
Real Time Failure Prediction in Electrical Submersible
Pumps

Hayden Schultz
TIBCO Software

hschultz@tibco.com

Richard Tibbetts
TIBCO Software

tibbetts@tibco.com

Ujval Kamath
TIBCO Software

ukamath@tibco.com

 Michael O’Connell
TIBCO Software

moconnel@tibco.com
ABSTRACT

As oil fields age, artificial lift systems are required to maintain
production levels when reservoir pressures get too low. Failure of
an ESP in a well can stop production or even lead to a dangerous
event. ESPs are fitted with downhole monitoring units that
transmit streams of data back to the surface including: motor
temperature, pump intake pressure, intake temperature motor
vibration, and motor current.

This paper describes a system to monitor large, geographically
diverse arrays of oil wells with ESPs. Sensor measurements are
transmitted, normalized, and integrated using a distributed
communications network and stream processing system. Analytic
models for predicting failure are created offline using historical
data analysis, and executed in real time against live sensor data
using the stream processing system. When failure is predicted,
alerts are dispatched to both a live data operator console and a
visual analytic platform. An implementation is described on a
major North American oil production system using the TIBCO
Fast Data Platform including TIBCO StreamBase CEP, TIBCO
Spotfire Analytics, and TIBCO Live Datamart.

Categories and Subject Descriptors
Sensor Networks. Maintainability and Maintenance. Failure
prediction. Data Analytics. Information Integration. Stream
management. Visual Analytics.

General Terms
Algorithms, Management, Measurement, Performance, Design,
Economics, Reliability, Experimentation, Human Factors.

Keywords
TIBCO StreamBase CEP, TIBCO Spotfire, TIBCO Live
Datamart, Electric Submersible Pumps.

1. INTRODUCTION
In 95% of global oil wells, artificial lift systems pump the oil from
the ground when reservoir pressures get too low. About 10% of
these 900,000 artificial lift systems globally are Electric
Submersible Pumps (ESPs). The ESPs are supplied by different
manufacturers and are operated by different service organizations
in very different environments around the globe – from the
constant heat of the Middle East to severe winters in the northern
US and Canada.

The ESPs are fitted with downhole monitoring units that transmit
streams of data back to the surface including: motor temperature,
pump intake pressure, intake temperature motor vibration, and
motor current. These data can be used to develop leading
indicators of failure and shutdown conditions. Some leading
indicators are simple rules e.g. if motor temperature increases by a
large amount, an electrical short can be induced and the pump
automatically shuts down. Other leading indicators are more
subtle combinations of changes in pressure, current and other
parameters.

The sensor data are typically collected and managed in an
historian database; popular commercial products include OSI PI
and Honeywell PDF. These systems store process data, as changes
(deltas) in readings over time. The data are managed via tags for
each sensor, and stored as tag-time-value tuples. These historian
systems are designed to store vast amounts of tag data over time,
but aren’t designed for data analysis, reporting and real-time
intervention.

Typical challenges for engineering organizations in analyzing
these sensor data include

- Accessing the historian data quickly; with meaningful
analyses and reports that show system state and
shutdown events; while enabling filtering and drill-
down to events of interest across time windows and
event frames of interest.

- Developing candidate sets of leading indicators
(rules/models) for shutdown events on historian data;
and back-testing these across different pumps,
manufacturers and field environments.

- Applying the rules/models to real-time data in motion as
they appear in the historian, and pushing alerts and
notifications to companion systems for monitoring and
intervention.

- Monitoring results and iterating rules/models for
ongoing performance tuning.

Typical software systems for these tasks are unwieldy and require
multiple IT and engineering skillsets; often requiring multiple
people to operate. There has been a screaming need for simple-to-
configure software systems to address the workflows required.

Note that the value generation from this workflow is significant.
For example, across a collection of 1000 pumps producing ~200
BOE/day, shutdowns typically account for at least 200 hours of
lost production or ~1,000 BOE/day; and pump failures result in 5-
10 days of lost production. For $50 oil this results in
~$50,000/day or ~$20M/year in lost production per 1000 wells.
Preventing a conservative 25% of shutdowns results in
$5M/year/1000 wells to the bottom line.

In section 2 of the paper we describe the characteristics of data
heterogeneity, integration, and normalization. Section 3 details the
creation of predictive analytic models for failure. Section 4 lays
out the real time event driven operational system, from stream
processing architecture through live data mart. Section 5 covers
performance of the operational system and section 6 lays out
future work.

2. SENSOR NETWORK DATA

2.1 Data Characteristics and Transports
The sensors in the ESP network are in wells in very remote sites,
often in other countries. The oil wells that are being managed may

be owned and/or operated by various organizations, so dictating
common procedures and achieving a common level of data
reliability is usually not possible. The data are often transmitted
using older General Purpose Packet Radio Service (GPRS) with
various levels of quality of service.

The equipment under test is located in many remote sites, with
various degrees of exposure to weather and external effects on
telemetry and network components, e.g. birds, so it’s not
uncommon for errors to occur in the data. This can include
missing or incorrect historian entries. When an oil well is
initialized, for example, the measurements are often unreliable
and can take some minutes to stabilize.

2.2 Data Collection
There are several paths that the remote sensor data can take before
they are analyzed. The most straightforward path is for the data to
be collected from remote sites and transferred to a centralized
location, either traditional relational database, or industry-specific
historian database like OSI-PI or Honeywell PHD. This is often
not as straightforward as it sounds, as the sensor samples are
typically stored and forwarded between remote equipment and
local and central historian instances; at varying latencies.

Agile Analytics environments like TIBCO Spotfire, and Event
Processing systems like TIBCO StreamBase, connect very easily
to any of these external data sources, as there is already a large
preexisting library of external data adapters. If there is no existing
adapter for a data source, it is straightforward to write a new
adapter using the products’ APIs. Regardless of whether existing
adapters are used or a new adapter is written, a fundamental
feature of the agile analytics and event processing systems is that
the connectivity to external systems is isolated from the
development of the business logic that performs the failure /
outage detection.

While a well-developed software system using traditional
programming languages will also isolate the code between
different layers of the system, this is a fundamental feature of
agile analytics and event processing systems which naturally
isolate the infrastructure connectivity code, if any, from the
algorithm processing steps. Since the connectivity code, the
message passing, the control over concurrency is all handled by
the analytics and event processing system, the subject matter
experts do not need a team of developers. Rather, the responsible
engineers can review the data in Spotfire’s interactive visual
environment to uncover patterns/rules/models in the sensor data
leading up to the outage; backtest the models on historical data;
and publish the models to Streambase for ongoing monitoring.
This can all be achieved in an intuitive point-click environment
without the need for traditional coding.

2.3 Data Integration and Normalization
The first step in the detection system is data cleansing, which
waits for measurements to stabilize when a well is cycled,
eliminates any duplicate samples, filters incorrect values, and
imputes missing values from previous samples, as appropriate.
When using previous values to substitute missing values, it is
important not to obscure failures that cause missing sensor
measurements. Sending both raw values that may be null and the
latest values accomplishes this.

Figure 1. TIBCO StreamBase event flow diagram that replaces
anomalous bad data values with the previous valid sensor reading
(within time constraint) and stops invalid data from being processed
when a well is being restarted.

3. PREDICTIVE ANALYTIC MODELING

While the exact features and algorithms are proprietary, and differ
in each implementation, the basic techniques are common across
different users, manufacturers, and environments. As such, the
feature vectors, and the algorithms in this paper are not identical
to the algorithms used in customer implementations.

3.1 Developing Historic Models
Different detection algorithms have been implemented: ad hoc
rules, statistical control charts and machine learning. The
detection algorithms all implement a common interface making it
extremely easy to change between detection algorithms, or even
run multiple detection algorithms simultaneously.

A detailed description of TIBCO StreamBase interfaces is given
in section 4.1.
The detection algorithms that have been used in this system fall
into two broad categories: ad hoc algorithms that subject matter
experts have developed to based on their experience, and
statistical models and control charts that are trained on collected
data.

Training statistical models has been done using the TIBCO
Spotfire analytics system either using built-in functionality or by
calling R functions to train the model. To improve performance,
the R functions were run in the TIBCO Enterprise Runtime for R
environment (TERR) environment rather than the open-source R
environment, but the functionality is identical. TERR is TIBCO’s
proprietary, high performance R engine that is embedded in both
Spotfire and StreamBase.
Machine learning models are trained using TIBCO Spotfire
calling R code running in TERR. Then the trained models may be
executed from the TBCO StreamBase system by invoking the R
model from an embedded TERR instance (or instances).

3.1.1 Ad Hoc Detection Algorithms
While statistical and machine learning techniques are extremely
powerful; ad-hoc, rules-based algorithms are a good way to get
started. Organizations that use the ESP failure detection system
described herein will have been maintaining oil and gas wells for
decades. This organization will have a culture, and have strategies
they use to schedule maintenance. A new equipment failure
detection system will therefore not be the only way maintenance
decisions are made.

The people who schedule site visits for all of the sites need to
have confidence in the new system to justify prioritizing
suggestions over other maintenance tasks. If the system mimics
decisions made in ways they understand, it will build confidence.

For example, if the system reports that a failure is likely due to
high pump pressure readings combined with current spikes, it is
more compelling than, a logistic regression model that says that
the likelihood of failure in the next week is 0.72.

Figure 2. TIBCO SpotFire analysis of sensor data leading to failure.
Subject matter experts use this sort of analytics to guide development
of ad hoc detection algorithms.

Especially when considering that there will inevitably be issues
when a complex new system is initially deployed, the approach
we take is to initially deploy with algorithms based on the
customer’s current detection methods and enhance with statistical,
clustering and machine learning models.

During implementation discussions, the customer defined their
detection methods using decision flow diagrams like the one
below. Their methodology is proprietary so this is not the actual
decision diagram, but illustrates the sort of decision logic that is
typically used.

Figure 3. Failure detection flow chart drawn by subject matter export.
As this logic is proprietary, some of the logic has been changed to
obscure precise details, but the kind of logic the subject matter expert
uses is shown.

The graphical event flow language that TIBCO StreamBase uses
is particularly well suited to express this kind of algorithm. Here

is the equivalent event flow code that automates the previous
diagram. This diagram below is the complete source code that is
compiled and executed. It’s a very easy way for subject matter
experts who think of their detection algorithm in terms of flow
charts to implement the algorithm.

Figure 4. Equivalent TIBCO StreamBase event flow to previous hand
drawn flow diagram. This event flow diagram has properties (not
shown) for each operator that allows StreamBase to compile and
execute this logic.

In addition to event flow diagrams, ad hoc rules have also been
implemented. These were simple predicates without any forward
or backward chaining. This was not because there were no
production systems available—the TIBCO Fast Data platform
supports two different rules engines, TIBCO Business Events and
the open source Drools rules engine. Rather, the number of rules
would not be able to take advantage of performance optimizations
from RTTI [arg acronym escapes me while I’m disconnected] so
expressing the rules as compiled TIBCO StreamBase predicates
expressions is more efficient and simpler to manage.

Rule
Name

Rule Predicate Expression

pressure maxelement(pressure) - minelement(pressure) > 30

pchange abs(maxelement(pressureROC) -
minelement(pressureROC)) > 4

current avg(current) / maxelement(current) < 0.78

Each of the variables, pressure, pressureROC, and current are lists
where the first element is the aggregated value for the latest hour,
the second element is the aggregated value for the latest 4 hours,
the third element is the aggregated value for the latest 12 hours,
and the fourth element is the aggregated value for the latest day.
Pressure holds the average pressure values. PressureROC is the
rate of change of pressure. Current is the average current value.

3.1.2 Clustering
When failure modes can be described, it is often effective to use
clustering algorithms to number the failure modes and label
samples with either that failure mode or as normal operation.
Then a clustering algorithm can determine the cluster center
points. Each sample measurement is compared to a failure cluster
center, if the Cartesian distance to the closest cluster center is
small, then it is flagged as a likely failure of that type.

Figure 5. A TIBCO StreamBase event flow program for a k-means
clustering algorithm.

The event flow diagram below scores a new list of sample
measurements against the cluster centers that have been calculated
by the k-means clustering algorithm.

Figure 6. The TIBCO StreamBase event flow code for scoring a
sample against a list of cluster centers.

3.1.3 Statistical Detection Algorithms
A binary predictor was built using a logistic regression model.
TIBCO SpotFire was used to identify portions of historical data
that represented ESP failures and train a logistic regression model.
Then the model’s coefficients are loaded into TIBCO StreamBase
to evaluate the real-time ESP samples.

Figure 7. TIBCO SpotFire form to build a regression model

Figure 8. TIBCO SpotFire trained regression model coefficients
published to TIBCO StreamBase.

4. REAL TIME OPERATIONS
It is a system requirement that implementing and running different
detection algorithms must not be difficult. This is accomplished
by separating the stages and defining interfaces so that
components may easily be switched when the system is deployed.

4.1 Stream Processing Architecture
To allow different detection algorithms to be plugged in, an
interface for an abstract detection algorithm has been defined and
each specific detection algorithm implements that interface. One
requirement is that all of these detection algorithms operate have
the same inputs.

A StreamBase interface is analogous to a Java interface. It is a
source code module that only contains definitions. While a Java
interface defines method signatures with method returns, a
StreamBase interface defines input streams, output streams and
shared query tables, specifying the schemas of each. Every
StreamBase application (a .sbapp file) that implements the
interface must define the exact same input streams, output
streams, shared query tables all with the exact same schemas.
In Java methods defined by the interface can be invoked on an
Object that implements that interface. In StreamBase event flow
programming, an extension point is used to enqueue and dequeue
to streams without knowing the actual implementing module.
Unlike invoking a method on a Java interface, a StreamBase
extension point may specify (either at design time or at runtime)
multiple implementing modules so enqueueing a tuple into an
input port on that extension point can send the tuple to several
implementing modules.

Figure 9. This event flow uses an extension point for the interface
FailureDetectionAlgorithm.sbint. The properties view shows that there

are two implementations: RulesBasedFailureDetection.sbint and
LogisticRegressionFailureDetection.sbint. When a tuple is sent to the

extension point, it will be processed by both implementing modules and
any output tuples will be sequentially emitted from the output port of

the extension point.

Interfaces are used in this system to specify algorithm modules so
that different algorithms can be deployed, or several algorithms
run simultaneously, without any modifications to the rest of the
system. Developers are also required to match the input and
output schemas exactly so that any errors are caught at design
time rather than causing runtime errors.

Figure 10. System Architecture Diagram. ESP sensor samples
are sent to both a historical database and into TIBCO
StreamBase. TIBCO Spotfire uses data from the historical DB
and send detection algorithm parameters to StreamBase.
StreamBase processes sensor samples and sends alerts to
Spotfire (vis Spotfire Automation Services) and into the
TIBCO Live Datamart to be displayed on user’s dashboards.
Users may view the alerts in context using Spotfire and
further refine algorithm parameters.

4.2 Stream Processing Implementation
This system was developed entirely with event processing
products with no traditional programming of any of the
algorithms, analytics, dashboards, and interactive interface to the
aggregated feature vectors and alerts.
The only traditional programming language work used to
implement the initial system is adapters to external systems, like
OSI PI and OSI AF and unit testing. Most of the java code for the
junit-based testing framework was autogenerated.

The implementation of this system in TIBCO StreamBase event
flow follows the same pattern as most systems. A main event flow
module connects to the infrastructure, in the example below, it
connects to OSI PI. It passes the data through the stages of the
system: data cleansing, feature extraction, and failure detection.

Features and alerts are sent to the Live Datamart where users can
interactively query or drill down into the data, display the results
on a dashboard textually or graphically, and give simple ad-hoc
alerts in the Live Datamart layer.

Alerts are sent to TIBCO SpotFire through SpotFire automation
services. This will send an alert email message to a user who will
see the frame of data that comprises the alert. The user can decide
to schedule maintenance on the well or select the alert which will
invoke TIBCO SpotFire on the data frame. Further analytics can
be run on the data to determine if it is, in fact, an actual failure or
to refine the algorithm parameters if it is a false alarm. If the
algorithm parameters are refined, the new parameters and
thresholds can be sent to the running TIBCO StreamBase server
which will update the parameters in the running server instance.

Figure 11. Top level event flow. Connects to external input and output
systems and calls each stage of the system.

After data cleansing, a feature extraction stage aggregates the data
and calculates common features that are used by all of the
detection algorithms. The cleansed data is aggregated using
several time windows. The specific features that are calculated are
proprietary to each customer, but common statistics like mean
values, standard deviation, movement trend are calculated for
different time windows, typically daily, hourly, and 10-minute
windows.

Figure 12. The feature extraction event flow. The CalcStatsExt
extension point calculates the statistics for every time window. The
latestVals agregate operator outputs the latest value for each
windowed statistics as the list of features per time window.

Figure 13. This is the same implementation event flow that is used to
calculate every time-windowed feature.

Figure 14. This is the definition of the calcStats aggregate operator's
dimension. It closes the window if the delta time in that window is
greater than the parameter TIME_WINDOW. The default time
window is hours(1).

Historical
Sample Data

TIBCO StreamBase

TIBCO SpotFire

Live Datamart

ESP
Sensor Samples

Alerts
Detection Algorithm

Parameters

Alerts

Figure 15. This is the properties of the extension point that declares
what implementing modules are used. The same CalcStatsImpl.sbapp
module is used each time, but the TIME_WINDOW parameter is
overridden to be the desired time window.

5. PERFORMANCE

The performance of different detection algorithms varies widely.
The table below shows benchmark timing measurements of the
various failure detection algorithms discussed in this paper.

Detection Algorithm Type Average Performance
(messages/second)

Ad Hoc Pure Event Flow 2,311,213	
Ad Hoc Rules 569,835	
Logistic Regression 45229

K-Means 16060	

The ad hoc pure event flow algorithm is extremely fast. The logic
is very simple, and very easily optimized. The ad hoc rules are
also quite fast because each rule is compiled the first time it is
seen. The logistic regression and k-means algorithms do much
more complex arithmetic for each tuple which the
correspondingly worse performance indicates.

Fortunately, the typical ESP sensor data rate for an entire sensor
network is typically in the range 1000 – 10,000 messages/second,
depending upon the number of wells in the network. Even the
more advanced algorithms preforms well enough.

Additionally, the detection logic is very easily partitioned. All of
the algorithms explored in this project operate on the information
for only one sensor. The samples for each ESP must be processed
sequentially, but different ESP’s samples may be processed in
parallel.

6. FUTURE WORK
Detecting ESP failure using event processing software has been
found to be quite effective for rapidly developing the detection
system, allowing subject matter experts to easily deploy and tune
detection algorithms, but this is only a qualitative assesment.
Measuring the success of this kind of system is not as simple as
calculating which alerts were failures and which were false
alarms. The system is designed to detect failures before they
happen, so when maintenance is performed on the suspect ESP, it
will not fail regardless of whether the detection event was correct

or not. The only way to quantitatively measure the degree of
success is to evaluate the performance is to compare the downtime
before and after the system has been in place. However, the
system has not been in use for sufficient time to accurately track
Return On Investment (ROI) measurements. Over the following
months, the system downtime must be tracked.
While the current set of ad hoc and statistical models are felt to be
effective, when the system is extended to new types of operation,
such as drill head monitoring or other preventive maintenance
problem domains, more detection algorithms will be needed.

Training a new detection algorithm can usually be done without
significant effort by running the training data through an existing
training algorithm. Rich libraries of these exist in R and other
publicly available libraries. While the training of these algorithms
can be quite time consuming, the scoring of a trained model in our
event processing system is almost always extremely efficient.
However, even though adding a new detection algorithm is quite
straightforward, each new scoring algorithm must be created
manually.
The currently set of scoring algorithms with native event
processing implementations is small. Many event processing
systems, like TIBCO StreamBase can call libraries written in
Java, C++, C#, Python, and R, the execution of the scoring is not
typically as efficient as a native algorithm.

7. CONCLUSIONS
Using Agile Analytics and Event Processing systems to analyze
real-time sensor measurements coming from equipment such as
ESPs has proven to be very effective. Two Analytics / Event
Procesing developers developed the core of the system in less than
a month. The detection algorithms were developed by subject
matter experts who occasionally worked with the Analytics and
Event Processing experts during development. After a week of
training, the subject matter experts were able to take over the
development of the system. Subject matter experts who are not
software developers and do not have the ability to maintain a
comparable system written with traditional software are now able
to modify and replace the detection algorithms and deploy them in
the real-time system.

8. REFERENCES
[] Hari Balakrishnan, Magdalena Balazinska, Don Carney,

Uğur Çetintemel, Mitch Cherniack, Christian Convey, Eddie
Galvez, Jon Salz, Michael Stonebraker, Nesime Tatbul,
Richard Tibbetts, and Stan Zdonik. 2004. Retrospective on
Aurora. The VLDB Journal 13, 4 (December 2004), 370-383.
DOI=10.1007/s00778-004-0133-5
http://dx.doi.org/10.1007/s00778-004-0133-5

[] Tibbetts, R., Yang, S., MacNeill, R., Rydzewski, D. 2012.
StreamBase LiveView: Push Based Business Intelligence.
New England Database Summit (2012).

• Kmeans algo paper
• Logistic regression paper
• Witsml reference
• [perhaps cite GPRS ieee article:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumb
er=5485637]

