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Abstract

There is general consensus that context can be a rich
source of information about an object’s identity, location
and scale. However, the issue of how to formalize contex-
tual influences is still largely open. Here we introduce a
simple probabilistic framework for modeling the relation-
ship between context and object properties. We represent
global context information in terms of the spatial layout of
spectral components. The resulting scheme serves as an ef-
fective procedure for context driven focus of attention and
scale-selection on real-world scenes. Based on a simple
holistic analysis of an image, the scheme is able to accu-
rately predict object locations and sizes.

1 Introduction

In the real world, there exists a strong relationship be-
tween the environment and the objects that can be found
within it. Experiments in scene perception [1] have shown
that the human visual system makes extensive use of these
relationships for facilitating object detection and recogni-
tion (Fig. 1: where are the pedestrians?). It seems that the
visual system first processes context information in order
to index object properties. From a computational point of
view, this approach makes sense only if the context can be
processed in a simple stage, simpler than the detection and
the recognition of single objects. Context can play a use-
ful role in object detection in at least two ways. First, it
can facilitate object identification when the local intrinsic
information about object structure is insufficient (say when
the object appears at very small scales in an image). Sec-
ond, even when objects can be identified via intrinsic in-
formation, context can simplify the object discrimination
by cutting down on the number of object categories, scales
and positions that need to be considered. Most current ap-
proaches to object detection are not designed to make use of

a) b)

Figure 1. a) Structured world: background
and objects properties are correlated. b)
Unstructured world: no rules constraint the
possible arrangements. Notice how veridical
context facilitates localization of the pedes-
trians in fig. (a) relative to fig. (b).

contextual information. For instance, a pedestrian detection
algorithm will be equally performing in both Fig. 1.a and
Fig. 1.b. For most machine vision systems, no performance
benefits accrue by the inclusion of veridical context cues.

One way of defining the ’context’ of an object in a scene
is in terms of other previously recognized objects within the
scene. The drawback of this conceptualization is that it ren-
ders the complexity of context analysis to be at par with
the problem of individual object recognition. An alterna-
tive view of context, which is algorithmically more attrac-
tive, relies on using the entire scene information holistically.
This dispenses with the need for identifying individual ob-
jects within a scene. This is the viewpoint we shall adopt in
the work presented here. Our goal is to develop a scheme
for representing context information and to demonstrate its
role in facilitating individual object detection. We shall
show that context can ’prime’ an object detection system
by providing strong cues for location and scale selection.
We show that the context processing stage is as simple as
the recognition of an isolated object under controlled con-
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ditions of location, size and pose. Therefore, context is an
efficient shortcut for object detection and recognition even
when, in principle, the task can be solved ignoring context.

2 Statistical object detection

In a probabilistic framework, the problem of object de-
tection requires the evaluation of the function:

P (~p; �; ~x; on j~v) (1)

This is the conditional probability density function (PDF) of
the presence of an object on, at the spatial location ~x, with
pose ~p and size � given a set of image measurements ~v. ~v
may be the pixel intensity values, the color distributions,
the output of multiscale oriented band-pass filters, etc. Ob-
ject detection and recognition requires the evaluation of this
PDF at different locations in the parameter space defined by
(~p; �; ~x; on) (e.g. [9, 11, 13]).

2.1 Local features

Note that as written in (1), ~v refers to the image mea-
surements at all spatial locations. Thus, ~v has a very high
dimensionality. In order to reduce the complexity, it is as-
sumed that the regions surrounding the object have inde-
pendent features with respect to the object presence. There-
fore, the PDF that is actually used by statistical approaches
is [9, 11, 13]:

P (~p; �; ~x; on j~v) ' Pl(~p; �; ~x; on j~vB(~x;�)) (2)

~vB(~x;�) is a set of local image measurements in a neighbor-
hoodB of the location ~x with a size defined by � = g(~p; �)
which is a function of the pose and size of the object. Eq.
(2) formalizes the main principle underlying the classic ap-
proach for object detection: the only image features that are
relevant for the detection of an object at one spatial loca-
tion are the features that potentially belong to the object and
not to the background. For instance, in a template-matching
paradigm, the object detection is performed by the compu-
tation of similarities between image patches and a template
built directly from the object. The image patches that do not
satisfy the similarity criteria are discarded and modeled as
noise with particular statistical properties.

2.2 Context features

In this paper, we shall formalize the intuition that there
is a strong relationship between the background and the ob-
jects that can be found inside of it. The background can not
only provide an estimate of the likelihood of finding an ob-
ject (for example, one is unlikely to find a car in a room),
it can also indicate the most likely position and scales at

which an object might appear (e.g. pedestrians on walkways
in an urban area). In order to model the context features, we
split image measurements ~v in two sets:

~v =
n
~vB(~x;�); ~vB(~x;�)

o
= f~vL; ~vCg (3)

whereB refers to the local spatial neighborhood of the loca-
tion ~x and B refers to the complementary spatial locations.
Assuming that, given the presence of an object on at the lo-
cation ~x, the intrinsic object features and context features
are independent, we can write:

P (~v j ~p; �; ~x; on) = Pl(~vL j ~p; �; ~x; on) � Pc(~vC j ~p; �; ~x; on)

The two conditional PDFs obtained refer to:

� Local evidence: Pl(~p; �; ~x; on j~vL). It is the object
conditional PDF function given the set of local features
~vL. If the local measurements are appropriate, the PDF
has strong and narrow maxima providing a high con-
fidence. Its evaluation requires exhaustive spatial and
multiscale search, resulting in a computationally ex-
pensive procedure.

� Context priming: Pc(~p; �; ~x; on j~vC). It is the object
conditional PDF function given the set of context fea-
tures ~vC . We do not expect this PDF to have strong,
narrow maxima. Therefore, it provides priors on the
object presence, location, scale and pose. By appropri-
ately choosing a low dimensional context representa-
tion, the PDF can be computed efficiently.

From a computational point of view, context priming re-
duces the set of possible objects and therefore the number
of features for discriminating between objects. It reduces
the need for multiscale search and focuses computational
resources into the more likely spatial locations. Therefore,
we propose that the first stage of an efficient computational
procedure for object detection comprises the evaluation of
the PDF Pc.

3 Context priming

In this paper we will study the information available in
the function Pc. We apply the Bayes rule successively in
order to split the PDF Pc in four factors that model four
kinds of context priming:

Pc(~p; �; ~x; on j~vC) = Pp(~p j�; ~x; on; ~vC) (4)

Ps(� j ~x; on; ~vC)Pf (~x j on; ~vC)Po(on j~vC)

The meanings of the four factors are, from right to left:

� Object priming: Po(on j~vC). It selects the most likely
objects given context information.
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� Focus of attention: Pf (~x j on; ~vC). It gives the most
likely locations for the presence of object on given
context information.

� Scale selection: Ps(� j ~x; on; ~vC). It gives the most
likely scales (sizes, distances) of the object on at dif-
ferent spatial locations given context information.

� Pose and shape priming: Pp(~p; j�; ~x; on; ~vC). It gives
the more likely (prototypical) shapes (point of views
and poses) of the object on in the context ~vC .

Although these kinds of context priming have been
shown to be important in human vision [1], computational
models of object detection typically ignore the information
available from the context.

4 Scene/context description

The definition of the context information given by eq.
(3), ~vC = ~vB(~x;�), has a very high dimensionality and de-
pends on the pose, size and object location. In this section
we show how context features can be represented in a low
dimensional space without sacrificing relevant information.

4.1 Holistic representation

There are many examples of holistic representations in
the field of object recognition. In contrast to parts-based
schemes that detect and recognize objects based on an anal-
ysis of their constituent elements, holistic representations
do not attempt to decompose an object into smaller entities.
However, in the domain of scene recognition, most schemes
have focused on ’parts-based’ representations. Scenes are
encoded in terms of their constituent objects and their mu-
tual spatial relationships. But this requires the detection
and recognition of objects as the first stage. Recent works
have taken a different approach in which the scene is rep-
resented as a whole unity [10], as if it was an individ-
ual object, without splitting it into constituent parts (e.g.
[5, 8, 10, 15, 16, 17, 18]). Previous studies have shown
that the elements that seem to be relevant for discrimina-
tion between different scenes are: 1) The spatial structures
(e.g. [5, 8, 10, 15, 16, 17, 18]): Different structural ele-
ments (e.g., buildings, road, tables, walls, with particular
orientation patterns, smoothness/roughness) compose each
context (e.g., rooms, streets, shopping center). 2) The spa-
tial organization (e. g. [2, 8, 16, 17]): The structural el-
ements have particular spatial arrangements. Each context
imposes certain organization laws. 3) The color distribution
[2, 5, 8, 15, 18]. As described below, we propose a low di-
mensional holistic representation that encodes the structural
scene properties [10]. Color is not taken into account in this
study, although the framework can be extended to include
this attribute.

Figure 2. The first three PCs of the WFT at
16x16 locations and r = 16 pixels.

4.2 Spatial layout of main spectral components

We will use the magnitude of the Windowed Fourier
transform (WFT) for describing the local structures of the
scene. The WFT is defined as:

I(x; y; fx; fy) =

N�1X
x0;y0=0

i(x0; y0)hr(x
0 � x; y0 � y) e�j 2�(fxx

0+fyy
0) (5)

i(x; y) is the input image and hr(x0; y0) is a hamming win-
dow with a circular support of radius r. A similar represen-
tation can be obtained by using multiscale oriented wavelet
decomposition. We chose the WFT, as it can be easily visu-
alized. In order to be tolerant to illumination variations and
to reduce the sensitivity to spatial variations and contrast,
we use the normalized local amplitude spectrum:

A(x; y; fx; fy) =
jI(x; y; fx; fy)j

I(x; y; 0; 0) std(x; y; fx; fy)
(6)

with std2(x; y; fx; fy) = E
h�
A�A

�2i
where the ex-

pectation is approximated by averaging over the image
database. This representation of the scene is of much higher
dimensionality than i(x; y) (in fact, due to the redundancy
it is possible to invert the transformation for recovering the
phase information discarded in eq. 6). To reduce the com-
putations, we evaluated the local Fourier transforms only at
16x16 locations (with r = 16 pixels for the hamming win-
dow). In order to further reduce the dimensionality of the
representation, we decomposed the local amplitude spec-
trum into its principal components (PC):

A(x; y; fx; fy) '

NX
n=1

an n(x; y; fx; fy) (7)

with an =< A(x; y; fx; fy);  n(x; y; fx; fy) >, where the
functions  n are the eigenfunctions of the covariance oper-
ator given by A(x; y; fx; fy). Fig. 2 shows the first three
PCs obtained. By using only a reduced set of PCs (N = 60

3



Figure 3. Spatial layout of main spectral com-
ponents obtained from the first 20 PCs. The
obtained layout captures the dominant orien-
tations and scales at coarse image regions.

for the rest of the paper), eq. (7) provides an approxima-
tion of the layout of spectral components (see fig. 3). The
coefficients fangn=1;N encode the main spectral character-
istics of the scene with a coarse description of their spa-
tial arrangement. This provides the necessary degree of
invariance with respect to objects arrangements, textures,
and surfaces that are compatible with the same scene. In
essence, fang is a holistic representation as all the regions
of the image contribute to all the coefficients, and objects
are not encoded individually [10]. In this representation
the set of image measurements of eq. (1) is defined by
~v = A(x; y; fx; fy). We propose to use ~vC = fangn=1;N
as context features. This definition of context features dif-
fers from the one given in eq. (3) mainly because here ~vC
is computed from all the image measurements without dis-
carding the ones belonging to the object on. When the ob-
ject size is small with respect to the size of the image and
~vC has a low dimensionality, the coefficients an are mostly
determined by the context and not by the object. When the
object is occupying a significant portion of the image, then
~vC � ~vL. We discuss the consequences of this fact later.

5 Context-driven scale selection and focus of
attention

In order to illustrate the procedure, we focus on one ob-
ject family: human heads in outdoor and indoor urban en-
vironments. Face detection is a very active field of research
due to its many applications. The procedure can be ex-
tended to deal with other object families and other environ-
mental categories.

5.1 PDF model and learning

As written in eq. (5), modeling context priming requires
the estimation of conditional PDFs with the general form

P (~u j~v). Here we adopt the mixture of gaussians model for
the joint PDF:

P (~u;~v) =

MX
i=1

biG(~u; ~ui;Ui)G(~v;~vi;Vi) (8)

with bi being the weights of the local models, ~u being the
output vector and ~v the input vector, and:

G(~u; ~ui;Ui) =
e�

1

2
(~u�~ui)

T
U
�1

i
(~u�~ui)

(2�)L=2jUij1=2
(9)

L being the dimension of the vector ~u. The parameters for
the input distribution are ~vi for the mean and Vi for the
covariance matrix of the cluster i. The parameters for the
output distribution are ~ui and Ui. The model includes a
linear dependency between the mean of the output distri-
bution and the input vector: ~ui = ~ai + Ai(~v � ~vi) [4].
The learning is performed by means of the EM algorithm
(see [4] for a derivation of the learning equations). The
database consists in 1700 pictures of 2562 pixels. The
scenes used spanned a range of categories and distances:
indoors (rooms, restaurant, supermarket, stations, etc.) and
outdoors (streets, shopping area, buildings, houses, etc.).
For each picture the size and location of the heads was in-
troduced by hand. The head heights ranged from 2 pixels
to 250 pixels. For the learning stage we use one half of the
database, and the other half is used for the testing stage. The
results presented in the ensuing sections correspond to the
mean performances averaged over several training trials.

5.2 Context-driven focus of attention

There are several studies modeling focus of attention.
They are based on low-level saliency maps (without any
high-level information relative to the task or context, e.g.
[6, 7]) or they are only task driven (based on target mod-
els, e.g. [12, 9]). Common to all these models is the use
of features in a local-typeframework ignoring more high-
level context information that is available in a global-type
framework. In contrast to the cited approaches, the model
we propose here is both task driven (looking for object on)
and context driven (given global context information: ~vC).
From an algorithmic point of view, focus of attention is im-
portant as it avoids expending computational resources in
spatial locations with low probability of having the target. It
also provides criteria for rejecting possible false detections
that fall outside the primed region. When the target is small
(a few pixels), the problem of detection using only local
features is ill-posed (for instance, the first image in figure
4). In that case, some of the pedestrians are just scratches
on the image. Similar scratches can be found in other loca-
tions of the picture. Due to context information, they are not
considered as potential targets by the human visual system
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Figure 4. Focus of attention based on global
context configuration. Each of the four pairs
shows the original image and the image mul-
tiplied by the function p(~x j~vC ; heads) to illus-
trate the primed regions.

as they fall outside the ’pedestrian region’ (see examples of
this in figures 4, and 8). As mentioned in section 3, the
problem of focus of attention can be formulated as the se-
lection of the spatial locations that have the highest prior
probability of containing the target object given context in-
formation. In our framework, it involves the evaluation of
the PDF Pf (~xj on; ~vC). The learning provides the relation-
ship between the context and the more typical locations of
the objects belonging to one family. For the PDF Pf we use
the model given in eq. (8) which gives:

Pf (~xj on; ~vC) =

PM
i=1 biG(~x; ~xi;Xi)G(~vC ;~vi;Vi)PM

i=1 biG(~vC ;~vi;Vi)
(10)

with ~xi = ~ai + Ai(~vC � ~vi). The learning is realized as
described in section 5.1. Very good results are obtained by
modeling the PDF using only M = 4 clusters. Figure 4
shows several examples of images and the selected regions
based on context features. From the PDF Pf we selected the
region with Pf (~xj on; ~vC) > th with th set experimentally
in order to have, on average, a selected area of 33% of the
size of the image. 87% of the heads present in the pictures
of the testing set were inside the selected regions. We can
estimate the center of the region of focus of attention as:

(x; y)=

Z
~xPf (~xjon; ~vC)d~x =

PM
i=1 bi ~xiG(~vC ;~vi;Vi)PM
i=1 biG(~vC ;~vi;Vi)

We can differentiate between two situations: A) for small
object sizes, the context features ~vC are not influenced by
the presence and location of the target. In such situation, the
primed region is determined only by the prior knowledge
about the context and typical object locations (Pf ). Fig. 5
compares the estimated y (fig. 5.a) and x (fig. 5.b) coor-
dinates with the real coordinates of the center of the region
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Figure 5. Estimation of heads locations. Co-
ordinates (x = 0; y = 0) corresponds to the
left-upper image corner.

that contains the heads in each picture (xh; yh). We can see
that the yh coordinate can be estimated quite well; the er-
ror (yh � y) has a gaussian distribution with zero mean and
standard deviation of 26 pixels. However, the xh coordinate
is poorly estimated. The correlation coefficient between xh
and the obtained x is 0.35. The reason for these results is
that the yh coordinate is affected by the ground level, point
of view and distance which are aspects that refer to proper-
ties of the context and observer (see section 6). However,
context introduces little constraint on the coordinate xh as,
in general, people can have any x location in the scene (see
fig. 4). B) For big object sizes (> 100 pixels vs. 256 for the
image) the situation is different as the global features ~vC are
affected by the local features that belong the object. In such
a case, ~vC is affected by the exact location that the object
has in the scene. Fig. 5.c shows the estimated x coordinate
with respect to the xh location of the heads in the picture.
The correlation coefficient between xh and x is 0.7.

5.3 Context-driven scale selection

Scale selection is a fundamental problem in computa-
tional vision. If scale information could be estimated by
a low cost pre-processing stage, then subsequent stages of
object detection and recognition would be greatly simplified
by focusing the processing onto the only diagnostic/relevant
scales. With that aim, Lindeberg [7] proposed a method
for scale selection for the detection of low-level features
such as edges, junctions, ridges and blobs when no a pri-
ori information about the nature of the picture is available.
Here we show that prior knowledge about context provides
a strong cue for scale selection for the detection of high-
level structures as objects. The context in which the ob-
ject is located restricts its possible locations and distances.
In the model we propose, the preferred scale for a con-
text ~vC is given by the PDF Ps(� j ~x; on; ~vC). For sim-
plicity, we assume that the scale is independent of position:
Ps(� j ~x; on; ~vC) ' Ps(� j on; ~vC). The model for the con-
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a) b)

c) d)

Figure 6. Spatial layout of spectral compo-
nents corresponding to the four clusters ob-
tained during the learning of the scale selec-
tion model.

ditional PDF is:

Ps(�j on; ~vC) =

PM
i=1 biG(�;�i;Si)G(~vC ;~vi;Vi)PM

i=1 biG(~vC ;~vi;Vi)
(11)

with �i = ai + ~AT
i (~vC � ~vi). The model parameters are

(bi; ai; ~Ai;Si; ~vi;Vi) which are obtained after a learning
stage. As here on = heads, we estimated � as being the
mean height Hm of the heads present in the picture (in log-
arithmic units): � = log(Hm), with Hm given in pixels.
Head height, which refers to the vertical dimension of the
head, is mostly independent of head pose (variations in pose
are mostly due to horizontal rotations). The preferred scale
(�) given context information (~vC) is estimated as the con-
ditional expectation:

�=

Z
�Ps(�j on; ~vC)d� =

PM
i=1 �i biG(~vC ;~vi;Vi)PM
i=1 biG(~vC ;~vi;Vi)

It is also possible to obtain a measure of the variance of
head height for a given context in order to have a measure
of the reliability of the estimation:

E2 =

Z
(� � �)2P (�j on; ~vC)d� =

PM
i=1 Si biG(~vC ;~vi;Vi)PM
i=1 biG(~vC ;~vi;Vi)

The model reaches maximal performance with as few as
M = 4 clusters. Fig. 6 shows the spectral layout associated
with the input distribution for the four clusters obtained.
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Figure 7. a) Results for context driven scale
selection and b) Scale selection given the size
of one of the objects.

The output distribution of the four clusters is centered at
5 (a), 11 (b), 32 (c) and 91 (d) pixels for the head height.
The results for the estimation of Hm are given in figs. 7.a
and 8. For 84% of the images, the estimated head height
(�) was in the interval � 2 (Hm=2; Hm � 2), with Hm be-
ing the actual mean height of the heads in the picture and
for 41% of the images � 2 (Hm=1:25; Hm � 1:25). Fig. 9
shows some of the images for which our scheme produced
a wrong estimate. For comparison and in order to have
an estimation of the best performances that can be attained
from context-based information, we studied how good is the
height of one headH1 (selected at random among the heads
present in the scene) as an estimator of the mean heightHm

of the others heads in an image. For 90% of the pictures
H1 2 (Hm=2; Hm � 2) (see Fig. 7.b).

6 Context properties

In general, the introduction of other object families into
the model does not require learning new PDFs. As we show
here, the PDFs of focus of attention and scale selection can
be written as functions of a few context properties.

6.1 Absolute mean depth of the scene

The relative size (�) of an object inside an image, de-
pends on both the relative size �1 of the object at one fixed
distance (e.g. 1 meter) and the actual distance D between
the observer and the object: � = �1 � D (in logarithmic
units and for linear measurements). If we can detect one ob-
ject by applying a multiscale search, then, given �1, we can
estimate the absolute distance at which it is located. This
approach is the traditional approach for object detection and
estimation of absolute depth from familiar object sizes. The
approach we propose is quite different. As shown in sec-
tion 5.3, using a holistic image representation we can infer
the expected sizes for particular objects. This procedure
implies having some knowledge about the absolute mean
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Figure 8. Focus of attention and scale selection from global context information.

depth of the scene. In the scale priming model we can make
explicit the mean depth of the scene (D) by writing:

Ps(� j on; ~vC) '

Z
P (� jD; on)PD(D j~vC)dD (12)

The approximation comes from two assumptions: 1) Once
the mean depth is specified, the object size is independent
of context features: P (� jD; on; ~vC) = P (� jD; on) and
2) the mean depth of the scene is independent of the object
class that we want to detect: P (D j on; ~vC) = PD(D j~vC).
The function P (� jD; on) does not require a learning stage.
A simple model of this PDF will consist of a gaussian dis-
tribution: P (� jD; on) � e�(���1�D)2=�2 , with �, �1 and
D in logarithmic units. �2 is the variance of the distribu-
tion and includes variability due to pose. Only the func-
tion PD(D j~vC), which does not depend on on, requires
a learning stage with a database of examples. If � 2 is
small and PD(D j~vC) is smooth then eq. (12) can be ap-
proximated by: Ps(� j on; ~vC) ' PD(�1 � � j~vC). Then
� = �1 � D with D =

R
DPD(D j~vC)dD. It should be

noted that PD(D j~vC) provides absolute depth information
based only on monocular cues [17]. In such an approach,
depth is provided by familiar context instead of familiar ob-
jects (Fig. 8 and 10 show pictures sorted according to abso-
lute depth).

6.2 Horizon line

In a similar vein, when looking for an object, the focus
of attention depends on few context properties. The y coor-
dinate of the center of the focus of attention can be approxi-
mated by y ' (H� (a�h)=D)=(H(a�h)=D+1), where
H is the position of the horizon in the image,D is the mean
depth of the scene, h is the height of the observer and a is
the elevation of the object on with respect to ground level.
In the case of on = heads, a � h and we can approximate
y ' H . Fig. 10.b shows scenes (with similar mean depths)
sorted with respect to the horizon level estimated using the
y coordinate of the focus of attention.

Figure 9. Examples of errors chosen among
the 10 biggest errors in scale priming.

To summarize, some scene properties such as absolute
mean depth or ground level, that are usually believed to re-
quire additional sources of information (e.g. binocular vi-
sion) and local analysis (perspective lines), can be estimated
by indexing them (or recognizing them) using a global con-
text description.

7 Context familiarity

Scale selection and focus of attention depend on prior
knowledge provided during the learning stage. One would
expect the system to exhibit poor performance when analyz-
ing context categories not included in the training. There-
fore, it is important to have a measure of the familiarity in
order to determine the reliability of the inferences. Famil-
iarity of a context is quantified by the probability that it be-
longs to the set of context categories 
 used in the learning,
given a set of context features ~vc. That is the conditional
PDF P (
j~vC), with: P (
j~vC) = P (~vC j
)P (
)=P (~vC).
This requires the evaluation of the distribution of the con-
text features in the learning set 
, and the total distribution
of context features given any context category which can be
written: P (~vC) = P (~vC j
)P (
) + P (~vC j
)P (
). The
in class PDFs P (~vC j
) and out of class PDF P (~vC j
) are
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a)

b)

Figure 10. Pictures sorted according to: a)
Mean depth, and b) ground level.

modeled by a single gaussian. We assume P (
) = P (
) =
0:5. One scene is considered familiar if P (~vC j
) >
P (~vC j
). Several tests using different combinations of fa-
miliar contexts and unfamiliar contexts (urban vs. portraits,
urban vs. natural, etc.) yield results above 85% of correct
rejection of unfamiliar context with less that 15% of rejec-
tion of familiar scenes.

8 Conclusion

We have shown that object locations and scales can be
inferred from a simple holistic representation of context,
based on the spatial layout of spectral components. The
results lend credence to the intuition that the integration
of contextual analysis into computational models for ob-
ject detection should yield more efficient systems capable
of making use of regularities in real-world scenes. How-
ever, several interesting issues remain open. These include
the study of other context representations, the integration
of the model in a comprehensive system for object detec-
tion and comparing the model’s performance with that of
human subjects on object localization tasks in large scenes.
The last enterprise will likely suggest ways in which our
model can be further refined.
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