble with spin 3 “down” spins 1 & 2
have a population deficit in their ground state. Significantly, therefore, on
average across the entire ensemble spins 1 and 2 are entirely unpolarized
(i.e. random). This can be seen in NMR by decoupling spin 3, i.e. by rotating
it rapidly with an RF field so that its interactions with spins 1 and 2 are
averaged to zero. This effectively removes spin 3 from the system, so that
(in the above situation) the spectrum of spins 1 and 2 is reduced to a flat
line.

The general operation of “removing” a qubit from a system is known
in quantum computing as the partial trace. As shown in Ref. [49], this
corresponds to dropping all terms which depend upon the spin over which
the partial trace is taken in the product operator expansion of the overall
density operator. It provides us with our fourth type of pseudo-pure state,
which is called a relative pseudo-pure state. An example in this case is
given by [32]

ρ̌ = 4
(
(E1

+ +E2
+)E3

+E
4
+ + (E1

+E
2
+ −E

1
−E

2
+)E3

+E
4
− +

(E1
−E

2
− −E

1
+E

2
−)E3

−E
4
+ − (E1

− +E2
−)E3

−E
4
−
)

= 2
(
σ3

3 + σ4
3

)
+ σ2

3

(
σ3

3 − σ4
3

)
+
(
σ1

3 + σ2
3 − σ1

3σ
2
3

)
σ3

3σ
4
3

+
(
σ1

3 + σ2
3 + σ1

3σ
2
3

)
,

(1.35)

wherein it may be seen that tracing over spins 3 and 4 leaves only the
bottom line, which is a two-spin pseudo-pure state. This density operator
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is again related to the four-spin equilibrium density operator by unitary
operations.

The one thing that all these methods of preparing pseudo-pure states
from equilibrium states have in common is a rapid loss of signal strength
with the number of spins in the resulting pseudo-pure state. This can be
understood most simply from the fact that, since the number of Zeeman
basis states grows exponentially with the number of spins, at any fixed
polarization (specific entropy) the expected population in any one state
must likewise decline exponentially [59].2 Nevertheless, current methods
should be able to prepare usable pseudo-pure states on up to ca. 8 − 12
spins.

In addition, it is also at least difficult to study nonlocal effects by NMR,
since that would require allowing the spins to interact by scalar coupling
through a chemical bond, then rapidly breaking the bond, separating the
molecular fragments, and performing further measurements. A more fun-
damental problem lies in the fact that the microscopic interpretation of ex-
periments on weakly polarized spin systems are always ambiguous, in that
there are many different ensembles whose average yields the same overall
density operator [10]. Although these issues preclude the use of NMR as
a means of studying foundational issues in quantum mechanics involving
nonlocality and entanglement, they do not limit its utility as a means of
developing the engineering principles needed for quantum information pro-
cessing [32]. Indeed, the long decoherence times characteristic of nuclear
spins, together with the superb coherent control available through mod-
ern NMR technology, has enabled demonstrations of many basic features
of quantum information processing which had previously existed only in
theory. The next section describes how this was done.

1.6 States and Gates by NMR

This section will show how the quantum logic operations introduced in
section 1.3 can be represented in the product operator formalism, how
they can be implemented in NMR by RF pulse sequences, how they act
on density operators in product operator notation, and finally how they
can be used together with gradient pulses to generate pseudo-pure states.
The simplest logic gate is the NOT operation N on a single qubit (spin).
This is a rotation by π about a transverse axis, which in the usual phase

2As further discussed in Ref. [32], there are a number of ways in which this loss can
be distributed among the various available resources (i.e. repetitions of the experiment,

sample volume and the number of ancillae used), but within the validity of the high-

temperature approximation no truly scalable method exists.
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conventions is taken as the x-axis:

N = exp(−(π/2)ισ1) = cos(π/2)− ισ1 sin(π/2) = − ισ1 (1.36)

Via the anticommutivity of σ1 and σ3, this is readily verified to flip the
qubit in question, e.g.

N | 0 〉〈 0 |Ñ ↔ NE+Ñ

= (−ισ1) 1
2 (1 + σ3)(ισ1)

= 1
2 (1− σ3)(σ1)2 = E− ↔ | 1 〉〈 1 | .

(1.37)

As previously mentioned, such a rotation can be implemented by a single
pulse of RF radiation of amplitude ω1 = ~γ‖B1‖ and duration π/ω1, whose
frequency is on-resonance with that of the target spin.

This can be generalized to a rotation by an arbitrary angle about an
arbitrary transverse axis, which implements a one-bit quantum logic gate.
The one-bit quantum gate most commonly considered in quantum com-
puting, however, is the Hadamard transform RH defined in Eq. 1.14. By
translating this spinor definition to density operators, it may be seen that
this gate acts on the components of the Bloch vector as

RH σ1R̃H = σ3 , RH σ2R̃H = − σ2 , RH σ3R̃H = σ1 , (1.38)

and so corresponds to a rotation by π about the axis (σ1 + σ3)/
√

2, i.e.

RH = exp
(
−(π/2)ι(σ1 + σ3)/

√
2
)

= − ι(σ1 + σ3)/
√

2 . (1.39)

Although rotations about non-transverse axes are not easily implemented
in most NMR spectrometers, the Hadamard is nevertheless readily obtained
from the following sequence of transverse rotations:

RH = exp((π/4)ισ2) exp(−(π/2)ισ1) exp(−(π/4)ισ2) (1.40)

A convenient short-hand (similar to the graphical representation of pulse
sequences widely used in NMR) is to just specify the sequence of Hamilto-
nians applied: [

π
4σ2

]
−→

[
π
2σ1

]
−→

[
−π4σ2

]
(1.41)

Note that in this sequence, the Hamiltonians are written in left-to-right
temporal order, opposite to that in Eq. 1.40.

Turning now to a two-bit gate, we rewrite the c-NOT defined in Eq. 1.16
as follows:

S1|2 = | 00 〉〈 00 |+ | 10 〉〈 10 |+ | 01 〉〈 11 |+ | 11 〉〈 01 |

= | 00 〉〈 00 |+ | 10 〉〈 10 |+ σ1
1(| 11 〉〈 11 |+ | 01 〉〈 01 |)

= (1⊗ | 0 〉〈 0 |) + σ1
1(1⊗ | 1 〉〈 1 |) ↔ E2

+ + σ1
1E

2
−

(1.42)
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This in turn can be expressed in exponential form as

exp
(
(π/2)ι(1− σ1

1)E2
−
)

= exp
(
(π/2)ιE2

−
)

exp
(
−(π/2)ισ1

1E
2
−
)

=
(
E2

+ + ιE2
−
) (
E2

+ − ισ1
1E

2
−
)

= E2
+ + σ1

1E
2
− = S1|2 ,

(1.43)

which says that this c-NOT can be regarded as a flip of spin 1 conditional
on spin 2 being “down”. Alternatively, by defining the idempotents G1

± ≡
1
2 (1± σ1

1), we can write this as

S1|2 = exp
(
πιG1

−E
2
−
)

= 1− 2G1
−E

2
− . (1.44)

This reveals an interesting symmetry: the same c-NOT can also be viewed
as inversion of the phase of spin 2 conditional on spin 1 being along −σ1

1.
To implement the c-NOT by NMR, it is necessary to use the scalar cou-

pling to induce a conditional phase shift. The pulse sequence can be derived
simply by fully expanding the propagator into a product of commuting fac-
tors: exp

(
πιG1

−E
2
−
)

=

exp((π/4)ι) exp
(
−(π/4)ισ2

3

)
exp
(
−(π/4)ισ1

1

)
exp
(
(π/4)ισ1

1σ
2
3

)
(1.45)

The first factor is just a global phase
√
ι, which has no effect when a

propagator is applied to a density operator and hence can be ignored. The
last factor cannot be implemented directly, but can be rotated about σ1

2

into the scalar coupling Hamiltonian exp
(
(π/4)ισ1

1σ
2
3

)
=

exp
(
(π/4)ισ1

2

)
exp
(
−(π/4)ισ1

3σ
2
3

)
exp
(
−(π/4)ισ1

2

)
. (1.46)

Making this substitution in Eq. 1.45 leaves two transverse rotations of spin
1 adjacent one another, but their product is equivalent to a single transverse
rotation and a phase shift:

exp
(
−(π/4)ισ1

1

)
exp
(
(π/4)ισ1

2

)
= exp

(
(π/4)ισ1

3

)
exp
(
−(π/4)ισ1

1

) (1.47)

It follows that the c-NOT may be implemented by the NMR pulse sequence:[
π
4σ

1
2

]
−→

[
π
4σ

1
3σ

2
3

]
−→

[
π
4σ

1
1

]
−→

[
π
4

(
σ2

3 − σ1
3

)]
(1.48)

Pulse sequences for many other reversible boolean logic gates may be found
in Ref. [42].

Even though we are working in a rotating frame, the spins precess at
slightly different rates depending on their chemical shifts δk (vide supra).
The c-NOT sequence requires that this differential Zeeman evolution be
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“turned off” leaving only the coupling Hamiltonian active during the 1/(2J12)
evolution periods. This can be done by inserting “refocusing” π-pulses in
the middle and at the end of the period, as follows from:

exp
(
(π/2)ι(σ1

1 + σ2
1)
)

exp
(
−(π/4)ι(σ1

3 + σ2
3)
)

exp
(
−(π/2)ι(σ1

1 + σ2
1)
)

exp
(
−(π/4)ι(σ1

3 + σ2
3)
)

= (ισ1
1σ

2
1) exp

(
−(π/4)ι(σ1

3 + σ2
3)
)

(−ισ1
1σ

2
1) exp

(
−(π/4)ι(σ1

3 + σ2
3)
)

= exp
(
(π/4)ι(σ1

3 + σ2
3)
) (
σ1

1σ
2
1

)2
exp
(
−(π/4)ι(σ1

3 + σ2
3)
)

= exp
(
(π/4)ι(σ1

3 + σ2
3)
)

exp
(
−(π/4)ι(σ1

3 + σ2
3)
)

= 1

(1.49)

It also requires that the scalar coupling evolution be turned off during the
Zeeman evolutions at the end of the pulse sequence, which can be done by
applying a selective π-pulse to just one of the spins while the other evolves,
then vice versa, and finally realigning the transmitter phase with that of
the spins. This ability to “suspend time” in one part of the system while
working on another is an essential component of quantum computing by
NMR spectroscopy [35].

Higher-order logic gates can be implemented by analogous sequences. For
example, the c2-NOT or Toffoli gate is:

T 1|23 ≡ (1−E2
−E

3
−) + σ1

1E
2
−E

3
−

= 1− 2G1
−E

2
−E

3
− = exp

(
−πιG1

−E
2
−E

3
−
) (1.50)

On expanding the propagator as before, one obtains:

exp
(
−(π/2)ιE2

−E
3
−
)

exp
(
−(π/8)ισ1

1

)
exp
(
−(π/8)ισ1

1σ
2
3

)
exp
(
−(π/8)ισ1

1σ
3
3

)
exp
(
−(π/8)ισ1

1σ
2
3σ

3
3

) (1.51)

The last (left-most) factor in this sequence consists of Zeeman and coupling
evolutions, and can be implemented by adjusting their relative rates via
refocusing π-pulses. The transverse rotation and “two-body” factors can
also be implemented in a fashion similar to that given above for the simple
c-NOT gate. The “three-body” factor, on the other hand, must be built-up
from successive two-body evolutions (since that is all nature provides us
with [56]), for example as exp

(
−(π/8)ισ1

1σ
2
3σ

3
3

)
=

exp
(
−(π/4)ισ1

3σ
3
3

)
exp
(
(π/8)ισ1

2σ
2
3

)
exp
(
(π/4)ισ1

3σ
3
3

)
(1.52)

Assuming that all the couplings are equal to J , and that the time required
for RF pulses is negligible, this sequence requires approximately 2/J in
time. By neglecting relative phase shifts among the states and allowing
multiple simultaneous evolutions, this can be reduced to 3/(4J) [15]. A
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graphical scheme for designing such pulse sequences, and its application to
the cn-NOT for n ≤ 16, may be found in [41].

In the next section, it will be shown that NMR enables Feynman’s idea
of simulating one quantum system by another to be demonstrated, using
however an ensemble of spins in a pseudo-pure state to simulate a quantum
system in a true pure state. This will use the following sequence of RF and
gradient (∇) pulses to convert the equilibrium state of a two-spin system
into a pseudo-pure ground state (where the propagator for the Hamiltonian
over each arrow conjugates the preceding expression to get the next):

σ1
3 + σ2

3

[−π8 (σ1
1+σ2

1)]
−−−−−−−−−−→ 1√

2

(
σ1

2 + σ1
3 + σ2

2 + σ2
3

)
[−π4 σ

1
3σ

2
3]−−−−−−−−−−→ 1√

2

(
σ1

1σ
2
3 + σ1

3 + σ1
3σ

2
1 + σ2

3

)
[ π12 (σ1

2+σ2
2)]

−−−−−−−−−−→ 1
4

( √
3
(
E1

+E
2
+ − 1

4 (1− σ1
1σ

2
1)
)

+ 1
2

(
σ1

1E
2
+ +E1

+σ
2
1

) )
[∇]

−−−−−−−−−−→
√

3
16

(
σ1

3 + σ2
3 + σ1

3σ
2
3 − σ1

1σ
2
1 − σ1

2σ
2
2

)
(1.53)

[−π2 σ
2
2]−−−−−−−−−−→

√
3

16

(
σ1

3 − σ2
3 − σ1

3σ
2
3 + σ1

1σ
2
1 − σ1

2σ
2
2

)
[∇]

−−−−−−−−−−→
√

3
16

(
σ1

3 − σ2
3 − σ1

3σ
2
3

)
[π2 σ

2
2]−−−−−−−−−−→

√
3

16

(
σ1

3 + σ2
3 + σ1

3σ
2
3

)
It will be observed that the first gradient pulse converts σ1

1σ
2
1 into the pure

zero quantum coherence σ1
1σ

2
1 + σ1

2σ
2
2, by destroying the corresponding

double quantum component σ1
1σ

2
1 − σ1

2σ
2
2. This is due to the assumption

of a homonuclear system, wherein zero quantum terms have almost no net
magnetic moment and hence are not rapidly dephased by a gradient. Nev-
ertheless, a π-rotation selective for only one spin converts this back to a
double quantum term, which the second gradient wipes out. In a heteronu-
clear system zero quantum terms are rapidly dephased by a gradient, and
hence the second gradient would not be necessary.

1.7 Quantum Simulation by NMR

This section describes a methodology and proof of concept for the sim-
ulation of one quantum system by another, as originally envisioned by
Feynman [25] and studied in detail by Lloyd [38]. This will also enable
us to illustrate many of the above concepts in quantum information pro-
cessing. Unlike the digital quantum computer envisioned by Benioff and
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Deutsch, however, a quantum simulator is an essentially analog device,
which maps the state of the simulated system directly onto the joint states
of the qubits without discretizing the problem. Such an analog encoding is
not only precise in principle, but also more efficient, so that quantum sim-
ulations beyond the reach of today’s computers could be performed with
only 20 to 30 qubits [37, 38]. In addition, since it is usually only the long-
term average behavior of quantum systems that is of interest, quantum
simulations would be expected to be less sensitive to errors than quantum
computations. Finally, the ensemble nature of NMR allows such averages
to be observed directly, saving the otherwise requisite repetitions of the
same simulation in order to obtain them.

The general scheme used here for quantum simulation is summarized in
the following diagram:

| p 〉 - | pT 〉
? ?

| s 〉 - | s(T ) 〉

φ φ

V T = exp(−tT ιH̄p)

U = exp(−T ιHs)

(1.54)

Here, | s 〉 and | p 〉 denote the states of the simulated system and the phys-
ical system used to implement the simulation, respectively. The simulated
state after a specified amount of time T and the corresponding physical
state are denoted by | s(T ) 〉 and | pT 〉, respectively (note T is not the physi-
cal time!). The invertible (generally unitary) linear mapping φ encodes the
simulated system’s states in those of the physical system. Finally, Hs is
the simulated Hamiltonian, while H̄p is the average physical Hamiltonian
over the time tT required for the simulation. This average Hamiltonian is
obtained by interspersing periods of free evolution under the actual phys-
ical Hamiltonian Hp with a sequence of RF pulses which effect unitary
operations V i (i = 1, . . . ,M), so that:

φ−1 exp(−T ιHs)φ = exp(−tT ιφ−1Hs φ)

= exp(−tT ιH̄p) =
M∏
i=1

exp(−ti ιHp)V i

(1.55)

A general methodology has been developed by NMR spectroscopists to
permit them to implement arbitrary average Hamiltonians to any desired
degree of accuracy [31].
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The Hamiltonian to be simulated is often given in canonical form (i.e.
in terms of its energy levels). In this case an encoding φ which maps the
eigenstates of Hs to those of H̄p is most convenient. Although it is not
strictly necessary, the task of implementing the average Hamiltonian by
NMR is greatly facilitated by converting it into product operator form.
Thus suppose that the simulated Hamiltonian is

Hs ≡
∑2N−1

j=0
Hj | j 〉〈 j | , (1.56)

where the energies Hj are arbitrary real numbers. Because no ordering of
the energies is assumed, by a choice of indexing every eigenstate encoding
can be put in the form

| j 〉 φ−→ | δjN · · · δ
j
2δ
j
1 〉 (1.57)

where δjk ∈ {0, 1} is the k-th bit in the binary expansion of the integer j.
In terms of density operators, this becomes

| j 〉〈 j | −→ Ej ≡ EN
εjN
· · ·E2

εj2
E1
εj1
, (1.58)

where εjk = 1− 2δjk and Ej
ε are the usual idempotents. On expanding these

products and regrouping, one obtains:

H̄p =
∑2N−1

j=0
HjEj ≡

∑2N−1

j=0
αj
(
σN3
)δjN · · · (σ1

3

)δj1 (1.59)

Inserting the identity 1 =
∑2N−1
k=0 Ek and using the relation σj3Ek = εjkEk

now yields:

H̄p = H̄p

∑2N−1

k=0
Ek

=
∑2N−1

j=0

∑2N−1

k=0
αj
(
εkN
)δjN · · · (εk1)δj1 Ek

(1.60)

Comparison of these two expressions for H̄p shows that

Hk =
∑2N−1

j=0
αj
(
εkN
)δjN · · · (εk1)δj1 ≡ M⊗N α , (1.61)

where α = [α1, . . . , α2N−1]> and M⊗N a matrix whose jk-th entry is
(−1)#j&k (with #j&k being the Hadamard weight of the AND of j and k).

This linear transformation from the σ3 product basis for diagonal opera-
tors to eigenstates is known as the Walsh-Hadamard transform. As implied
by the notation, the matrix M⊗N is a Kronecker (tensor) power of the
2× 2 matrix

M ≡
[

1 1
1 −1

]
. (1.62)
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It is easily seen that M and hence M⊗N is its own inverse up to factors of
2 and 2N , respectively, and hence this transformation is easily inverted to
convert any operator in canonical form into its product operator expansion.
Consider, for example, simulating the first 2N levels of a quantum harmonic
oscillator, with Hj = (2j+ 1)Ω/2 for j = 0, . . . , 2N −1. The corresponding
product operator form is given by:

H̄p = 1
2Ω
(
2N −

(
σ1

3 + 2σ2
3 + · · ·+ 2N−1σN3

))
(1.63)

Significantly, this expansion contains no product terms, so that evolution
under it cannot induce new correlations among the qubits. This property
depends on the encoding φ, however, as may be seen by reordering the (first
four) energy levels as H0 = Ω/2, H1 = 3Ω/2, H2 = 7Ω/2 and H3 = 5Ω/2;
this corresponds to a so-called Grey encoding, in which adjacent energy
levels differ by single qubit NOT operations. In this case the propagator of
the desired average Hamiltonian may be shown to be

V T = exp
(
−T ιH̄p

)
= exp

(
−T ιΩ

((
1 + σ1

3/2
)
σ2

3 − 2
))

.
(1.64)

In order to demonstrate these ideas in practice, NMR experiments will
now be described which implement the first four levels of a quantum har-
monic oscillator in the above Grey encoding [50]. These experiments were
done on the molecule 2, 3-dibromothiophene, which contains two weakly
coupled hydrogen atoms (see Figure 1.3). Letting K ≡ (ω2−ω1)/(2π) and
placing the receiver on the first spin (i.e. choosing a rotating frame wherein
ω1 = 0), the physical Hamiltonian of this system becomes:

Hp = π
(
K + Jσ1

3

)
σ2

3 = π
(
226.0 + 5.7σ1

3

)
σ2

3 (1.65)

C

C C

C

S
BrH

H Br

FIGURE 1.3. Chemical diagram of the molecule 2,3-dibromothiophene
used for simulation of a quantum harmonic oscillator (see text). The
two hydrogen atoms were used as the qubits in an analog representa-
tion of the oscillator’s first four energy levels.
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Up to an overall phase factor, the desired average Hamiltonian is obtained
from the following pulse sequence[

−π
(
σ1

2 + σ2
2

)]
−→

[
τ1/2σ1

3σ
2
3

]
−→

[
π
(
σ1

2 + σ2
2

)]
−→

[
(τ1/2 + τ2)σ1

3σ
2
3

]
.

(1.66)

This may be shown by using the fact that σ1
2σ

2
2 anticommutes with σ2

3,
commutes with σ1

3σ
2
3 and squares to 1 to rearrange the corresponding se-

quence of propagators as follows:

exp(−(τ1/2 + τ2)ιHp) exp
(
−(π/2)ι

(
σ1

2 + σ2
2

))
exp(−(τ1/2)ιHp) exp

(
(π/2)ι

(
σ1

2 + σ2
2

))
= exp

(
−(τ1/2 + τ2)ιπ

(
K + Jσ1

3

)
σ2

3

)
(−ι)σ1

2σ
2
2

exp
(
−(τ1/2)ιπ

(
K + Jσ1

3

)
σ2

3

)
ισ1

2σ
2
2

= exp
(
−(τ1/2 + τ2)ιπ

(
K + Jσ1

3

)
σ2

3

)
exp
(
(−ι)σ1

2σ
2
2

(
−(τ1/2)ιπ

(
K + Jσ1

3

)
σ2

3

)
ισ1

2σ
2
2

)
= exp

(
−(τ1/2 + τ2)ιπ

(
K + Jσ1

3

)
σ2

3

)
exp
(
−(τ1/2)ιπ

(
−K + Jσ1

3

)
σ2

3

)
= exp

(
−ιπ

(
τ2K + (τ1 + τ2)Jσ1

3

)
σ2

)

(1.67)

Thus the desired propagator V T at a simulated time T is obtained (up to
its overall phase) by setting τ2 = ΩT/K and τ1 = ΩT/(2J)− τ2.

In order to illustrate the simulation, the spin system was prepared in
a pseudo-pure ground state, as described in Eq. 1.53 above. It was then
transformed into a double quantum superposition (|ψ 〉DQ ≡ | 0 〉 + ι| 2 〉),
and evolved for a regularly spaced sequence of 64 simulated times T up to
one full period Ω−1. For each time T , the corresponding double quantum
spin state (φ(|ψ 〉DQ) = | 01 〉+ ι| 10 〉) was transformed via a readout pulse
selective for a single spin back to a single quantum spin state, which gives
rise to a peak in the spectrum whose amplitude could be used to moni-
tor the simulation. A similar set of experiments was also done on the full
superposition (| 0 〉+ · · ·+ | 3 〉) over the first four energy levels of the oscil-
lator. Due to the Grey code used, the single and triple quantum coherences
in this case all give rise to observable peaks whose amplitudes could be
monitored directly. Figure 1.4 shows these peak amplitudes as a function
of simulated time T for each of these cases. Note in particular that a triple-
base-frequency oscillation does not occur naturally in a two-spin system,
thereby confirming that this simulation involves a nontrivial modification
of the system’s physical Hamiltonian. The original reference [50] also shows
data for the simulation of a driven anharmonic quantum oscillator, which
does not rely upon knowledge of the eigenstates, thereby showing that the
simulation methodology of Eq. 1.7 is general.
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FIGURE 1.4. Plots of selected peak amplitudes (x) versus fraction
of harmonic oscillator period simulated for the ground (a), a double
quantum (b) and the single (c) and triple (d) quantum coherences in
a full superposition over all four energy levels. The solid-lines through
each data set were obtained by three-point smoothing.

1.8 Remarks on Foundational Issues

Using a mathematical formalism based on geometric algebra, we have
shown how quantum information processing can be performed on small
numbers of qubits by liquid-state NMR spectroscopy, where the qubits are
physically realized in the joint statistics of a highly mixed ensemble of
spin systems. There has nevertheless been considerable controversy over
whether or not these experiments are truly “quantum” [10, 43]. The fact
that all of quantum mechanics can be done with the multiparticle Dirac
algebra, together with the implied geometric interpretation, makes an ab-
solute distinction between “quantum” and “classical” seem a little less
profound. Nevertheless, the general consensus now seems to be that liquid-
state NMR should be regarded as “quantum” not so much because the
measurements that can be made on any one state require the formalism of
quantum mechanics for their description, as because the manifold of states
and measurement outcomes generated by the available operations do. Thus,
even if a highly mixed density operator is expressed as an average over an
ensemble of unentangled states, a sequence of RF pulses and evolutions
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under scalar coupling can always be applied which converts at least some
of these states into entangled ones.

Our work also touches upon a number of interesting questions regarding
the emergence of classical statistical mechanics from an underlying quan-
tum description of the system and its environment, and at the same time
provides a readily accessible experimental system within which these ques-
tions can be studied. It is now widely believed that classical statistical
mechanics works because the system and its environment become entan-
gled through their mutual interactions [29, 62], so that the partial trace
over the environment results in an intrinsically mixed state of the system.
If the eigenstates of the resulting density operator are stable under the
environmental interactions, the system’s dynamics can be described by a
classical stochastic process on those eigenstates. This process by which cor-
relations between the selected eigenstates are lost is known as decoherence.
From this perspective, a pure state is a state of the universe as a whole
in which the system and its environment are mutually uncorrelated. Nev-
ertheless, decoherence remains a theory of ensembles; it does not explain
what happens in any single system, and hence in particular does not resolve
the quantum measurement problem [39].

The potential utility of NMR as a means of exploring some of these is-
sues experimentally is illustrated by our recent demonstration of a quantum
error correcting code [14]. This extension of the classical theory of error cor-
rection to quantum systems was developed in order to control decoherence
in quantum computations [44, 52], which would otherwise destroy the co-
herences on which quantum algorithms depend [11, 60]. Such codes rely
upon the fact that the effects of environmental interactions on the system
can be completely described by a discrete stochastic process of the form

ρ −→
∑

m
pmUm ρ Ũm , (1.68)

where pm ≥ 0 are the probabilities with which the unitary operators Um

are applied to the system. Assuming that this process is known, additional
ancillae qubits in a specific state | 0 〉 can be added to the system, such
that each distinct “error” (i.e. operator Um) maps their joint state into
orthogonal subspaces. Thus measurements exist which can determine the
error (though not the state of the system ρ), enabling it to be corrected.
This remarkable ability to intervene in such fundamental processes promises
to be useful in characterizing how they occur in nature [32].

The primary experimental question which remains is: How many qubits
will we be able to completely observe and control via NMR spectroscopy?
The aforementioned signal-to-noise problems associated with preparing
pseudo-pure states from high-temperature equilibrium states would appear
to impose an upper bound on liquid-state spectroscopy of ca. 8−12 qubits,
and various other practical difficulties (i.e. limited frequency resolution,
and the intrinsic decoherence in these systems) may make it difficult to go
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even that far. These limitations are not intrinsic to NMR per se, however, in
that for example polarizations approaching unity can be obtained in crys-
talline solids at temperatures of 4K, while at the same time increasing the
intrinsic decoherence times of the spins to hours or more. Additionally, it
is in principle possible to use gradient methods to spatially label the spins,
thereby circumventing frequency resolution problems. By these means co-
herences among up to ca. 1011 spins have been created, and refocused, in
the laboratory [61].

Regardless of the technology by which a large-scale quantum computer is
ultimately implemented, it is certain that both NMR and geometric algebra
will remain essential tools for its development.
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