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Abstract— Optical flow estimation is a critical mechanism
for autonomous mobile robots as it provides a range of use-
ful information. As real-time processing is mandatory in
this case, an efficient solution is the use of specific VLSI
analog circuits. This paper presents a simple and regular
architecture based on analog circuits which implements the
entire processing line from photoreceptor to accurate and
reliable optical flow estimation. The algorithm we propose,
is an energy-based method using a novel wideband velocity-
tuned filter which proves to be an efficient alternative to the
well known Gabor filters. Our approach shows that a high
level of accuracy can be obtained from a small number of
loosely tuned filters. It exhibits similar or improved perfor-
mance to that of other existing algorithms, but with a much
lower complexity.

Keywords— Optical flow estimation, neuromorphic sys-
tems, velocity-tuned filters, aperture problem, VLSI motion
chips

I. INTRODUCTION

Motion estimation refers to the computation of velocity
vectors (optical flow) at each pixel. In a mobile robot, mo-
tion perception can provide a range of useful information,
such as egomotion, time to collision, detection of moving
objects, 3D structure of the enviroment, ... However, in
order to be adequately estimated, these items may require
accurate measurements of optical flow.

A powerful solution for real-time processing is the real-
1zation of specific VLSI circuits. Motion estimation algo-
rithms on silicon require a compromise between the num-
ber of pixels in the input image and the complexity of each
processing unit. Up to now, only simple motion algorithms
have been implemented using analog circuits, see [18] for a
review.

Energy-based algorithms [1], [27], [8] are known to be
robust in the face of noise and aliasing, they give reliable
measurements of velocity and they allow an easy treatment
of the aperture problem. However, due to the complexity
of implementing a battery of spatiotemporal filters, current
VLSI motion chips use gradient-based algorithms [24], [6]
or correlation-based algorithms [12], [7], [9] as they can be
implemented within very compact circuits.

In this paper we present a new energy-based algorithm
that significantly minimizes the complexity of these kinds
of methods. The reduction of complexity is due to: 1) the
use of a new wideband velocity-tuned filter (VTTF) simpler
than the narrow band spatiotemporal Gabor filters usually
used in energy-based algorithms. 2) A simple circuit for
energy and velocity estimation. This paper focuses on the
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theorical aspects of the approach in order to give the basis
for low complexity energy-based algorithms.

The paper is organized as follows: section II presents the
model of motion and the basic theory of VTF’s. Section
IIT introduces a simple analog network that implements a
wideband VTF using four neighbor interactions. Section
IV describes how this network is used for motion estima-
tion, highlighting the aperture problem and providing a
complete scheme for motion estimation, well tailored for
CNN analog circuits. Finally, section V shows that the re-
sults compare favourably to those of other more complex
energy-based algorithms.

II. TRANSLATIONAL MOTION AND THE THEORY OF
VELOCITY-TUNED FILTERS

A basic model of motion assumes that the brightness
signal translates with constant velocity and direction. In
such a case we can write: e(x,t) = e(x—vt), where e is the
brightness function, x = (x, y)T are the spatial variables
and ¢ the temporal variable, v = (v, vy) is the velocity
vector and 7" means transpose. By successively applying
the Fourier transform to the spatial and temporal variables,
we obtain:

E(f., i) = E(£)6(f: + VL) (1)

where f; = (fs, fy )T represents the spatial frequency vec-
tor, f; the temporal frequency, E(f;) the spatial Fourier
transform of the static brightness pattern e(x) and §(.) is
the Dirac delta distribution. The power of the signal lies on
a plane passing through the origin [27] with the equation
fi+vTE, =0.

Energy-based methods use a set of filters sampling the
frequency domain in order to detect the orientation of the
energy plane. Different filter types have been proposed in
the literature: a) spatiotemporal frequency tuned filters
such as Gabor filters [8], [20], [23], b) velocity-tuned filters
[5], [26], ¢) space-velocity separable filters [22], [21]. In
this paper, we will focus on the velocity-tuned filters since
they can yield simpler architectures than the other two
approaches.

The output of a spatiotemporal filter H(f;, f:) to a mov-
ing pattern can be writen as:

S, ) = H(fs, v E) B(E) 6(fi +vTE)  (2)
meaning that the input is filtered by an equivalent spatial
filter with transfer function H(f,, —vTf,).

In order to estimate the local mean power of the filter
output, we consider that the integration window is suffi-
ciently wide the that local mean power approximates to



Fig. 1. -3dB section of the spatiotemporal frequency magnitude of:
a) velocity-tuned filter, the grid indicates the orientation of the
energy plane matched to the velocity-tuned filter; b) frequency
tuned filter, several planes maximises of the output energy.

the total mean power. For a window of infinite size, the
output power is:

P= /s(x,t) dx = /Fe(fs) |H(E, —vT£)[" df,  (3)

where I', and I'y are the spatial power density spectrum of
the input and output signals. Total mean power P does not
depend on time because temporal and spatial frequencies
are linked through motion.

This output power is a function of input velocity: P(v).
We define a velocity-tuned filter (VIT) for velocity v, as a
filter with mean ouput power P(v) having a unique maxi-
mum for some input velocity v = v,, independently of the
spectral content of the input signal. Thus, the magnitude
of a VIF Hy (f;, f:) must have a unique maximum at
f: = —vIf,, for any spatial frequency f.

The transfer function of a VTF for velocity v, may be
written as:

Hy, (fs, fi) = Ho(fs, f:+vIfy) (4)

where Hy(fs, fi)is a VIF for to null velocity. This is a
direct consequence of the definition of VTF and equation
(3). Separable Gabor filters do not verify this property as
they are frequency-tuned and not velocity-tuned. Figure
1 shows the difference between a wideband VTF and a
narrow band frequency-tuned Gabor filter.

I1I. VELOCITY-TUNED ANALOG NETWORK

We are interested in filters that can be easily imple-
mented as analog circuits. Therefore, the filter must be
of low order to reduce connectivity. This is the case for the
analog RC network of figure 2.a, often used in vision chips
[13], [17].

The RC network is a low-pass spatiotemporal filter. As
shown in figure 2.a, each output node i1s connected to the
input via a resistor 7, to its four neighbors via resistors R
and to the ground via a capacitor C'. Nodes are indexed
by the discrete spatial variables n and m. By applying the
Kirchoff currents’ law at the output node (n, m), we obtain:

€nm(t) = snm(t) + 1[4 50 m(t) = sn-1,m(t) —
Spnt1,m(t) = $pm—1(t) — Sp,m1 ()] + Tdsp m(t)/dt

()

Fig. 2.

a) RC network. b) Velocity-tuned analog network. Asym-
metrical interactions are responsible for the velocity tuning.

where v = /R and 7 = rC. Equation (5) is discrete in
space but continuous in time. It can be considered as an
approximation of the continuous equation:

e(z,y,t) = s(x,y,t) — v As(x,y,t) + 7 9s(x,y,t) /0t (6)

where A is the spatial Laplacian operator. Applying the
Fourier transform to equation (6) gives the transfer func-
tion of the analog network (valid for low spatial frequen-
cies):
1
R (7)
I+ An2y P 1 j2mr

Due to its low-pass spatiotemporal characteristic, the out-

HO(fsa ft) =

put energy will be at a maximum for static inputs. This
filter verifies the definition of a filter tuned to null velocity.
By applying equation (4), it is then possible to steer it to
an arbitrary velocity v,:

1

Hv, (s, =
v (ks J2) 1+ 4m2y |fs|2 + j277(fy + vI1Ly)

(8)

This low-pass function (fig. 1.a) is oriented in the spa-
tiotemporal frequency space. From the inverse Fourier
transform of equation (8), we derive the following differ-
ential equation:

6(l‘,y,t)IS(I,y,t)—’}/AS(I,y,t)+ (9)
T (VOTVS(J:, y,t) + 0s(x,y,t)/0t)

where V is the spatial gradient operator. Implementation
of this filter as an analog network demands that we re-
turn to a discrete approximation of the spatial derivatives,
the temporal derivative being implemented by means of
the capacitor. For the spatial derivatives, we use the fol-
lowing approximations: 0s/0% >~ [$p41,m — Sn—1,m]/2 and
0?s/0x? ~ Sptim — 2 Spom + Sn—1,m, and the same for
0s/dy and 9%s/0y?. The distance between samples is one
spatial unit. Replacing the approximations of derivatives
into equation (10) and grouping the terms with the same
indices, we obtain:

en,m(t) = Sn,m(t) + 7[45n,m(t) - axsn—l,m(t) -
besnt1,m(t) = aysn,m-1(t) — bysn,m41(t)] +

Tdsn, m(t)/dt  (10)

where:
Vg, T

2y

Vy, T

2y

a; =1+ Gy =1+ ,ax—I—bx:ay—l—by:Q(ll)
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Fig. 3. a) Magnitude of the spatiotemporal transfer function of the
VTF (fy = 0). b) Contour diagram at -3dB and -6dB for the
transfer function obtained with the first order (solid lines) and
second order (broken lines) approximation of the spatial deriva-
tive.

Equation (10) is implemented by the network of figure 2.b,
with only four neighbor interactions. The VTF is specified
by 4 parameters: v = spatial scale, 7 = temporal scale and
vl = (v;,,vy,) = tuning velocity which are a function of
the circuit parameters; r, R, C, az, bz, a, and by.

Due to the discrete nature of the spatial derivative in
equation (10), there is some distortion of the transfer func-
tion of the analog network with respect to equation (8). By
applying the Fourier transform to equation (10) we obtain
the transfer function:

H(E f) = 5

- 12
€+ Q0 1) 42
where j = v/—1, P and @ being the following real func-

tions:

P(f;) =14 9[4 = (az + by)cos(2nf) (13)
—(ay + by)cos(27 fy)]
Qfs, fr) = 277 fi + v(ap — by)sin(27f;)
+7(ay = by)sin(27 fy)

The spatial frequencies f; and f, are given in cycles/pixel
and the temporal frequency f; in cycles/second. The
function @ is responsible for the velocity tuning of the
filter. For low spatial frequencies we can approximate
Qfs, f1)/(277) = fi + vIf, with v,, = v(ay — b,)/7 and
vy, = Y(ay — by)/7, which are the two components of the
tuning velocity. Using more points than in equation (10)
to approximate the spatial derivatives would increase the
range of spatial frequencies for which this aproximation is
valid. This would also increase the complexity of the filter,
each node being connected to more than four neighbors.

When Q(f;, fi) = 0, the function P(f;) determines the
spatial frequency form of the transfer function (12). For
H being a low-pass filter, a., b, ay and b, verify that
az+by > 0and ay+b, > 0. Figure 3.a shows the magnitude
of the transfer function (12).

Figure 3.b shows the results obtained by approximat-
ing the spatial derivative with two and four points: if
the filter is not very narrow around the plane equation
fr + vIf, = 0 (low velocity selectivity), the two approxi-
mations are almost equivalent for spatial frequencies below
0.2 cycles/pixel.

Fig. 4.
velocity selectivity, left, and another with high velocity selectivity,
right.

Spatiotemporal impulse responses of two filters with low

A. Stability

As B. Shi [21] has shown in a more general framework,
the network is stable if, for each spatial frequency fs, the
filter exhibits temporal stability. That is, if in equation
(12), we replace j27 f; by s (the Laplace complex variable),
stability requires that the roots of the denominator P(f;)+
JQ(fs,s/(j27)) = 0 for s € €, all lie on the open left-half
side of the complex plane. This requires P(f;) > 0, that is:
lae + bs| + |ay + by| < 4+ 1/v. This condition is already
satisfied since ay + by = ay + by = 2 as given in (11).

B. Spatiotemporal tmpulse response

An approximation of the spatiotemporal impulse re-
sponse of the velocity-tuned analog network can easily be
calculated by applying the inverse Fourier transform to the
transfer function (8), the low spatial frequency approxima-
tion. The result is:

hy, (x,1) = A(t)e X=VerlP /W4 (14)
where: A(t) = e~"7/(4w~t), o*(t) = 4~t/7 and U(1) is
the Heaviside step. The approximation is valid for a filter
with low velocity selectivity and with a spatial bandwidth
lower than 0.2 cycles/pixel. The impulse response is a spa-
tial Gaussian signal which varies causally with time and
propagates in space with the tuning velocity of the filter.
The amplitude of the Gaussian, A(t), decreases with time
at a rate controlled by the time constant 7. The spatial
width of the Gaussian, o%(¢), increases linearly with time.
At t = 0 the impulse response is a Dirac delta distribution.

Velocity selectivity refers to the sensitivity of the filter
output to differences in the input velocity. High veloc-
ity selectivity requires a narrow shape around the plane
ft +vIf, = 0 and is obtained by increasing the value of 7
while keeping constant the other filter parameters, v and
v,. But this increases the duration of the impulse response
and when the filter is very selective, the first order approx-
imation of the spatial derivative introduces a distorsion,
giving some low energy oscillations (see figure 4). Fur-
thermore, a longer impulse response duration would damp
short duration motions.

C. Moving input: velocity-tuned filter

As shown in equation (2), the spatial response of a spa-
tiotemporal filter to an input with constant velocity v
can be calculated by filtering the input image with an



Fig. 5.
composed of several dots moving with different velocities. a)
input image. b) Output of a filter tuned to velocity vo, = 1 and
vo, = 0. Each dot presents motion blur, except that moving at
the tuned velocity of the filter. The blurring has been exagerated
for visibility by making the filter very selective (large value of 7).
c) Squared output.

Output of a velocity-tuned analog network for an input

equivalent spatial filter. The VTF in the presence of a
moving input corresponds to the spatial filter Gg(f;) =
Hy,(f;, —vIf,). If we use the low spatial frequency ap-
proximation given in equation (8) we obtain:

_ 1
1 44n2y [+ j2rr AVTE,

Gp(fs) (15)

where Av = v, — v = |Av]|(cos 3,sin 3)T is the difference
between the tuning velocity and the input velocity. This is
an oriented spatial filter in the direction of Av. For |[Av| =
0 the filter has a symmetrical response. As |Av| increases,
the spatial filter reduces its spatial frequency bandwidth in
the direction given by the angle 3. Therefore, the output
will be blurred in the direction 5.
The mean output power is:

P(Av) = /Fe(fs) Gs(t)|” df, (16)
It will be at a maximum when the filter’s transfer func-
tion Gg(f;) has its greatest spatial bandwidth, i.e., when
|Av|=0. The maximum —3dB spatial bandwidth is AB =
(9.6 72 4)~1/2. The mean output power will also be max-
imized if Av'f, = 0 on the support of the input power
spectrum T (f5), that is, if the input spatial pattern e(x)
depends only on one spatial direction. This leads to the
aperture problem, see next section.

IV. MOTION ESTIMATION

Based on biological architecture where accuracy can be
obtained by a small number of loosely tuned filters, we have
developped a simple method based on wide-band tuning,
formerly presented in [25]. As it is shown in figure 8, the al-
gorithm is composed of four stages: a) the retinal prefilter-
ing, b) velocity-tuned filters, ¢) local mean output power
estimation for each filter and d) velocity estimation.

A. Prefiltering

As shown in equation (16), the output power depends
on the spectral content of the input pattern. Atick and
Redlich [2] show that natural images have a spectrum of
the form 1/ [f;|* and that retinal filtering compensates for
this characteristic, by whittening the spectrum.

Fig. 6. Retinal prefiltering: a) input image, b) output of bipolar cells
and c) temporal derivative.

We use a model of the retina based on analog circuits
as a preprocessing stage [4], [10] (see figure 8.a) consist-
ing of two layers. The first, the receptor layer, computes
a low-pass spatiotemporal filter, primarily to improve the
signal to noise ratio. The second layer, the horizontal cells
layer, computes a spatiotemporal average of the receptor
output. The difference amplifiers model the bipolar cells
(they compute the difference between the outputs of the
receptor layer and of the horizontal cells layer). Therefore,
overall the retina behaves as a spatiotemporal band-pass
filter (see figure 6.b). Thus, for low frequencies, the filter-
ing will compensate for the 1/ |f;|“ spectrum of the images.
For high frequencies, the filtering will reduce noise.

As the proposed VTF responds to low spatiotemporal
frequencies, band-pass prefiltering enhances the contrast
between responses of different VI'Fs by cancelling the com-
mon part of the spatiotemporal transfer functions. In order
that the low frequency approximation of the VTF be valid,
the prefiltering must have a spatial bandwidth of AB < 0.2
cycles/pixel which is the maximum allowed spatial band-
width of the VTFs.

As many VLSI circuit implementations of the retina have
already been proposed [14], [15], the same technologies ap-
ply to our VTF.

B. Local mean output power estimation

We are interested in local velocity estimation in order to
deal with variations of the velocity field of the image. This
requires an estimation of the local output power for each
VTF by a local integration over a domain sufficiently wide
to avoid the aperture problem. The integration window
represents the ”aperture” through which we look at the
moving pattern. By reducing the window’s size, we increase
the possibility of losing pertinent information in order to
estimate the full motion vector. By increasing it, we obtain
smoothed velocity fields and can cancel the motion of small
objects.

This spatial integration is performed by a resistive analog
network (without capacitor) applied to the squared output
of the VTF (figure 8.c). Local output power estimation at
each pixel is given by the voltage at the corresponding node
in the resistive network. The resistive network implements
a low-pass spatial filter. The ratio v; = r;/R; controls the
size of the integration region. The -3dB frequency band-
width of the integration network is AB = (9.6 7%~;)~'/2.
Increasing v; increases the size of the integration region. In
order to ensure that the integration region is larger than the
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Fig. 7. Shunting inhibition is modeled by a voltage divider (a) where
conductances are proportional to inputs. In the operating range,
the output varies linearly with respect to velocity (b).

impulse response of the VTF| it is necessary that 7; > ~
(v is a parameter of the VTF defined in section IIT). The
exact value of 4; depends on the prominence of the aper-
ture problem in the input images. For our simulations,
Yi = 100 v-

C. Component velocity estimation from two VIFs

In this section we propose a simple mechanism for es-
timating the components of the input velocity vector by
combining the output powers of two loosely tuned VTFs.

We consider that after retinal prefiltering the input signal
has a flat spectrum, T'.(f;) = T constant. For a loosely
tuned VTF, the integral of (16) can be approximated by
the following expression:

N T 1
VB v v A

being v = (vg, vy)? the input velocity and v, the velocity
of tuning of the VT'F. It can be verified numerically that the
error remains within £5%. Py, is a function of v with its
maximum at v = v,. The velocity selectivity of the filter
is Av? = 8y/7? and controls the shape of the function Py, .
Small values of Awv, give a sharp maximum.

We use two filters tuned to velocities v, =
|v,| (cos@,sin )T and —v,. Velocity component in the di-
rection @ is estimated using a voltage divider (shunting in-
hibition mechanism [16]) where each conductance is con-
trolled by the output power of a VIF (figure 7.a). The
upper conductance Gy is the “excitatory” connection and
is proportional to the output power of the filter tuned to
v,. The lower conductance G'_ is the ”inhibitory” connec-
tion and 1s proportionnal to the output power of the filter
tuned to —v,. The voltage at the output node is:

Gy—-G_ Py, —-Py
Gy+G_ " Py, +P.y

PVDIP(V—

(17)

v,)

Vout = Ve

o

(18)

where V. is a constant voltage and V¢ 1s the output volt-
age. The numerator is strongly dependant on velocity. The
denominator acts as a normalization term. For low veloci-
ties we can approximate Vo,; as:

vTv,

Vout =
AvZ + [vo|* + O(Iv]*)

Vee (19)

For velocities in the range |v| < |v,|, the voltage V,,+ has
a linear dependence on vIv,/|v,| = |v|cos(d — a) = vy,

+ + +
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Fig. 8. Diagram of the velocity estimation algorithm for one spatial
dimension from input brigthness e, to velocity estimation vy: a)
retina prefiltering, b) two filters tuned to opposite directions v,
and —v,, c) local energy integration by squaringfilter outputs and
filtering with a resistive analog network and d) velocity estimation
with a shunting inhibition mechanism.

the component of input velocity for the direction 6. For
different values of @, estimated velocities are distributed
on a circle (figure 9.a). For velocities larger than |v,|, Voyt
decreases to zero due to the term O(|v|*) in the denomi-
nator which represents terms depending on high powers of
v. Figure 7.b shows the V,,; characteristic with respect to
v. The non-linear characteristic will introduce some errors
for velocities |v| > |v,|.

Estimating two components of velocity in two orthogo-
nal directions will be sufficient to give the input velocity
vector. This can be achieved with four filters tuned to
velocities |v,|(cos @, sin 0)T with 6 = 0,7/2, 7 and 37/4,
providing a simple architecture for VLSI implementations.
Figure 8 shows the complete diagram of the analog circuit
for velocity estimation in one spatial dimension. Simula-
tion results on real images (see section V) show that this
method gives accurate results despite 1ts simplicity.

In some situations, this simple method will fail to pro-
duce the correct motion vector. The flat spectrum hypothe-
sis of the input patterns is unlikely for some natural images,
even after whittening prefiltering. An extreme case is an
input pattern with a spatial structure oriented in only one
direction, that is e(x) = e(x?'n), where n = (cos 3,sin 8)7,
4 being the direction of variation. In such a case, the
pattern has a one dimensional spatial structure and the
aperture problem will be present for all scales of analysis.
Such a pattern has a spatial power spectrum of the form



L.(ffn) 6(f'n, ), where ny = (sin 3, — cos B)T. If we sup-
pose that the brightness pattern has a flat spectrum in the
direction of variation, that is T'.(f{n) = T', as it will be the
case after prefiltering, then, output power can be exactly
calculated as:

Ity 1 (20)

P ) = i o =T/

where v, = vI'n (normal velocity) is the component of ve-

locity in the direction of variation of the pattern, 5. Output
power does not depend on the velocity component orthog-
onal to the normal velocity. By a Taylor developement in
vy, We can approximate V,,; by:

B [vo| v cos (0 — 5)
T AV2 4 |vo| cos (0 — B)F 4+ O(v2)

Vee (21)

out

where # 1s the direction of tuning of the filters and 5 is the
apparent direction of motion (i.e. the direction of variation
of the spatial input pattern), v, is the component of the
input velocity in the direction 3, O(v2) represents the high
order terms that can be ignored for low values of v,. For
different values of 8, we will obtain estimates distributed
on an ellipse in polar coordinates passing through the ori-
gin and centered at v, /2 (cos(8), sin(5)). When computing
the velocity, it would be necessary to integrate over large
regions in order to minimize the aperture problem.

When the input consists in a pure translationnal sinu-
soid, it can be shown that V,,; depends on the spatial fre-
quency. This is an undesirable behavior as we are only
interested in the velocity dependence. However, this is not
a common input pattern when dealing with real images.

D. Component velocity estimation from three VI'Fs

Some of the limitations of the estimation performed with
two filters can be overcome by using a third filter tuned to
null velocity. The use of three filters allows to obtain a
better linearity on the estimation, a simpler treatement
of the aperture problem and eliminate the dependency on
the input frequency for sine waves. Although this yields
to a more complex combination of output powers of the
VTFs, there is a significant improvement on accuracy, see
section V. No analog circuit is proposed here. Velocity
computation could be calculated by an external processor.

We propose the next expression in order to estimate ve-
locity:

~ _|Vo| P‘Z’D_PEVD

T 9 P Pl —2P} Pl [P

(22)

Vg 1s an estimation of the velocity component of the input
velocity vI' = |v|(cos a,sin ) onto the direction 6. Piv,
are as already defined, Fq is the output power of a VITF
tuned to null velocity. The range of validity of equation
(22) is limited by input noise and by the approximation
seen in equation (17), which is more biased when input
velocity v differs greatly from v,. As input velocity |v| >
|v,|, the mean output powers of the three filters decrease

Fig. 9. Distribution of estimated components for 4 orientations (vg,
for 6 = 0, 45, 90 and 135 degrees). The four components lie (a)
on a circle for a flat spectrum, (b) on a line for a 1D pattern, (c)
on an ellipse for an oriented texture.

and measurements are affected by noise and approximation
erTors.
In the case of a flat power spectrum input (17) we obtain:

vTv,

vy =~ = |v]cos (0 — @)

ol (23)
with « the direction of input motion. If we calculate vy for
different directions we see that they are distributed on a
circle (figure 9.a). This result is similar to that obtained
with two filters, equation (19), but here the denominator
has desappear giving a better linearity. We use 2n+1 filters
to estimate velocity components at n orientations.

For the one dimensional pattern (20) we obtain:

Vg = vp/ cos (0 — ) (24)

where 3 is the apparent direction of motion. This expres-
sion is the equation of a line in polar coordinates (figure
9.b).

An intermediate situation can be represented by an in-
put pattern consisting in a plaid resulting from the addition
of vertical and horizontal sine waves with different ampli-
tudes: e(z,y) = sin(2wf,2) + Asin(2nf,y). In the case
where A = 1, the input pattern has no orientation and
motion 1s perceived without ambiguity. In this case, the
velocity estimations for different directions are distributed
on a circle, equation (23). In the case where A = 0, only
one sine wave 1s present, the pattern has a one-dimensional
structure and motion is ambiguous. Velocity estimations
will be distributed on a line, equation (24). In the case
where A = 0.5, motion can also be perceived without am-
biguity. As this pattern is slightly oriented, there is no rea-
son for velocity estimations to be distributed on a circle.
In fact, we found that they are distributed on an ellipse.
For a moving pattern of two sine waves, the output mean
power of a VIF, v,, is:

1
Py =
Vo T (1 + 4n2f2)2 4 472 72(v, — vocos(0))? f2 +
AZ

(14 4m2yf2)? + 47272 (vy — v,5in(6))? f2

(25)

where v, and v, are the components of the input motion
vector. We use equation (22) in order to estimate the com-
ponent of motion in the direction é. If we consider that the
plaids have a frequency lower than the spatial bandwidth
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Fig. 10. Polar plots of velocity components estimated at each pixel for
a moving circle. Both correct and estimated velocity are super-
imposed. Local mean power is estimated on a small integration
region (right) and a large integration region (left).

of the filters (f, < AB), we can approximate equation (22)
by a Taylor developpement in f,/AB. We obtain:

~ cos(0)vy +A25in(9)v
e (1 — A?)cos(6)? + Af +O(f2/AB?)

(26)

where O(.) represents the higher order terms that, for low
spatial frequencies, can be ignored. The approximation is
correct for a loosely tuned VTF (|v,| =~ Av,). Expression
(26) is the equation of an ellipse in polar coordinates with
center (vy/2, vy/2) passing through the origin (figure 9.c).
It must be noted that this expression does not depend on
the input spatial frequency f,. For A = 1, we obtain the
equation of a circle, and for A = 0, this is the equation
of a line. As an ellipse passing through the origin is de-
scribed by four parameters, it will be necessary to estimate
motion over at least four directions. This will require 9
VTFs (2 opposed velocities for each direction and one for
null velocity). In figure 10, we show the estimated veloc-
ity field for a circle moving to the right. At each pixel we
show a polar plot with the components estimated in each
direction and the velocity vector obtained by estimating
the center of the ellipse. Figure 10.a shows the results for
a small integration region. We can see that ellipses have
their major axis parallel to the contour at each location.
In those pixels where velocity i1s parallel to the contour,
the aperture problem is more prominent, giving some er-
rors in the estimation. The eccentricity of the ellipse gives
an indication of the significance of the aperture problem.
Figure 10.b shows the results for a larger integration area.
In this case, the aperture problem has been reduced as the
curvature of the circle clearly appears, velocity estimations
are distributed on circles.

E. Dealing with motion boundaries

The algorithm presented in this paper supposes that,
at least in the integration region and during the time-
size of the impulse response of the VTFs, the image has
a unique constant translational motion. This means that
the input energy lies on a unique plane in the frequency
space. However, as at object boundaries, two different mo-
tions can co-exist, the power is distributed onto two planes:
fi + vles =0 and f; + vafs = 0; vy and vs being two ve-
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Fig. 11. Left) Translating tree (TT), right) diverging tree (DT).

locity vectors. Therefore, the algorithm will fail to produce
good estimates.

As proposed by Koch et al. [11] it is possible to open
switches in the integration resistive network (”line pro-
cesses” ) in order to adapt the power integration window to
the object boundaries, avoiding interactions between dif-
ferent objects. Though it is an interesting principle, this
solution increases the complexity of the implementation.

In static camera applications, most of motion boundaries
are due to the occlusion of a static background by the mov-
ing objects. Around the boundaries, power will lie on the
planes: f; +vif; = 0 (object) and f; = 0 (background);
v1 being the velocity of the moving object. A simple so-
lution will consist of adding a temporal derivative in the
prefiltering (see figure 6.¢) so as to cancel the power plane
ft = 0. Mean local power will be due only to the moving
object and the algorithm will produce the correct estimate.

As temporal derivative provides a high-pass filtering, it
also compensates for the 1/ |f;|” spectrum decrease of in-
put images (due to coupling between spatial and temporal
frequencies in the presence of motion). Therefore, for eco-
nomic VLSI implementations, the retinal filtering can be
avoided. However, the first layer of the retina can improve
performance since low-pass filtering reduces sensitivity to
noise and aliasing.

V. RESULTS

This section describes performances obtained with the
simple architecture described in this paper. They are as
accurate as results provided by more complex architectures
in the framework of energy-based methods [3], [8], [22].

Table T compares the results obtained with the algo-
rithms of Heeger [8] and Shi et al. [22] with three versions
of our algorithm using two artificial sequences, ” Translat-
ing tree” (TT) and ”Diverging tree” (DT) [3], Figure 11.
The error at each pixel 1s measured in degrees using the
angular measure given by Barron et al. [3]. This measure
combines amplitude and direction of the difference between
real and estimated velocity vectors. Table I gives the mean
value (m) and the standard deviation (o) of the error, the
number of filters used by each algorithm and the complex-
ity for implementation of each filter with analog circuits
(the number of layers corresponds to the number of nodes
per pixel and r 1s the radius of the neighborhood to which



TABLE 1
COMPARISION OF PERFORMANCES.

| || TT | DT | Filters | Complexity

VTF() [ m = 8.58° | 9.62° 4 1 layer
o=3.24° | 6.37° r=1

VTFU) || m =4.71° | 6.47° 9 1 layer
o=169° | 2.56° r=1

VTFCD || m = 2.16° | 3.09° 9 1 layer
o=1.26° | 1.68° r=2

Heeger || m = 4.52° | 4.49° 36 2 layers
o=241° | 3.10° r=1

Shi m = 1.93° | 2.77° 28 2 layers
et al. || o0 =1.52° | 4.55° r=10

Fig. 12. Estimated optical flows with four VTFs and the shunting
inhibition mechanism. Left) car running toward the camera, and
right) "Hamburg taxi” sequence. Vector velocities are shown
only where motion is detected.

each node is connected).

Heeger [8] uses a large set of narrow band Gabor filters.
An efficient approximation to the quadrature pair of Ga-
bor filters may be obtained using analog circuits [20]. This
circuit has two layers (two ouput nodes) and connection
radius of » = 1. The algorithm proposed by Shi et al. [22]
uses a set of space-velocity separable filters. This yields a
complex implementation with analog circuits (2 indepen-
dent layers for implementing the quadrature pair and a con-
nection radius of » = 10). Furthermore, these two methods
require a complex architecture to combine the filter outputs
for optical flow computation. The first version, VIF(®),
of our algorithm has 4 filters and the shunting inhibition
mechanism. The second version, VIF(%) has 9 filters (4
directions), with three filters for estimating each velocity
component. It shows the same performances as Heeger’s
algorithm. The third version, VITF(#%) has 9 filters, where
spatial derivatives of equation (12) are approximated with
four points (r = 2) and it exhibits performances similar to
the algorithm of Shi et al.

All these algorithms are limited to velocities inferior to
3 pixels/frame. This limitation comes from the time dis-
cretization required for numerical simulations. However,
for an analog circuit with continuous time, such a con-
straint 1s relaxed.

When using four filters, VIF() | the major source of er-
rors occurs in oriented textures regions and in regions with
velocities around |v,| because of the non linear character-
istic of the shunting inhibition. However, estimated optical
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Fig. 13. Simulation of the analog system for optical flow estima-
tion on a real sequence obtained by a linear camera of a mobile
robot (each line represents a time step). The algorithm uses two
velocity-tuned filters and the shunting mechanism for velocity
estimation. Left: input sequence, right: velocity field.

flow allows the detection of moving objects, the estimation
of time to contact and the classification of patterns of mo-
tion due to self-motion (translation, rotation). Figure 12
shows results obtained with four VIFs using the shunting
inhibition mechanism. The first sequence contains a car
moving toward the camera on a static background. Esti-
mated velocity vectors are shown only where the output of
the temporal derivative is larger than a predefined thresh-
old. The second sequence 1s the ”Hamburg taxi”, with
three vehicles moving in different directions. For all the
sequences, the filter parameters |v,| and Aw, are set to 3
pixels/frame. Figure 13 shows the results obtained by sim-
ulation of the circuit of Figure 8 on a real sequence taken by
the on-board linear camera of a mobile robot (KHEPERA
©). The robot is moving towards a wall painted with a
regular pattern. At the same time, a moving object crosses
perpendicularly to the trajectory of the robot, from left to
right. The object is correctly detected and, as the robot
approaches the wall, the pattern of the divergent optical
flow is easily identified.

VI. DISCUSSION

To summarize, the main advantages which make our ap-
proach efficient and reliable are as follows:

We use a retinal prefiltering that reduces high frequency
noise, ”whittens” the 1/ [f;|* spectrum of natural images
and enhances the contrast between the responses of differ-
ent VIFs.

We use a temporal derivative that cancels the power con-
tained in the plane f; = 0. This improves the results be-
cause energy integration will not be biased at the motion
boundaries between moving objects and the static back-
ground. These boundaries can be recovered by detecting
the presence of motion directly from the output of the tem-
poral derivative.

We use wideband velocity-tuned filters as motion detec-
tors. They are loosely tuned to different velocities and
provide accurate estimations. A shunting inhibition mech-
anism between the outputs of two filters tuned to opposite
velocities allows a very economical means for motion esti-



mation.

The overall structure of the proposed algorithm is well
suited for VLSI implementations: based on a neuromorphic
approach, it 1s simple and robust and exhibits sufficient ac-
curacy for applications involving mobile robots (estimation
of patterns of optical flow, detection of moving objects,
tracking, estimations of time to collision, etc.).

On going work consists on the implementation of the
proposed architecture on VLSI, with emphasis on robust-
ness and noise sensitivity. Most of the components can be
build with circuits already proposed in the literature [5],
[14], [15], [19]. The choice of the velocity v, will depend on
the application requirements and may be limited by tech-
nology. A maximum velocity of v, = 200 pixels/second
will require resistance values around 5G Ohms and capac-
itor values around 2 pF for the velocity-tuned analog net-
work. These values are compatible with 0.5 u technologies.
Larger values of v, require lower resistor and capacitor val-
ues.
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