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ABSTRACT 

As oil fields age, artificial lift systems are required to maintain 
production levels when reservoir pressures get too low. Failure of 
an ESP in a well can stop production or even lead to a dangerous 
event. ESPs are fitted with downhole monitoring units that 
transmit streams of data back to the surface including: motor 
temperature, pump intake pressure, intake temperature motor 
vibration, and motor current. 

This paper describes a system to monitor large, geographically 
diverse arrays of oil wells with ESPs. Sensor measurements are 
transmitted, normalized, and integrated using a distributed 
communications network and stream processing system. Analytic 
models for predicting failure are created offline using historical 
data analysis, and executed in real time against live sensor data 
using the stream processing system. When failure is predicted, 
alerts are dispatched to both a live data operator console and a 
visual analytic platform. An implementation is described on a 
major North American oil production system using the TIBCO 
Fast Data Platform including TIBCO StreamBase CEP, TIBCO 
Spotfire Analytics, and TIBCO Live Datamart. 

Categories and Subject Descriptors 
Sensor Networks. Maintainability and Maintenance. Failure 
prediction. Data Analytics. Information Integration. Stream 
management. Visual Analytics. 

General Terms 
Algorithms, Management, Measurement, Performance, Design, 
Economics, Reliability, Experimentation, Human Factors. 

Keywords 
TIBCO StreamBase CEP, TIBCO Spotfire, TIBCO Live 
Datamart, Electric Submersible Pumps. 

1. INTRODUCTION 
In 95% of global oil wells, artificial lift systems pump the oil from 
the ground when reservoir pressures get too low.  About 10% of 
these 900,000 artificial lift systems globally are Electric 
Submersible Pumps (ESPs).   The ESPs are supplied by different 
manufacturers and are operated by different service organizations 
in very different environments around the globe – from the 
constant heat of the Middle East to severe winters in the northern 
US and Canada.  

The ESPs are fitted with downhole monitoring units that transmit 
streams of data back to the surface including: motor temperature, 
pump intake pressure, intake temperature motor vibration, and 
motor current. These data can be used to develop leading 
indicators of failure and shutdown conditions. Some leading 
indicators are simple rules e.g. if motor temperature increases by a 
large amount, an electrical short can be induced and the pump 
automatically shuts down. Other leading indicators are more 
subtle combinations of changes in pressure, current and other 
parameters.  

The sensor data are typically collected and managed in an 
historian database; popular commercial products include OSI PI 
and Honeywell PDF. These systems store process data, as changes 
(deltas) in readings over time.  The data are managed via tags for 
each sensor, and stored as tag-time-value tuples. These historian 
systems are designed to store vast amounts of tag data over time, 
but aren’t designed for data analysis, reporting and real-time 
intervention.  

Typical challenges for engineering organizations in analyzing 
these sensor data include  

- Accessing the historian data quickly; with meaningful 
analyses and reports that show system state and 
shutdown events; while enabling filtering and drill-
down to events of interest across time windows and 
event frames of interest. 

- Developing candidate sets of leading indicators 
(rules/models) for shutdown events on historian data; 
and back-testing these across different pumps, 
manufacturers and field environments. 

- Applying the rules/models to real-time data in motion as 
they appear in the historian, and pushing alerts and 
notifications to companion systems for monitoring and 
intervention.  

- Monitoring results and iterating rules/models for 
ongoing performance tuning. 

Typical software systems for these tasks are unwieldy and require 
multiple IT and engineering skillsets; often requiring multiple 
people to operate. There has been a screaming need for simple-to-
configure software systems to address the workflows required.  

Note that the value generation from this workflow is significant. 
For example, across a collection of 1000 pumps producing ~200 
BOE/day, shutdowns typically account for at least 200 hours of 
lost production or ~1,000 BOE/day; and pump failures result in 5-
10 days of lost production. For $50 oil this results in 
~$50,000/day or ~$20M/year in lost production per 1000 wells. 
Preventing a conservative 25% of shutdowns results in 
$5M/year/1000 wells to the bottom line.  

In section 2 of the paper we describe the characteristics of data 
heterogeneity, integration, and normalization. Section 3 details the 
creation of predictive analytic models for failure. Section 4 lays 
out the real time event driven operational system, from stream 
processing architecture through live data mart. Section 5 covers 
performance of the operational system and section 6 lays out 
future work. 

2. SENSOR NETWORK DATA 
 

2.1 Data Characteristics and Transports 
The sensors in the ESP network are in wells in very remote sites, 
often in other countries. The oil wells that are being managed may 



be owned and/or operated by various organizations, so dictating 
common procedures and achieving a common level of data 
reliability is usually not possible. The data are often transmitted 
using older General Purpose Packet Radio Service (GPRS) with 
various levels of quality of service.  

The equipment under test is located in many remote sites, with 
various degrees of exposure to weather and external effects on 
telemetry and network components, e.g. birds, so it’s not 
uncommon for errors to occur in the data. This can include 
missing or incorrect historian entries. When an oil well is 
initialized, for example, the measurements are often unreliable 
and can take some minutes to stabilize.   

2.2 Data Collection 
There are several paths that the remote sensor data can take before 
they are analyzed. The most straightforward path is for the data to 
be collected from remote sites and transferred to a centralized 
location, either traditional relational database, or industry-specific 
historian database like OSI-PI or Honeywell PHD. This is often 
not as straightforward as it sounds, as the sensor samples are 
typically stored and forwarded between remote equipment and 
local and central historian instances; at varying latencies.  

Agile Analytics environments like TIBCO Spotfire, and Event 
Processing systems like TIBCO StreamBase, connect very easily 
to any of these external data sources, as there is already a large 
preexisting library of external data adapters. If there is no existing 
adapter for a data source, it is straightforward to write a new 
adapter using the products’ APIs. Regardless of whether existing 
adapters are used or a new adapter is written, a fundamental 
feature of the agile analytics and event processing systems is that 
the connectivity to external systems is isolated from the 
development of the business logic that performs the failure / 
outage detection. 

While a well-developed software system using traditional 
programming languages will also isolate the code between 
different layers of the system, this is a fundamental feature of 
agile analytics and event processing systems which naturally 
isolate the infrastructure connectivity code, if any, from the 
algorithm processing steps. Since the connectivity code, the 
message passing, the control over concurrency is all handled by 
the analytics and event processing system, the subject matter 
experts do not need a team of developers. Rather, the responsible 
engineers can review the data in Spotfire’s interactive visual 
environment to uncover patterns/rules/models in the sensor data 
leading up to the outage; backtest the models on historical data; 
and publish the models to Streambase for ongoing monitoring. 
This can all be achieved in an intuitive point-click environment 
without the need for traditional coding. 

2.3 Data Integration and Normalization 
The first step in the detection system is data cleansing, which 
waits for measurements to stabilize when a well is cycled, 
eliminates any duplicate samples, filters incorrect values, and 
imputes missing values from previous samples, as appropriate. 
When using previous values to substitute missing values, it is 
important not to obscure failures that cause missing sensor 
measurements. Sending both raw values that may be null and the 
latest values accomplishes this. 

 
Figure 1. TIBCO StreamBase event flow diagram that replaces 
anomalous bad data values with the previous valid sensor reading 
(within time constraint) and  stops invalid data from being processed 
when a well is being restarted. 

 

3. PREDICTIVE ANALYTIC MODELING 
 

While the exact features and algorithms are proprietary, and differ 
in each implementation, the basic techniques are common across 
different users, manufacturers, and environments. As such, the 
feature vectors, and the algorithms in this paper are not identical 
to the algorithms used in customer implementations. 
 

3.1 Developing Historic Models 
Different detection algorithms have been implemented: ad hoc 
rules, statistical control charts and machine learning. The 
detection algorithms all implement a common interface making it 
extremely easy to change between detection algorithms, or even 
run multiple detection algorithms simultaneously. 

A detailed description of TIBCO StreamBase interfaces is given 
in section 4.1. 
The detection algorithms that have been used in this system fall 
into two broad categories: ad hoc algorithms that subject matter 
experts have developed to based on their experience, and 
statistical models and control charts that are trained on collected 
data. 

Training statistical models has been done using the TIBCO 
Spotfire analytics system either using built-in functionality or by 
calling R functions to train the model. To improve performance, 
the R functions were run in the TIBCO Enterprise Runtime for R 
environment (TERR) environment rather than the open-source R 
environment, but the functionality is identical. TERR is TIBCO’s 
proprietary, high performance R engine that is embedded in both 
Spotfire and StreamBase. 
Machine learning models are trained using TIBCO Spotfire 
calling R code running in TERR. Then the trained models may be 
executed from the TBCO StreamBase system by invoking the R 
model from an embedded TERR instance (or instances). 

3.1.1 Ad Hoc Detection Algorithms 
While statistical and machine learning techniques are extremely 
powerful; ad-hoc, rules-based algorithms are a good way to get 
started. Organizations that use the ESP failure detection system 
described herein will have been maintaining oil and gas wells for 
decades. This organization will have a culture, and have strategies 
they use to schedule maintenance. A new equipment failure 
detection system will therefore not be the only way maintenance 
decisions are made. 

The people who schedule site visits for all of the sites need to 
have confidence in the new system to justify prioritizing 
suggestions over other maintenance tasks. If the system mimics 
decisions made in ways they understand, it will build confidence. 



For example, if the system reports that a failure is likely due to 
high pump pressure readings combined with current spikes, it is 
more compelling than, a logistic regression model that says that 
the likelihood of failure in the next week is 0.72. 

 
Figure 2. TIBCO SpotFire analysis of sensor data leading to failure. 
Subject matter experts use this sort of analytics to guide development 
of ad hoc detection algorithms. 

Especially when considering that there will inevitably be issues 
when a complex new system is initially deployed, the approach 
we take is to initially deploy with algorithms based on the 
customer’s current detection methods and enhance with statistical, 
clustering and machine learning models. 

During implementation discussions, the customer defined their 
detection methods using decision flow diagrams like the one 
below. Their methodology is proprietary so this is not the actual 
decision diagram, but illustrates the sort of decision logic that is 
typically used. 

 
Figure 3. Failure detection flow chart drawn by subject matter export. 
As this logic is proprietary, some of the logic has been changed to 
obscure precise details, but the kind of logic the subject matter expert 
uses is shown. 

The graphical event flow language that TIBCO StreamBase uses 
is particularly well suited to express this kind of algorithm. Here 

is the equivalent event flow code that automates the previous 
diagram. This diagram below is the complete source code that is 
compiled and executed. It’s a very easy way for subject matter 
experts who think of their detection algorithm in terms of flow 
charts to implement the algorithm. 

 
Figure 4. Equivalent TIBCO StreamBase event flow to previous hand 
drawn flow diagram. This event flow diagram has properties (not 
shown) for each operator that allows StreamBase to compile and 
execute this logic. 

In addition to event flow diagrams, ad hoc rules have also been 
implemented. These were simple predicates without any forward 
or backward chaining. This was not because there were no 
production systems available—the TIBCO Fast Data platform 
supports two different rules engines, TIBCO Business Events and 
the open source Drools rules engine. Rather, the number of rules 
would not be able to take advantage of performance optimizations 
from RTTI [arg acronym escapes me while I’m disconnected] so 
expressing the rules as compiled TIBCO StreamBase predicates 
expressions is more efficient and simpler to manage. 

Rule 
Name 

Rule Predicate Expression 

pressure maxelement(pressure) - minelement(pressure) > 30 

pchange abs(maxelement(pressureROC) - 
minelement(pressureROC)) > 4 

current avg(current) / maxelement(current) < 0.78 

Each of the variables, pressure, pressureROC, and current are lists 
where the first element is the aggregated value for the latest hour, 
the second element is the aggregated value for the latest 4 hours, 
the third element is the aggregated value for the latest 12 hours, 
and the fourth element is the aggregated value for the latest day. 
Pressure holds the average pressure values. PressureROC is the 
rate of change of pressure. Current is the average current value. 

3.1.2 Clustering 
When failure modes can be described, it is often effective to use 
clustering algorithms to number the failure modes and label 
samples with either that failure mode or as normal operation. 
Then a clustering algorithm can determine the cluster center 
points. Each sample measurement is compared to a failure cluster 
center, if the Cartesian distance to the closest cluster center is 
small, then it is flagged as a likely failure of that type. 

 
Figure 5. A TIBCO StreamBase event flow program for a k-means 
clustering algorithm. 

The event flow diagram below scores a new list of sample 
measurements against the cluster centers that have been calculated 
by the k-means clustering algorithm. 



 
Figure 6. The TIBCO StreamBase event flow code for scoring a 
sample against a list of cluster centers. 

3.1.3 Statistical Detection Algorithms 
A binary predictor was built using a logistic regression model. 
TIBCO SpotFire was used to identify portions of  historical data 
that represented ESP failures and train a logistic regression model. 
Then the model’s coefficients are loaded into TIBCO StreamBase 
to evaluate the real-time ESP samples. 

 
Figure 7. TIBCO SpotFire form to build a regression model 

 

 
Figure 8. TIBCO SpotFire trained regression model coefficients 
published to TIBCO StreamBase. 

4. REAL TIME OPERATIONS 
It is a system requirement that implementing and running different 
detection algorithms must not be difficult. This is accomplished 
by separating the stages and defining interfaces so that 
components may easily be switched when the system is deployed. 

4.1 Stream Processing Architecture 
To allow different detection algorithms to be plugged in, an 
interface for an abstract detection algorithm has been defined and 
each specific detection algorithm implements that interface. One 
requirement is that all of these detection algorithms operate have 
the same inputs. 

A StreamBase interface is analogous to a Java interface. It is a 
source code module that only contains definitions. While a Java 
interface defines method signatures with method returns, a 
StreamBase interface defines input streams, output streams and 
shared query tables, specifying the schemas of each. Every 
StreamBase application (a .sbapp file) that implements the 
interface must define the exact same input streams, output 
streams, shared query tables all with the exact same schemas. 
In Java methods defined by the interface can be invoked on an 
Object that implements that interface. In StreamBase event flow 
programming, an extension point is used to enqueue and dequeue 
to streams without knowing the actual implementing module. 
Unlike invoking a method on a Java interface, a StreamBase 
extension point may specify (either at design time or at runtime) 
multiple implementing modules so enqueueing a tuple into an 
input port on that extension point can send the tuple to several 
implementing modules. 

Figure 9. This event flow uses an extension point for the interface 
FailureDetectionAlgorithm.sbint. The properties view shows that there 

are two implementations: RulesBasedFailureDetection.sbint and 
LogisticRegressionFailureDetection.sbint. When a tuple is sent to the 

extension point, it will be processed by both implementing modules and 
any output tuples will be sequentially emitted from the output port of 

the extension point. 



Interfaces are used in this system to specify algorithm modules so 
that different algorithms can be deployed, or several algorithms 
run simultaneously, without any modifications to the rest of the 
system. Developers are also required to match the input and 
output schemas exactly so that any errors are caught at design 
time rather than causing runtime errors. 

 
Figure 10. System Architecture Diagram. ESP sensor samples 
are sent to both a historical database and into TIBCO 
StreamBase. TIBCO Spotfire uses data from the historical DB 
and send detection algorithm parameters to StreamBase. 
StreamBase processes sensor samples and sends alerts to 
Spotfire (vis Spotfire Automation Services) and into the 
TIBCO Live Datamart to be displayed on user’s dashboards. 
Users may view the alerts in context using Spotfire and 
further refine algorithm parameters. 

4.2 Stream Processing Implementation 
This system was developed entirely with event processing 
products with no traditional programming of any of the 
algorithms, analytics, dashboards, and interactive interface to the 
aggregated feature vectors and alerts. 
The only traditional programming language work used to 
implement the initial system is adapters to external systems, like 
OSI PI and OSI AF and unit testing. Most of the java code for the 
junit-based testing framework was autogenerated. 

The implementation of this system in TIBCO StreamBase event 
flow follows the same pattern as most systems. A main event flow 
module connects to the infrastructure, in the example below, it 
connects to OSI PI. It passes the data through the stages of the 
system: data cleansing, feature extraction, and failure detection.  

Features and alerts are sent to the Live Datamart where users can 
interactively query or drill down into the data, display the results 
on a dashboard textually or graphically, and give simple ad-hoc 
alerts in the Live Datamart layer. 

Alerts are sent to TIBCO SpotFire through SpotFire automation 
services. This will send an alert email message to a user who will 
see the frame of data that comprises the alert. The user can decide 
to schedule maintenance on the well or select the alert which will 
invoke TIBCO SpotFire on the data frame. Further analytics can 
be run on the data to determine if it is, in fact, an actual failure or 
to refine the algorithm parameters if it is a false alarm. If the 
algorithm parameters are refined, the new parameters and 
thresholds can be sent to the running TIBCO StreamBase server 
which will update the parameters in the running server instance. 

 
Figure 11. Top level event flow. Connects to external input and output 
systems and calls each stage of the system. 

After data cleansing, a feature extraction stage aggregates the data 
and calculates common features that are used by all of the 
detection algorithms. The cleansed data is aggregated using 
several time windows. The specific features that are calculated are 
proprietary to each customer, but common statistics like mean 
values, standard deviation, movement trend are calculated for 
different time windows, typically daily, hourly, and 10-minute 
windows. 

 
Figure 12. The feature extraction event flow. The CalcStatsExt 
extension point calculates the statistics for every time window. The 
latestVals agregate operator outputs the latest value for each 
windowed statistics as the list of features per time window. 

 
Figure 13. This is the same implementation event flow that is used to 
calculate every time-windowed feature.  

 

 
Figure 14. This is the definition of the calcStats aggregate operator's 
dimension. It closes the window if the delta time in that window is 
greater than the parameter TIME_WINDOW. The default time 
window is hours(1). 
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Figure 15. This is the properties of the extension point that declares 
what implementing modules are used. The same CalcStatsImpl.sbapp 
module is used each time, but the TIME_WINDOW parameter is 
overridden to be the desired time window. 

5. PERFORMANCE 
 

The performance of different detection algorithms varies widely. 
The table below shows benchmark timing measurements of the 
various failure detection algorithms discussed in this paper. 
 

Detection Algorithm Type Average Performance 
(messages/second) 

Ad Hoc Pure Event Flow 2,311,213	  
Ad Hoc Rules 569,835	  
Logistic Regression 45229 

K-Means 16060	  
 

The ad hoc pure event flow algorithm is extremely fast. The logic 
is very simple, and very easily optimized. The ad hoc rules are 
also quite fast because each rule is compiled the first time it is 
seen. The logistic regression and k-means algorithms do much 
more complex arithmetic for each tuple which the 
correspondingly worse performance indicates. 

Fortunately, the typical ESP sensor data rate for an entire sensor 
network is typically in the range 1000 – 10,000 messages/second, 
depending upon the number of wells in the network. Even the 
more advanced algorithms preforms well enough.  

Additionally, the detection logic is very easily partitioned. All of 
the algorithms explored in this project operate on the information 
for only one sensor. The samples for each ESP must be processed 
sequentially, but different ESP’s samples may be processed in 
parallel. 
 

6. FUTURE WORK 
Detecting ESP failure using event processing software has been 
found to be quite effective for rapidly developing the detection 
system, allowing subject matter experts to easily deploy and tune 
detection algorithms, but this is only a qualitative assesment. 
Measuring the success of this kind of system is not as simple as 
calculating which alerts were failures and which were false 
alarms. The system is designed to detect failures before they 
happen, so when maintenance is performed on the suspect ESP, it 
will not fail regardless of whether the detection event was correct 

or not. The only way to quantitatively measure the degree of 
success is to evaluate the performance is to compare the downtime 
before and after the system has been in place. However, the 
system has not been in use for sufficient time to accurately track 
Return On Investment (ROI) measurements. Over the following 
months, the system downtime must be tracked. 
While the current set of ad hoc and statistical models are felt to be 
effective, when the system is extended to new types of operation, 
such as drill head monitoring or other preventive maintenance 
problem domains, more detection algorithms will be needed. 

Training a new detection algorithm can usually be done without 
significant effort by running the training data through an existing 
training algorithm. Rich libraries of these exist in R and other 
publicly available libraries. While the training of these algorithms 
can be quite time consuming, the scoring of a trained model in our 
event processing system is almost always extremely efficient. 
However, even though adding a new detection algorithm is quite 
straightforward, each new scoring algorithm must be created 
manually.  
The currently set of scoring algorithms with native event 
processing implementations is small. Many event processing 
systems, like TIBCO StreamBase can call libraries written in 
Java, C++, C#, Python, and R, the execution of the scoring is not 
typically as efficient as a native algorithm. 

7. CONCLUSIONS 
Using Agile Analytics and Event Processing systems to analyze 
real-time sensor measurements coming from equipment such as 
ESPs has proven to be very effective. Two Analytics / Event 
Procesing developers developed the core of the system in less than 
a month. The detection algorithms were developed by subject 
matter experts who occasionally worked with the Analytics and 
Event Processing experts during development. After a week of 
training, the subject matter experts were able to take over the 
development of the system. Subject matter experts who are not 
software developers and do not have the ability to maintain a 
comparable system written with traditional software are now able 
to modify and replace the detection algorithms and deploy them in 
the real-time system. 
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