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Modeling global scene factors in attention
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Models of visual attention have focused predominantly on bottom-up approaches that ignored structured con-
textual and scene information. I propose a model of contextual cueing for attention guidance based on the
global scene configuration. It is shown that the statistics of low-level features across the whole image can be
used to prime the presence or absence of objects in the scene and to predict their location, scale, and appear-
ance before exploring the image. In this scheme, visual context information can become available early in the
visual processing chain, which allows modulation of the saliency of image regions and provides an efficient
shortcut for object detection and recognition. © 2003 Optical Society of America
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1. INTRODUCTION
As illustrated in Fig. 1(a), contextual information allows
one to unambiguously recognize an object, such as a pe-
destrian, even when the intrinsic local information is not
sufficient for reliable recognition. Note that blurring of
the image has reduced the available local information.
Figure 1(b) illustrates that even when there is enough lo-
cal information for object recognition, contextual informa-
tion plays a major role in object search. The target object
can be localized easily when it is clearly differentiated
from the background as well as when the background con-
text constrains the possible locations of the target.

A popular strategy for finding an object embedded in a
complex background is to look for local features that differ
the most from the rest of the image. Accordingly, most
computational models of attention are based on low-level
saliency maps that ignore contextual information pro-
vided by the correlation between objects and the scene.1–5

A second class of models of attention include information
about the appearance of the target in the search
process.5–7 This approach ignores image regions that
have features incompatible with the target and enhances
the saliency of regions that have features compatible with
the target. But again, no contextual information is taken
into account.

A number of studies have shown the importance of
scene factors in object search and recognition. Yarbus8

showed that the task changes the way observers look at a
scene. Studies by Biederman et al.9 and Palmer10 high-
light the importance of contextual information for object
search and recognition. Rensink and co-workers11,12

showed that changes in real-world scenes are noticed
most quickly for objects or regions of interest, thus sug-
gesting a preferential deployment of attention to these
parts of a scene. Henderson and Hollingworth13 reported
results suggesting that the choice of these regions is gov-
erned not merely by their low-level saliency but also by
scene semantics.14 Chun and Jiang15 showed that visual
search is facilitated when there is correlation across dif-
ferent trials between the contextual configuration of the
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display and the target location. Oliva et al.16 showed
also that familiar scenes automatically activate visual
search strategies that were successful in past experi-
ences, without volitional control by the subject. All these
results are in agreement with the idea that scene infor-
mation can be processed fast and without relying on
single objects.17 Schyns and Oliva17 showed that a
coarse representation of the scene initiates semantic rec-
ognition before the identity of objects is processed. Sev-
eral other studies support this idea that scene semantics
can be available early in the chain of information
processing18–21 and suggest that scene recognition may
not require object recognition as a first step.22–24

Notwithstanding the accumulating evidence for contex-
tual effects on visual exploration, few models of visual
search and attention proposed so far include the use of
context.25–30 In this paper a statistical framework for in-
corporating contextual information in the search task is
proposed.

2. COMPUTATIONAL MODELS OF
ATTENTION
In this section, first, saliency-based models of attention
are introduced. Then a probabilistic framework is intro-
duced in which a model that incorporates both low-level
factors (saliency) and higher-level factors (scene/context)
for directing the focus of attention is proposed.

A. Saliency-Based Models of Attention
In the feature-integration theory,3 attention is driven by
low-level features, and the search for objects is believed to
require slow serial scanning; low-level features are inte-
grated into single objects when attention focuses on them.
Computational models of visual attention (saliency maps)
have been inspired by this approach, as it allows a simple
and direct implementation of bottom-up attentional
mechanisms.1,28,31,32

Saliency maps provide a measure of the saliency of
each location in the image based on low-level features
such as contrast, color, orientation, texture, and motion
2003 Optical Society of America
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Fig. 1. Examples of scene/context influences in object recognition and search. (a) Examples with increasing contextual information but
where the local target information remains constant. Observer recognition improves drastically as background information is added.
(b) Scene information affects the efficiency of search for a target (a person). The context acts in two competing ways: (1) by introducing
distractors but also (2) by offering more constraints on target location. Most previous models of attention focus on modeling masking
effects (saliency maps).
(see Ref. 33 for a review). In the saliency-map model, re-
gions with properties different from those of their neigh-
borhoods are considered more informative and therefore
attract attention. When one is looking for an object, a
possible strategy for exploring the image is analyzing first
the salient regions in the scene. This approach is very
efficient when the target object is distinct from the back-
ground in terms of simple low-level image features.

The image features most commonly used for describing
local image structure (orientation, scale, and texture) are
the outputs of multiscale oriented bandpass filters.
Gabor-like filters have interesting properties for the en-
coding of natural images.34,35 These features have also
been shown to be relevant for the tasks of object
detection6,36 and scene recognition.24,37–39 These image
features are obtained as the convolution

vk~x! 5 (
x8

i~x8!gk~x 2 x8!, (1)

where i(x) is the input image, uk(x) is the output image,
and gk(x) is an oriented bandpass Gabor filter defined by
gk(x) 5 exp(2ixi2/sk

2)exp(2p j^fk ,x&). The real and
imaginary parts of gk are Gabor filters in quadrature.
The variable k indexes filters tuned to different orienta-
tions and scales.

For each feature a saliency map is computed by using a
hardwire scheme1: the output of each filter is processed
by center–surround mechanisms to enhance regions with
outputs that differ from the neighborhood. The results
are then amplitude normalized and combined in order to
produce a unique saliency map that also combines infor-
mation coming from other image features such as con-
trast and color.1 The scanning of attention is then mod-
eled as exploring the image in succession following
regions of decreasing saliency. Also, the set of low-level
features can be enhanced to account for other image prop-
erties that also attract attention such as edge length and
curvature.4

Most of the computations for the saliency map rely only
on local measurements, and global information is consid-
ered only in the normalization step. Saliency maps are
easy to compute and can be hard-wired into the design of
a system, thus minimizing the need for learning. How-
ever, their reliance on local measures forces bottom-up
models to treat the background as a collection of distract-
ing elements that complicate rather than facilitate the
search for specific objects. Most of the time, the target
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object is camouflaged in a cluttered background. In such
situations, saliency alone may not provide an efficient
way of finding an object.

Low-level saliency maps compute the saliency of a local
image region by looking at the distribution of features in
the neighborhood (context) of each location. This use of
context treats the background as a collection of distrac-
tors instead of exploiting the correlations that exist be-
tween target properties and background properties. In
the next sections a term will be introduced into the sa-
liency of a target that depends on the correlation between
object and scene properties. In the model presented in
this paper, contextual features refer to image features
correlated with a higher-level scene description.

B. Model for Contextual Modulation of Target Saliency
In contrast to traditional models of search for which back-
ground scene information is more of a hindrance than a
help, the statistical correlations that exist between global
scene structure and object properties will be used to fa-
cilitate search in complex scenes. This approach is moti-
vated by the observation that the structure of many real-
world scenes is governed by strong configurational rules
(Fig. 2). These statistical regularities can provide esti-
mates of the likelihood of finding an object in a given
scene and can also indicate the most likely position and
scales at which an object might appear. Next to be de-
scribed is how these intuitions have been formalized into
an operational scheme for object search in complex
scenes. A statistical framework will be used for the
model, as it provides a simple way of accounting for dif-
ferent factors in evaluating the target saliency.

The object in a scene is described here by means of a set
of parameters O 5 $o, x, t%, where o denotes the cat-

Fig. 2. Images that are similar in terms of global spatial prop-
erties have a tendency to be composed of similar objects with
similar spatial arrangement.17,24 Since scene semantics may be
available early in the visual processing, these regularities sug-
gest that an efficient procedure for object search in a new scene is
to see how objects were organized in similar environments.
egory of the object, x 5 (x, y) is its spatial location, and t
are object appearance parameters such as the object’s
scale in the image and its pose. In a statistical frame-
work, object search requires the evaluation of the prob-
ability density function7,36 (PDF), P(Ouv). This function
is the probability of the presence of an object O in a scene
given a set of image features v. Here v represents all the
features obtained from the input image. Therefore v is
very high dimensional, making the evaluation of the func-
tion P(Ouv) impractical. Furthermore, writing the object
probability as P(Ouv) does not reveal how scene or object
features might influence the search, because it does not
differentiate between local and contextual features.
Therefore we consider two sets of image features: (1) lo-
cal features, vL(x), which are the set of features obtained
in a neighborhood of the location x, and (2) contextual fea-
tures, vC , which encode structural properties of the
scene/background. Here it is proposed that object detec-
tion requires the evaluation of the probability function
(target saliency function), P(OuvL , vC), which provides
the probability of the presence of the object O given a set
of local and contextual measurements.29,30,40

The object probability function can be decomposed by
applying Bayes’s rule as

P~OuvL , vC! 5
1

P~vLuvC!
P~vLuO, vC!P~OuvC!. (2)

Those three factors provide a simplified framework for
representing three levels of attention guidance.

1. Saliency
The normalization factor, 1/P(vLuvC), does not depend on
the target or task constraints and therefore is a
bottom-up factor. It provides a measure of how unlikely
it is to find a set of local measurements vL within the con-
text vC . We can define local saliency as S(x)
5 1/P(vL(x)uvC). Saliency is large for unlikely features
in a scene.

This formulation follows the hypothesis that frequent
image features are more likely to belong to the back-
ground, whereas rare image features are more likely to be
key features40 for the detection of (interesting) objects.

2. Target-Driven Control of Attention
The second factor, P(vLuO, vC), gives the likelihood of the
local measurements vL when the object O is present in a
particular context. This factor represents the top-down
knowledge of the target appearance and how it contrib-
utes to the search. Regions of the image with features
unlikely to belong to the target object are vetoed, and re-
gions with attended features are enhanced.33,41 Note
that when the object properties O fully constrain the ob-
ject appearance, then it is possible to approximate
P(vLuO, vC) . P(vLuO). This is a good approximation,
because O does not just include the definition of the object
category (e.g., a car) but also specifies information about
the appearance of the target (location, scale, pose, etc.).
This approximation allows dissociation of the contribu-
tion of local image features and contextual image fea-
tures.
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3. Contextual Priors
The third factor, the PDF P(OuvC), provides context-
based priors on object class, location, and scale.29,30 It is
of critical importance for ensuring reliable inferences in
situations where the local image measurements vL pro-
duce ambiguous interpretations.40 This factor does not
depend on local measurements and target models.
Therefore the term P(OuvC) modulates the saliency of lo-
cal image properties in the search for an object of the
class o.

With an object in a scene defined as O 5 $o, x, t%, con-
textual influences become more evident if we apply
Bayes’s rule successively in order to split the PDF
P(OuvC) into three factors that model three kinds of con-
text priming on object search:

P~OuvC! 5 P~tux, vC , o !P~xuvC , o !P~ouvC! . (3)

According to this decomposition of the PDF, the contex-
tual modulation of target saliency is a function of three
main factors:

1. Object-class priming: P(ouvC). This PDF pro-
vides the probability of presence of the object class o in
the scene. If P(ouvC) is very small, then object search
need not be initiated (e.g., we do not need to look for cars
in a living room).
2. Contextual control of focus of attention:
P(xuo, vC). This PDF gives the most likely locations for
the presence of object o given context information, and it
allocates computational resources into relevant scene re-
gions.

3. Contextual selection of local target appearance:
P(tux, vC , o). This PDF gives the likely (prototypical)
shapes (point of views, size, aspect ratio, object aspect) of
the object o in the context vC . For instance, t
5 $ s, p,...%, s being scale and p being aspect ratio.
Other parameters describing the appearance of an object
in an image can be added.

Computational models of object recognition have fo-
cused on modeling the probability function P(OuvL), ig-
noring contextual priors.7,36,42–46

The role of the contextual priors in modulating atten-
tion is to provide information about past search experi-
ence in similar environments and the strategies that were
successful in finding the target. In this model we assume
that the contextual features vC already carry all the in-
formation needed to identify the scene. The scene is
identified at a glance, without the need for eye
movements.18,19,22 Eye movements are required for a de-
tailed analysis of regions of the image that are relevant
for a task (e.g., to find somebody).

Scene factors in attentional deployment are effective
Fig. 3. Scheme that incorporates contextual information to select candidate target locations. The scheme consists of two parallel path-
ways: The first processes local image information, and the second encodes globally the pattern of activation of the feature maps. Con-
textual information is obtained by projecting the feature maps into the (holistic) principal components. In the task of looking for a
person in the image, the saliency map, which is task independent, will select image regions that are salient in terms of local orientations
and spatial frequencies. However, the contextual priming (task dependent) will drive attention to the image regions that can contain
the target object (sidewalks for pedestrian). Combining context and saliency gives better candidates for the location of the target.
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only after the system has accumulated enough experi-
ence. That is when the system knows about the regulari-
ties of the visual world: how objects and scenes are re-
lated and which visual search strategies are successful in
finding objects of interest, given a visual context. There-
fore the likelihood function P(OuvC) contains the informa-
tion about how the scene features vC were related to the
target properties O (image location, scale, position) dur-
ing previous experience.

As shown in Eq. (3), the contextual priming can be de-
composed into three factors: object-class priming, con-
textual guidance of focus of attention, and contextual se-
lection of object appearance. In the next sections it will
be shown how to compute global scene features24,47 and
how these features can be used in the object search task.

C. Global Image Features and Context Representation
As discussed in Subsection 2.A, the image features most
commonly used for describing local image structure are
the outputs of multiscale oriented bandpass filters.
Therefore the local image representation at the spatial lo-
cation (x) is given by the vector vL(x) 5 $vk(x)%k51,N ,
where vk(x) is given by Eq. (1) and N is the number of
Gabor filters. In such a representation, v(x, k) is the
output magnitude at the location x of a complex Gabor fil-
ter tuned to the spatial frequency fk . The variable k in-
dexes filters tuned to different spatial frequencies and ori-
entations.

Contextual features have to describe the structure of
the whole image. It has been shown that a holistic low-
dimensional encoding of the image features conveys rel-
evant information for a semantic categorization of the
scene/context24,47 and can be used for contextual priming
in object-recognition tasks.29,30 This definition of context
does not require the identification of other objects in the
scene.

Such a representation can be achieved by decomposing
the image features into the basis functions provided by
principal components analysis:

an 5 (
x

(
k

uv~x, k !u cn~x, k !. (4)

I propose to use the decomposition coefficients vC
5 $an%n51,N as context features. The functions cn are
the eigenfunctions of the covariance matrix defined by the
image features v(x, k). Figure 3 illustrates how the fea-
tures an are obtained from the magnitude output of the
Gabor bank. Each feature ai is obtained as a linear com-
bination of the magnitude output of all the Gabor filters
used in the image decomposition.24 By using only a re-
duced set of components (N 5 60 for the rest of the paper;
we use a filter bank with six orientations and four scales),
the coefficients $an%n51,N encode the main spectral char-
acteristics of the scene with a coarse description of their
spatial arrangement. In essence, $an%n51,N is a holistic
representation, as all the regions of the image contribute
to all the coefficients, and objects are not encoded indi-
vidually.

In the next sections we discuss each of these three fac-
tors and show results using an annotated database of
real-world images (see Appendix A).
3. RESULTS
A. Object-Class Priming
Before attention is deployed across the different parts of
the scene, the global configuration may be a strong indi-
cator of the presence or absence of an object. If the scene
has a layout in which, given previous experience, the tar-
get was rarely present, then the system can rapidly de-
cide not to initiate the search. If we assume that the fea-
ture vector vC conveys enough information about the
identity of the context, then there should exist strong pri-
ors on object identities, at least at the superordinate level
(people, furniture, vehicles, vegetation, etc.). For in-
stance, contextual object priming should capture the fact
that while we do not expect to find cars in a room, we do
expect a high probability of finding furniture.

These intuitions are formalized by means of the PDF
P(ouvC) that gives the probability of presence of the object
class o given contextual information vC . For instance, if
for a scene we obtain P(ouvC) ; 1, then we can be almost
certain about the presence of the object class o in the
scene even before exploring the image in detail. On the
other hand, if P(ouvC) ; 0, then we can decide that the
object is absent and forego initiating search. The num-
ber of scenes in which the system may be able to make
high-confidence decisions will depend on various factors
such as the strength of the relationship between the tar-
get object and its context and the ability of the features vC
to characterize the context efficiently. The function
P(ouvC) is learned by using an annotated image database
(see Appendix A, Subsection B).

Figure 4 shows some typical results from the priming
model for four categories of objects (people, furniture, veg-
etation, and vehicles). For each category, high-
confidence predictions were made in at least 50% of the
tested scenes, and presence or absence was correctly pre-
dicted by the model on 95% of those images. When the
model was forced to make binary decisions in all the im-
ages (by selecting an acceptance threshold of 0.5), the
presence or absence of the objects was correctly predicted
by the model on 81% of the scenes of the test set. Images
in the test set were selected such that a random guess
about the presence or absence of an object gives 50% cor-
rect predictions.

The results reveal the ability of the contextual features
to distinguish between different environments. Object
priming provides an efficient technique for reducing the
set of possible objects that are likely to be found within
the scene and for determining whether search needs to be
initiated.

B. Contextual Guidance of Focus of Attention
The PDF P(xuo, vC) indicates the most likely locations
for the presence of the object class o given context infor-
mation. This PDF can be thought of as the input to an
attentional system that directs computational resources
(focus of attention) toward regions more likely to contain
an object of interest. It also provides criteria for reject-
ing possible false detections that fall outside the primed
region. When the target is small (a few pixels), the prob-
lem of detection using only object intrinsic (local) features
is ill-posed. As illustrated in Fig. 1(a), in the absence of
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contextual information, local information might not be
enough for reliable recognition, because when only local
information is used, similar arrangements of pixel inten-
sities can be found in other regions of the image. For in-
stance, some of the pedestrians in Fig. 5 are so small as to
be mere scratches on the image. Similar scratches can
be found in other locations of the picture, but given the
context information they are not considered potential tar-
gets because they fall outside the likely ‘‘pedestrian re-
gion.’’ During the learning stage (see Appendix A, Subsec-
Fig. 4. Contextual priming of superordinate object categories (1, people; 2, furniture; 3, vegetation; 4, vehicles). The heights of the bars
show the model’s predictions of the likelihood P(ouvC) of finding members of these four categories in each scene.

Fig. 5. Model results on context-driven focus of attention in the task of looking for faces (left) and vegetation (right). Examples of
real-world scenes and the image regions with the largest likelihood P(x, ouvC) 5 P(x, ouvC)P(ouvC). The two foci of attention for each
image show how the task (o 5 faces or o 5 trees) changes the way attention is deployed in the image in considering scene/context in-
formation. The factor P(ouvC) is included here to illustrate how attention is not driven to any image region when the target object o is
inconsistent with the context (e.g., trees in an indoor scene or pedestrians on a highway).
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Fig. 6. Scale priming from a familiar context. (a) Examples of scenes and the model’s estimate of the size of a face at the center of focus
of attention. (b) Scale estimation results plotted against ground truth.
tion B for a description of the training database and the
learning procedure), the system associates the locations of
objects with the features of the context in which they are
embedded. Then, given a new image, the PDF
P(xuo, vC) can be used to predict the most likely locations
of the target.

Figure 5 shows some results of the focus-of-attention
system when the task is to look for heads and vegetation
in real-world scenes. For each image, we show the PDF
P(xuo, vC) superimposed on the original image to better
show the selected regions. The dark regions indicate low
values of the PDF and therefore image locations with low
probability of containing the target object. Starting the
search in the regions that are selected by the contextual
priming mechanism greatly reduces the need for exhaus-
tive search. Note also that task constraints (looking for
faces or for vegetation) changes the way attention is de-
ployed in the image when one is integrating contextual in-
formation. Note that in some of the examples of Fig. 5,
attention is directed to the region that is most likely to
contain the target even when the target object is not
present in the scene. This illustrates the point that, at
this stage, attention is driven only by global contextual
features and not by the presence of local features that
may belong to the target object. In the examples shown
in Fig. 5, no target model is included in the selection pro-
cedure. The selected locations are chosen only as a func-
tion of task and context.

It is worth contrasting these results to those from
bottom-up models in which focus of attention is mediated
by low-level feature-saliency maps (see Subsection 3.D).
Common to saliency models is the use of features in a
local-type framework, ignoring high-level context infor-
mation that is available in a global-type framework. Our
model’s use of the PDF P(xuo, vC) provides information
that is both task-driven (looking for object o) and context-
driven (given holistic context features). Figure 3 is an
example of region selection using both saliency maps and
context-driven focus of attention.
C. Contextual Selection of Object Appearance
One major problem encountered in computational ap-
proaches to object detection is the large variability in ob-
ject appearance. The classical solution is to explore the
space of possible shapes, looking for the best match. The
main sources of variability in object appearance are size,
pose (point of view), intraclass shape variability (deforma-

Fig. 7. Selection of prototypical object appearances based on
contextual cues.
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tions, style, etc.), and illumination effects. Including con-
textual information can reduce the possible appearances
of the target object that are compatible with the rest of
the scene. For instance, the expected size of people in an
image differs greatly between an indoor environment and
a perspective view of a street. The two environments
produce different patterns of contextual features.24

Automatic scale selection is a fundamental problem in
computational vision. If scale information could be esti-
mated by an efficient preprocessing stage, then subse-
quent stages of object detection and recognition would be
greatly simplified by focusing the processing onto only the
relevant scales. As in the problem of focus of attention,
existing approaches in computational vision for automatic
scale selection use a low-level approach that does not rely
on contextual information.2 Here it is shown that prior
knowledge about context contained in the PDF
P( suo, vC) provides a strong constraint on scale selection
for object detection.47 See Appendix A for a description of
the training database and the learning procedure of the
PDF.

Figure 6 shows several results of preattentive scale se-
lection obtained by using the contextual priming model
when it is instructed to look for heads. For each scene
the mean scale of a head within the scene was estimated
by computing the expected value: ŝ
5 *sP( suo, vC)ds. For 84% of the images tested, the
estimated mean head scale was in the interval
@hm/2, hm2#, with hm being the actual mean scale of the
heads in the picture, and for 41% of the images the esti-
mated mean head scale was in the interval
@hm/1.25, hm1.25#.

The same procedure can be used to estimate other ob-
ject parameters. For instance, context introduces strong
constraints on the three-dimensional orientation (pose) of
cars.

Once these two aspect parameters (pose and scale)
have been estimated, we can propose a prototypical model
of the target object for a given context. In the case of a
view-based object representation, the model of the object
will consist of a collection of templates that correspond to
the possible aspects of the target. As illustrated in Fig.
7, the model provides samples of the expected appearance
of the object when it is embedded in a scene with similar
contextual features. These views correspond to the dis-
tribution of local image features (here vL correspond to
pixel intensities), P(vLuO, vC).

D. Contextual Modulation of Local Image Saliency
In this subsection we illustrate how the model for contex-
tual priming based on global scene features can be used to
modulate local image saliency. In the framework pre-
sented in Subsection 2.B (Eq. 2), saliency is defined as
S(x) 5 P(vLuvC)21. That is, saliency is large for local
features that are unusual in the image.

When the target object is indeed salient in the image,
then saliency maps provide an efficient shortcut for object
detection. However, in general, the object of interest will
not be the most salient object in the image. The inclu-
sion of contextual priming provides an efficient mecha-
nism for concentrating fixation points only in the image
region that is relevant for the task. This is very impor-
tant when the target object is not the most salient ele-
ment of the scene. Context provides a way of shadowing
salient image regions that are not relevant for the task.
As described in Eqs. (2) and (3), contextual information
modulates local image saliency as

Sc~x! 5 S~x!P~xuo, vC!P~ouvC!, (5)

where Sc(x) is the local image saliency modulated by con-
text and task demands. Note that if the object is incon-
sistent with the scene (P(ouvC) . 0), then the system
does not need to search for the object.

Figure 8 shows an image (a) and the local saliency (b).
Figure 8(c) shows the image region that is relevant for the
task of looking for pedestrians. In the saliency model,
the image is explored according to the most salient fea-
tures. When task and context information are included,
Fig. 8. (a) Input image (color is not taken into account). The task is to look for pedestrians. (b) Bottom-up saliency map, S(x). (c)
Context-driven focus of attention, Sc(x). The image region in the shadow is not relevant for the task, and saliency is suppressed. (d)
Points that correspond to the largest salience S(x). (e) Image regions with the largest salience, including contextual priming, Sc(x).
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Fig. 9. The strength of contextual features in providing priors for objects depends on two factors: (1) how well the contextual features
differentiate between different scenes and (2) how strong the relationship is between the object of interest and the scene.
saliency is shadowed outside the selected image region.
Figures 8(d) and 8(e) show the selected image regions
that correspond to maximum points of image saliency.
Including contextual information allows the concentra-
tion of attention in the image regions that are relevant for
the task (finding pedestrians).

4. DISCUSSION
The dominant framework in computational models of ob-
ject recognition consists in modeling the probability of
presence of an object using only P(OuvL) and ignoring
contextual priors.7,36,42–46 In object-detection approaches
based on local features, the background is a distracting el-
ement. The best performance in detection is obtained
when the object is against an unstructured background.48

However, when background is structured and there is cor-
relation between object and context, a system that makes
use of context could have higher performance and be more
robust to image degradation (see Fig. 1).

In this paper the saliency of a target in an image is
given by the more complete object probability function29,40

P(OuvL , vC). This allows for use of the correlations that
exist between the background and the objects within the
scene. There are a few studies that propose computa-
tional models of contextual influences in object
recognition.26,27 Common to these models is the use of
object-centered representations in which the context is
described as a collection of objects and a model of the joint
distribution of objects in a reduced world. This approach
requires object-centered mechanisms that provide candi-
date objects that are transformed into recognizable ob-
jects through analysis of the consistency with the other
candidate objects in the scene. There is no attempt at
recognizing the scene/context as a first stage. In this pa-
per we have focused on encoding global scene configura-
tion in order to introduce contextual information to drive
the search for objects. This dispenses with the need to
identify individual objects or regions within a scene.22,23

We use the global output distribution of a Gabor filter
bank encoded at low resolution, in both the spatial and
the spectral domains, as a representation of the scene/
context. But there are many other global features that
are relevant for encoding scene properties without encod-
ing specific objects: texture histograms,36 color
histograms,49 high-order statistics,47 and blob
arrangements.23

The strength of contextual features in providing priors
for objects depends on two main factors: first, how well
the contextual features differentiate between different
scenes and second, how strong the relationship is between
the object of interest and the scene. Some objects in re-
duced environments may be very poorly constrained by
context. The strength of the contextual priors is a func-
tion of both the object property that is relevant for the
task (e.g., the location, the scale) and the configurational
regularities of the scene. For instance, in the case of face
detection, the orientation of faces is very poorly related to
the scene. However, other object properties such as scale
or location have a strong relationship with the scene.
Figure 9 illustrates how the strength of contextual priors
for one object (e.g., cars) changes as a function of the
scene: (a) scale, pose, and location are constrained; (b)
pose and location are constrained but scale is uncon-
strained; (c) only location is constrained; (d) both scale
and pose are constrained but location is unconstrained.

The results provided in this paper have focused on con-
textual priors P(OuvC) and on saliency P(vLuvC)21. Both
of these factors are interesting, because they provide in-
formation about the location of the target without using
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any information about the expected appearance of the tar-
get (e.g., cars have dominant horizontal structure, and pe-
destrians are vertical structures). We have ignored the
factor P(vLuO, vC) from Eq. (2), which is also known to
have a large influence on object search.6,33

5. CONCLUSION
I have shown how simple holistic contextual features pro-
vide strong constraints for the identity, locations, and
scales of objects in a scene. The proposed architecture
for attention guidance consists of three parallel modules
extracting different information: (1) bottom-up saliency,
(2) object-centered features, and (3) contextual modula-
tion of attention. The focus has been on showing how to
introduce global scene factors in order to model the con-
textual modulation of local saliency. The proposed sys-
tem learns the relationship between global scene features
and local object properties (identity, location, and image
scale).

The inclusion of scene factors in models of attention
and also in computational approaches for object detection
and recognition is essential for building reliable and effi-
cient systems. Context information offers a way of cut-
ting down the need for exhaustive search, thus providing
a shortcut to object detection.

APPENDIX A: PROBABILITY DENSITY
FUNCTION MODELING AND LEARNING
A. Image Saliency
In this model, saliency is computed from the distribution
of features within the image.50 We model the PDF
P(vLuvC) by using a mixture of Gaussians with N clus-
ters,

P~vLuvC! 5 (
i51

N

biG~vL ; m i , Xi!, (A1)

with

G~vL ; m, X! 5
exp@21/2~vL 2 m!TX21~vL 2 m!#

~2p!N/2uXu1/2
.

(A2)

For simplicity, we approximate the distribution
P(vLuvC) as the distribution of local features vL in the in-
put image (this approximation assumes that images with
similar contextual features have similar distributions of
local features). The parameters of the mixture of Gaus-
sians (bi , m i, and X) are obtained by using the EM
algorithm.51–53 Given a set of Nt training samples (in
this case these samples correspond to the set of all local
feature vectors computed from one image), the EM algo-
rithm is an iterative procedure:

E step

hi
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k~t !
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Once the learning is completed (usually there is no im-
provement after ten iterations), we can evaluate Eq. (A1)
at each location.

B. Contextual Priors
For the experiments presented in this paper, a database
of 2700 annotated images was used. Pictures were 256
3 256 pixels in size. Images were transformed into
gray scale, as color was not included in this study. Each
image was annotated by indicating the categories of the
objects present in the scene and their locations and sizes
in pixels.

The contextual prior model requires the learning of the
PDFs: P(ouvC), P(xuo, vC), and P(tux, vC , o). Again a
mixture of Gaussians is used to model each PDF. Half of
the database was used for the learning stage and the
other half for the test.

The learning of the P(ouvC) 5 P(vCuo)P(o)/P(vC) with
P(vC) 5 P(vCuo)P(o) 1 P(vCu¬o)P(¬o), where ¬o de-
notes object absent, is done by approximating the in-class
and out-of-class PDFs by a mixture of Gaussians. For
the in-class PDF we use

P~vCuo ! 5 (
i51

N

biG~vC ; ai , Ai!, (A7)

where G(vC ; ai , Ai) is a multivariate Gaussian function
of vC with center ai and covariance matrix Ai ; N is the
number of Gaussians used for the approximation. The
model parameters are obtained with the EM
algorithm.30,53 The same scheme holds for P(vCu¬o).
The probability of the object presence P(o) is approxi-
mated by the frequency presence of the object class. In
our database we use P(o) 5 0.5 for evaluating model per-
formances. In our experiments we found that the learn-
ing requires the use of a few Gaussian clusters for model-
ing the PDFs (the results summarized in Subsection 3.A
were obtained with N 5 2). The learning is performed
by using the half of the database; the remaining half is
used for the testing stage.

The learning of the PDF P(xuo, vC) provides the rela-
tionship between the context and the more typical loca-
tions of the objects belonging to one class. The images
used for the training of the PDF P(x, vCuo) are a random
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selection of pictures among the ones that contain the ob-
ject o. For each image we know the location of the object
of interest, and we also compute the contextual features
vC . The PDF learns the joint distribution between con-
textual features and the location of the target. For mod-
eling the PDF we use a mixture of Gaussians:

P~x, vCuo ! 5 (
i51

N

biG~x; xi , Xi!G~vC ; vi , Vi!.

(A8)

The joint PDF is modeled as a sum of N Gaussian clus-
ters. Each cluster is decomposed into the product of two
Gaussians. The first Gaussian models the distribution of
object locations, and the second Gaussian models the dis-
tribution of contextual features for each cluster. The cen-
ter of the Gaussian distribution of object locations is writ-
ten as having a linear dependency with respect to the
contextual features for each cluster52: xi 5 ai 1 Ai(vC
2 vi). The learning is performed with the EM
algorithm.52 The performances shown in Subsection 3.B
(Fig. 5) were obtained with N 5 4 clusters. Learning for
scale and pose priming follows a similar strategy.
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