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Abstract

We study the bias that arises from using censored regressors in estimation of linear
models. We present results on bias in OLS regression estimators with exogenous censoring,
and IV estimators when the censored regressor is endogenous. Bound censoring such as
top-and bottom-coding result in expansion bias, or effects that are too large. Independent
random censoring results in bias that varies with the estimation method; attenuation bias
in OLS estimators and expansion bias in IV estimators. We note how large biases can
result when there are several regressors, and how that problem is particularly severe when
a 0-1 variable is used in place of a continuous regressor.

1. Introduction

When the values of the dependent variable of a linear regression model are bounded and censored,
the OLS estimates of the regression coefficients are biased. This well-known fact has stimulated
a great deal of work on how to estimate coefficients when there is a censored dependent variable.
Coefficients will also be biased if the values of regressors are censored, but there has been very
little study of this phenomenon in the literature. This is a little odd, because in practice
one encounters censoring in regressors or independent variables as often, or more often, than
censoring in dependent variables. Moreover, as we show in this paper, the biases implied by
censored regressors can be large and very insidious for practical work. In many cases estimated

effects are systematically larger than the true effects, which we refer to as expansion bias. When
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one is trying to discover what are the most important influences in an empirical problem, having
estimates that are too large can be at least as troublesome as having estimates that are too small

or of the wrong sign.

The estimation of a model with censored regressors can often be approached as an estimation
problem with missing data, as covered in Little (1992) and Little and Rubin (2002) among
many others. That is, censored values can be treated as missing. As such, many procedures
exist for data missing at random; which often apply to data censored at random, including
various imputation strategies. =~ When censoring is exogenous, estimation can proceed with
complete cases only — where all observations with censored values are omitted. ~When the
censoring process is modeled parametrically, likelihood methods are applicable — for instance,
bound censoring (top-coding and bottom-coding) is a nonignorable data coarsening that could
be approached as in Heitjan and Rubin (1990, 1991) Alternatively, one may approach censoring
via partial identification as Manski and Tamer (2002) do for interval data; see also Magnac
and Maurin’s (2004, 2007) extension of Lewbel’s(2000) results on identifying binary response
models to interval data. Various semiparametric estimation methods for missing data and for
nonstandard measurement error have been studied in recent work, some of which can be applied
to situations with censored regressors, such as Ai (1997), Chen, Hong and Tamer (2005), Chen,
Hong and Tarossa (2004), Horowitz and Manski (1998,2000), Black, Berger and Scott (2000),
Liang, Wang, Robins and Carroll (2004), Tripathi (2003,2004), Mahajan (2006) and Ichimura
and Martinez-Sanchis (2005), among many others. Ridder and Moffit (2003) survey another

related literature, that on data combination.

Despite this, it is still a common practice to ignore the censored character of regressors in
empirical work in economics. There are several reasons for this. With exogenous censoring,
the set of complete cases is often a very small fraction of the original data, so that estimation
based only on complete cases involves substantially lower precision than with the full sample.
The censoring may occur in control variables that are of secondary interest, such as using a 0-1
variable in place of a continuous regressor. Finally, various kinds of imputations for censored or
missing data values can be viewed as forms of censoring themselves, such as replacing top-coded
values with an estimate of a tail mean. While imputations no doubt improve the situation there
can still be errors introduced into estimation. Finally, some studies include a dummy variable

that indicates censoring as an additional regressor; but this practice is very flawed (see Rigobon



and Stoker (2007) for a detailed criticism) To understand the implications of these issues, a bias
analysis is in order. To our knowledge, there exists no systematic study of the biases induced

by censored regressors in the literature. That is the purpose of this paper.

We present many results on bias from estimating with censored regressors in a linear model.
We have results for various censoring structures, including our two primary examples of inde-
pendent random censoring and censoring to an upper or lower bound. We cover OLS estimators
for the case where the censored regressor is exogenous, and we cover IV estimators for the case
where the censored regressor is endogenous, including the bias that occurs with random assign-
ment. We derive explicit formulae and illustrate the bias graphically for models with a single
regressor, and we cover the often severe transmission of bias that occurs when there are sev-
eral regressors. While the majority of the exposition focuses on single-value censoring, we close
with some results on the biases that arise when a 0-1 variable is used in place of a continuous

regressor.

It is useful to keep in mind various ways that censoring arises in observed data. One source
is where variables are observed in ranges, including unlimited top and bottom categories. For
instance, observed household income is often recorded in increments of one thousand or five
thousand dollars, and would have a top-coded response of, say, “$100,000 and above.” Nonre-
ponses are sometimes recorded at a bound value. For instance, household financial wealth (e.g.
stock holdings) may be recorded with a lower bound of zero, and some of those zero values may

be genuine zeros or may be nonresponses.

A second source of censoring occurs because observed data does not match the economic
concept of interest, and is a censored version of it. Suppose we are interested in the impact
of cash constraints on firm investment behavior. One cannot observe how cash-constrained a
firm actually is, only imperfect reflections of it, such as the fact that dividends are paid or
new debt was recently issued. Consider observed dividends as a measure of cash constraints. If
dividends are large and positive, the firm is very likely not cash constrained. However, dividends
are never observed to be negative, and zero values could represent a firm with either minimal
cash constraints, or a firm that is struggling with major cash constraints. As such, observed
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dividends are a censored version of “lack of cash constraints,” which is the concept of interest.

Also germane to our discussion is the use of a dummy (0-1) regressor in place of a continuous

regressor. Consider the classical problem of returns to education. Suppose the mean of individual



log-wages is specified as a function of various controls and the number of years of education,
which is not observed. If a regression analysis of log-wages includes a 0-1 variable indicating
whether the individual has a college degree, the 0-1 variable is a censored version of the true
regressor. The same kind of censoring would exist if there are separate discernible returns to high
school, college, possibly varying with major or specialization and post-graduate study. Such
severe forms of censoring raises issues for the interpretation of the estimates of coefficients of the
0-1 regressor, as well as coefficients of other variables in the equation. We analyze this situation
below, noting how biases can force the coefficient of a 0-1 variable to have the wrong sign, as

well as generate large expansion bias in coefficients of correlated regressors.

The bias induced by censored regressors varies with the type of censoring and the estimation
procedure. For example, with bound censoring, the bias typically induces OLS estimates and
IV estimates to be too large. In contrast, with independent random censoring, the bias typi-
cally induces OLS estimates to be too small, but IV estimates to be too large. We note how
the transmission of bias with correlated regressors can result in enormous bias in estimation,
including the case of 0-1 regressors. Many of our results are straightforward, but again, we
are not aware of any results of this kind reported previously in the literature. The order of the
presentation is as follows; we begin with results for simple regression models for intuition and
explicit formulae, we then cover bias transmission in multivariate models, and finally examine

bias from 0-1 censoring.

2. Bias from Censored Regressors

We are interested in bias from using a censored regressor in estimating a linear model. We

assume that the true model is an equation of the form
yi=a+Br+ow+e i=1..n (1)

where z; is a single regressor of interest, and w; is a k-vector of predictor variables. We assume
that the distribution of (a:i, w, 5@) is nonsingular and has finite second moments. For studying

regression estimators, we assume E (g;|z;, w;) = 0.

The problem is that we do not observe x;, but rather a censored version of it. Consider



a censoring process described by an indicator d;, and denote the probability of censoring as

p = Pr{d = 1}. When the regressor is censored, it is set to the value £. That is, we observe

i = (1 — d;) z; + d;€ (2)

cen
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the model

where z¢°" is the censored version of x;. The question of interest is what happens if we estimate

Yi = a—+ bz + fwi +u; i=1,..,n, (3)
How are the estimates a, ZA), f biased as estimators of o, 3, ¢7

While the censoring process can be quite general, for our analysis of regression, we exclude
the problems that arise from censoring the dependent variable y;. We assume that the regressor

x; 18 exogenously censored, by assuming that

We will drop this assumption in Section 2.3, when z; is assumed to be endogenous.

There are two primary examples we will allude to throughout the text. First is independent
random censoring, where d; is taken as independent of x; and w;. Second is bound censoring,
as in top-coding with censoring above an upper bound, where d; = 1 [z; > ], or bottom-coding
with censoring below a lower bound, where d; = 1[x; < £|. Many of our results will extend
immediately to the case of double bounding, where there is top-coding with upper bound &,
together with bottom coding with lower bound £,. In the terminology of Little and Rubin
(2002), our notion of independent random censoring occurs when a censoring value assigned to
observations that are MCAR ("missing completely at random"). Top-coding and bottom-coding
involve censoring determined by the value of the regressor, so that they are analogous to NMAR
processes ("not missing at random.") Similarly, in line with Horowitz and Manski (1995) and
the robustness literature, independent random censoring corresponds to “contaminated sample”

of = values, whereas bound censoring is a “corrupted sample.”

For the next two subsections, we focus on models with a single regressor, where much of the

intuition is available.



2.1. Censoring with a Single Regressor

We now assume that the true model has only a single regressor,
yi=a+pPr,+e i=1,...n (5)

with the same distributional assumptions, including F (¢;]z;) = 0. We are interested in the

(asymptotic) bias in the OLS coefficient b from estimating the model

yi=a+bri" +u; i=1,..n. (6)

cen
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where " is the censored version of x; given in (2), namely

ZA? _ Z?:l (:L,den — jcen) (yl - g) ) (7)

Z?:l (x;::en _ jcen>2

It is useful to express the bias in proportional terms, as

plimb=3(1+A). (8)

There is no bias if A = 0. Attenuation bias refers to the situation where —1 < A < 0. Expansion

bias refers to the situation when A > 0.

Proposition 1 gives a general characterization of the bias in simple OLS regression .

Proposition 1. OLS Bias: Single Regressor: Provided that 0 < p < 1, we have

(E(zld=1) =) (£ — E(z]|d =0))
Var (zeen)

A=p(l—-p)- : (9)

Consequently,
1. A=0ifand only if ¢ = E(z|d=1) or £ = E'(x|d =0),
2. A > 0 if and only if
E(xld=0)<{<E(zx|[d=1) or E(z|d=1) < £ < E(x|d =0),
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so that A < 0 otherwise.

The proofs of all results are direct, and given in Appendix A. It is clearly important to
consider the censoring process d; and the censoring value £ separately. For instance, the sign
and extent of the bias are affected by the position of &: there is no bias if & equals either
conditional mean E(x|d = 1) or E (z|d = 0), there is expansion bias if £ is between the means,

and there is attenuation bias in all other circumstances.

Our primary examples are addressed by two immediate corollaries. First, with independent

random censoring, there is attenuation bias in OLS coefficients:

Corollary 2. OLS Bias: Uncorrelated Censoring. Suppose Cov(z,d) = 0 and Cov(z?,d) =

0. Then (g ( ))2
— (&= FE(x
A @ - B 10)

We have A < 0, with equality holding only if £ = E (z).

For bound censoring, there is expansion bias in OLS coefficients:
Corollary 3. OLS Bias: Bound Censoring. Suppose x{*" is

1. top-coded at &, with d; = 1[z; > &,], then plim b=3 (1+ Ay) where Ay > 0.
2. bottom-coded at &,, with d; = 1[x; < &, then plim b = 3 (1 + Ay) where Ag > 0.

3. top-coded at &, and bottom-coded at &,, with £, < &, then plim b =4 (1+ A) where
A > Ay + Ay above.

Figure 1 illustrates bias with independent random censoring, where £ > E (z). The small
circles indicate the censored data points, including the block of points with x; = £. Clearly the
observations with z; = £ have center of mass below the regression line, which induces attenuation
bias. The case with £ < FE (x) is similar, and no bias arises only if { = E (z). In contrast,
Figure 2 illustrates the bias with top-coding, or censoring to an upper bound &¢. The "pile-up"
of observations on the bound induces expansion bias in the coefficient. The same result would

arise with a lower bound from bottom-coding, or with both top-coding and bottom-coding.
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The specific formula for bias from top-coding and bottom-coding depends on expectations
over truncated distributions. We can get a sense of the size of the bias by computing it for a
specific distribution. Figure 3 presents the expansion bias from one-sided and two-sided bound
censoring under the assumption that x; is normally distributed. (Detailed bias formulae are
available from the authors.) This is computed for different levels of censoring (p), which is
equivalent to setting different bound limits (£). The solid line displays the bias A of from top-
and bottom-coding under the assumption of symmetric (two-sided) censoring, with probability p
censored in each tail, and it is plotted against the total probability of censoring 2p. The dashed
line is the expansion bias A; from using top-coded data (one-sided censoring), which is plotted
against the total same total censoring probability. For instance, plotted over 2p = .20 is the
two-sided bias from censoring 10% in each tail, and the one-sided bias from censoring 20% in
the upper tail. For comparison, the diagonal (2p, 2p) is included as the dotted line. We see that
the bias is roughly linear in 2p for low censoring levels, up to around 30% of the data censored.
After that the bias rises nonlinearly, but a bias that doubles the coefficient value involves a lot
of censoring; 60% or more of the data. The two-sided bias is greater than the one-sided bias

over the whole range of probabilities.

2.2. Problems with Residuals

At this point it is useful to make some points about using the residuals from a regression with a
censored regressor. These points apply in all the situations we consider below, but are easiest

seen with simple regression.

Often, regression analysis is used in a first-stage analysis, with residuals of primary interest.
That is, the original model
yi=a+pr;+e 1=1,...n

captures the notion that ¢; represents y; after removing the influence of x;. Here ¢; is mean
independent of x; or at least, there is zero correlation between ¢; and z;. First-stage regression
analysis produces residuals &; that are consistent estimators of ¢;, which are used for the subse-
quent, second-stage analysis. In this setting, the coefficient values (/3) are of secondary interest,
whereas the residuals are of primary importance. For instance, household consumption is often

regressed on some life-cycle controls, with the residuals from that regression used in subsequent



analysis.

Suppose that the first-stage estimates are performed with a censored regressor. This creates
serious problems for computed residuals. In addition to using biased coefficients, the residuals
also reflect variation in the censored data. That makes the computed residuals very poor proxies

for the true ¢;’s, which would often invalidate their use in second-stage analysis.

To see these points, suppose that (6) is estimated (with the censored regressor) and the

residual is computed as

ﬁizyi—&—i)xfen i=1,...,n. (11)
We eliminate sampling variation in the coefficients by working with U; = plim 4; = y; —
(plim a) — <plim B) - x$". Our interest is in how similar U; is to ¢;.

Using our notation that plim b= B (14 A), it is straightforward to show that

Uy = e—BA-(zi— E(x)+B(A+A) [di(x; — &) — E(d(z —9))]

= g —A—BA-z;+B(1+A)d;(z; —§)

Therefore U; is seriously different than ¢;, by terms that vary with x;. The difference arises
because of coefficient bias (if A # 0), but more seriously, because U; contains d; (z; — &), the
part of z; that is censored. To check similarity to the correlation condition Cov (e, z) = 0, we

have

Cov(U,z) = —pA-Var(x)+B(1+A)-Var(z|d=1)
+8(A+A)-p(1—p)[E(xld=1) =] [E (z]d = 1) — E(x|d = 0)]

using derivations similar to those in the Appendix. Even when there is no bias, A = 0, there
still is nonzero covariance (unless § = 0). For instance, in view of (9), if the censoring point is
set to £ = F (x|d = 1), then A = 0 but we still have

Cov(U,z)=p-Var (z|d=1)

This occurs because censored variations in x; appear in U; (through ;).



The residual U; will typically bear a nonlinear relationship to the true x;. For instance, if

E (gi|x; = x) = 0, we have
EUlzi=2)=—A—=pA-z2+B(1+A)-p(x)(x—¢)

where p () = E (d;|z; = x) is a nonzero function of z. If the censoring is independent of z;,

with p (x) = p, then E (U;|z; = x) is linear in z.

These dependencies would have serious consequences for using ; in second-stage analysis.
That is, effects estimated using u; could be due to variations in x;, which invalidates the purpose
of the first-stage analysis. When censoring is severe, such as with 0-1 censoring as described

later, it would be difficult to see how to correct for such substantial error in measurement.

2.3. Endogenous Censored Regressors

We now consider the case where the regressor that is censored is endogenous, and where we have
a valid instrument for the uncensored regressor. We will see that censoring induces bias in IV

estimators that is quite different than bias in OLS coefficients.

As above, we remain with the single regressor format
yi=a+0xr;+e 1=1..n (12)

where x; is now an endogenous regressor and z; denotes a valid instrument for z;. In particular,
we assume that {(z;,2;,¢;) | i =1,...,n} is an i.i.d. random sample from a distribution with
finite second moments, with £ (¢) = 0, Cov(z,z) # 0 and Cov (z,¢) = 0. This implies that

Cov (z,9)

m =p (13)

which is the consistent limit of the IV estimator if there were no censoring.

Instead of x;, assume we observe

" = (1 — dl) z; + dlf (14)

(2
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where again d; represents a general censoring process with p = Pr{d = 1} # 0. We assume that
d; is such that Cov(z, z°") exists and is nonzero. (Note, for bias analysis, we do not assume an
exogenous censoring condition such as F (g;|d;, z;) = 0)

cen
3

When we use

. We have

in estimation, we compute the IV estimator ¢ that uses z; to instrument

L Y= wi-g)  Cov(zy)
o Zy:l (zi — 2) (w5 — zeen) Cov (z,xcem) (15)

where Coov(z,z°") # 0 is assumed, since otherwise ¢ has no probability limit. Thus

Cov (z,x)

Cov (z,xm)

B (16)

plim ¢ =

The bias of the IV estimator is expressed in proportional form as

Cov (z,2°)

limé=(1+A)- ith A = :
plim ¢ = (1+4)- 5, wi Cov (z, xzeen)

(17)

where x; = x{" + z7, with

20 = d; (z; — €) (18)
the part of z; lost by censoring. This makes it clear why the IV estimator is biased. The instru-

ment z; is valid in the “true” data; z; is correlated with x; and uncorrelated with the disturbance

;. With censored data, the difference z7 is omitted and correlated with the instrument. That

cen
I .

is, z; is correlated with Sx¢ + ¢;, so z; is not a valid instrument for the equation with x

Proposition 4 characterizes IV bias.

Proposition 4. IV Bias: Single Endogenous Regressor: The proportional IV bias A of
(17) is

p Cov(zzld=1)+(1—p) A, [E(x]d=1) — ¢
1—p Cov(z,z|d=0)+pA,[§— E(x|d=0)]

A= (19)

where

A,

E(zld=1)—E(z|d=0).

The expression (19) shows that IV bias depends on the distribution of (z,x) for censored

and uncensored data through conditional means and covariances, but also on the value ¢ that
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the data is censored to.

For independent random censoring, we have a striking result:

Corollary 5. IV Bias: Uncorrelated Censoring. If Cov(z,d) = 0, Cov(xz,d) = 0 and
Cov(zx,d) = 0, then
A= (20)

with A > 0 always.

The conditions are equivalent to assuming that z, x and zz are mean independent of d, and
clearly include statistical independence of (z,z) and d. The IV bias is always positive, varies
directly with the amount of censoring p, but is not affected by the distribution of (z, x) or the
censoring point £. This is in strong contrast to the attenuation bias induced in OLS estimators
(or zero bias when £ = F'(x)). (While not related to censoring, Black, Berger and Scott (2000)
note the same feature, that the bias in OLS coefficients is in the opposite direction of the bias

in IV estimates, for a specific measurement error model.)

The role of the distribution and of the censoring point are clarified by simplifying (19) using
“partial" lack of correlation. First, if censoring is only uncorrelated with the instrument,

Cov(z,d) =0, then
p Cov(z,x|d=1)

B 1 —pCouv(z,z|d=0)

(21)

so that (20) is modified by the covariances in censored and uncensored data. Expansion bias
follows if they are of the same sign. If censoring is only uncorrelated with the endogenous

regressor, Cov(x,d) = 0, then

p Cov(z,zld=1)+(1-p)yp
1—p Cov(z,z|d=0)—pp

A= (22)

where ¢ = A, - [E(x) —&]. Here the censoring value ¢ is relevant, and ¢ = 0 only when
£ =FE(x).
For bound censoring, we have the following result, where we have assumed Cov(z,x) >

0 without loss of generality:
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Corollary 6. IV Bias: Bound Censoring. Suppose Cov (z,x°") > 0. If x is top-coded at
¢ and Cov (z,d) > 0 or x is bottom-coded at £ and Cov (z,d) < 0, then

A>0

if and only if
Cov(z,zld=1)>—-(1—p)-A,-[E(z|d=1) —¢] (23)

This result says that expansion bias arises unless the correlation structure of the censored
data is radically different than that of the uncensored data. With either top-coding or bottom-
coding, A,- [E (z|d = 1) — &] > 0, so that right-hand side of (23) is negative. The proportional
bias A > 0 unless Cov (z,z|d = 1) is so negative as to invalidate (23). Clearly, A > 0 if
Cov (z,z|d = 1) > 0 in either case.

It would be desirable to discover some primitive conditions that are closely associated with IV
expansion bias when there is bound censoring. Unfortunately, all the primitive conditions that
the authors have discovered are much stronger than the tenets of Corollary 6. Of those, there
is one set of conditions worth mentioning, which essentially assures a positive relation between
the endogenous regressor, instrument and censoring. This is where z is mean-monotonic in
x; namely

E (z|lx =21) > E (z|z = o) for any values x; > x (24)

This condition guarantees all the conditions of Corollary 6, as summarized in

Corollary 7. IV Bias: Bound Censoring with Mean Monotonicity of z in x. Suppose (24)
holds, then A > 0 if x is top-coded at £ or x is bottom-coded at &.

Mean-monotonicity gives a uniform structure to the covariance of z and = over ranges of x
values. It is not a counterintuitive condition. For instance, if (z,z) is joint normally distrib-
uted then z is mean-monotonic in . But it clearly implies a strong relationship between the

endogenous regressor and the instrument.
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2.3.1. Special Case: Random Assignment

We can get some intuition for the bias results from the case where the instrument represents
random assignment into two groups. Assume z is a binary instrument indicating groups 0 and
1, and denote the probability of being in group 1 as ¢ = Pr{z = 1} # 0. Here Cov(z,z) > 0
implies E (z | z=1) > E (z | z = 0), or that the grouping is associated with a shift in the mean
of z. Likewise Cov (z,¢) = 0 implies E (¢ | z=1) = E (¢ | 2 =0) = 0, or that there is no shift

in the mean of ¢ associated with the grouping.

The IV estimator with instrument z; is the group-difference estimator of Wald (1940); without
censoring, this is ¥ = (g1 — 9o) / (¥1 — To) where 4y, To are averages over group 0 and 31, Z1,
are the averages over group 1. Equation (13) is now

Ey|lz=1)-E(y|z=0)
E(x|z=1)—E(z|2=0)

= 3. (25)

cen
K3

When we use the censored regressor 2" instead of x;, the IV estimator is the group difference

estimator ¢ = (g1 — 9o) / (Z§" — ZE5™), with

Elylz=1)-E(y|2=0)
E(zeen | z=1)— E(z°n | 2 =0)

plim & = = (1+A)-8, (26)
E@°|z=1)—FE((x°|2=0)

A= :
E(xzen | z=1) — E (z°" | z =0)

(27)

and again, z¢ = z; —2{" = d; (x; — £). The size and sign of the IV bias A is determined by how

cen —
the censoring operates on the two different assignment groups. There is expansion bias, A > 0,

when

E@|z=1)—FE@"|2=0<E(x|z=1)—FE(x|2=0) (28)

or equivalently that the mean shifts F' (z° | z=1)—FE (2° | z=0)and E (z°" | z = 1)—FE (z°" | 2z =0)

are of the same sign. There is attenuation bias, A < 0, only when they are of opposite signs.

Consider independent random censoring. It is easy to show that
E@ [z=1)-E@"|[2=0=1-p) [E@|z=1)-E(x|z=0)

14



so (28) always holds, and the proportional IV bias is

This matches Corollary 5. The expansion bias arises because the (between group) mean shift

cen

for x°" is a simple proportion of that for x, with the relative amount not varying with the

distribution of z.

For intuition on bound censoring, consider the implication of top-coding. Since F' (z | z = 1) >
E (z | z =0), one might expect more large = values in group 1 than 0, with a bigger mean impact

of censoring on group 1 than group 0, or
E@|z=1)—E@*"|2=1)>E(x|2=0)—FE@“"|z2=0). (29)

But this is just condition (28) for expansion bias. The problem is that if group 0 has much
bigger variance than group 1, top-coding would have a greater impact on group 0 mean and (29)

would fail. This type of situation is eliminated by mean monotonicity.

Figures 4 and 5 illustrate IV bias with independent random censoring, with the following
specification. The true model is y; = 2+ .5x; + ;. The probability of z; = 1is ¢ = .6. We have
(x;,€;) joint normal conditional on z;; with mean (2,0) for z; = 0 and mean (6,0) for z; = 1.
The covariance of (z;,¢;) is the same for each z;; the variance of z; is 4 and of ¢; is 1 and the
correlation between x; and ¢; is —.5. Figure 4 shows the uncensored data, including the z value
grouping, with substantial overlap between the groups. Also illustrated are the group means

and the uncensored IV (group difference) estimator.

Figure 5 shows what happens with 30% random censoring. The censored data are shown
as small circles, with the censoring value £ = 4. The IV fit is clearly steeper, which illustrates
the positive IV bias. Mechanically, the within-group means of x are both shifted toward £ but
the within-group means of y are unchanged, so that the slope (26) is increased. As consistent
with the our formulae, slope bias does not depend on the specific censoring value £. The same

tilting would occur if £ = 0 or £ = 6, for instance.

Figure 6 illustrates how expansion bias arises from top-coding. The same data are used here

as in Figures 4 and 5, and now censoring occurs for values greater than £ = 6. Clearly, much

15



more censoring occurs for observations with z = 1 than for those with z = 0, so this example
illustrates (29). Alternatively, if the 2 = 0 group had much wider dispersion than the z = 1
group, then top-coding could involve censoring more of the right tail of the z = 0 group than
that of the z = 1 group, and (29) would fail. In our calculations, we found that this occured if

the standard error of x; for z; = 0 were multiplied by 4.

3. Multivariate Regression

The case when there are several regressors is the most relevant to empirical practice. Bias from
censoring one variable can contaminate the estimates of coefficients of other variables, which
we refer to as bias transmission. This is important when the censored variable is representing
an effect of great interest, but perhaps of more importance when the censored variable is not
the primary focus of interest. We may, in fact, care the most about the coefficients of the other
variables, including the censored variable as a generalized control. With bias transmission, the
estimates of the coeflicients of primary interest can be badly wrong because of including an
imperfect control. We now focus on this situation for censoring as we have studied above. In
Section 4, we focus on the same problem when we use a 0-1 variable in place of a continuous

regressor.

3.1. Bias Transmission with Several Regressors

It is often very difficult to obtain specific results on coefficient bias when there are several
regressors (a exception is Klepper and Leamer (1984) on multivariate errors-in-variables). When
one regressor is censored, we are able to get some broad insight as well as a couple specific results,
as presented below. We focus only on OLS estimators, although results of a similar nature should

be available for IV estimators.

We return to basic model (1), where we assume a single additional regressor w;, given as

vy =a+ Pr;+ow; +& 1i=1,..,n. (30)

cen
(2

The regressor x; is censored as z§" = (1 — d;) x; + d;§, and we are interested in what happens
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when we estimate the model
yi =a+bxi" + fw; +u; i=1,..,n., (31)

How are the OLS estimates b and f biased as estimators of 5 and ¢?
In broad terms, the issue centers on how well w; proxies x; for the censored observations.
Write (30) as
yi = a+ B 4+ ow; + pfaf + e i =1,...,n, (32)
with 29 = d; (x; — £) as before. If w; and z¢ are only slightly correlated, then f will estimate
¢ with little bias, and b will estimate 3 with the bias appropriate for regression with a single

regressor. If w; and x¢ are highly correlated, then f will be very biased as an estimate of ¢, as

w; acts to proxy for x; in the censored data.

We can sharpen this logic somewhat. There is no bias transmission when f is consistent for

¢, which occurs if Cov (z°",w) = 0. We can develop this as

0 = Cov(z*",w) = Cov(z,w)— Couv (2°,w) (33)
= (1—-p)[Cov(z,w|d=0)
B (wld=1) — B (wld = 0)} {¢ ~ B (s)d = 0))]

Notice that it is not sufficient for w; to be uncorrelated with x; in the uncensored data. We
either must have censoring to the mean, £ = F (z|d = 0), or w; uncorrelated with the censoring,
E(wld=1)=FE (w|d =0).

On the nature of bias when w; and x; are correlated, we appeal to our primary examples.
Consider independent random censoring, where d; is statistically independent of z and w. With

calculations similar to those applied in Corollary 2, it is easy to show that

b
lim . =
g (f)

- B _ 0
= [G+pH'G G+ pH| ' (pH
[ +p] <¢)+[ +p] (p )<¢+BC‘?§£?$§)>

(34)

Cov (z°", w) Var (w)

Var (z¢")  Cov (", w) o
Cov (w,y)

Cov (2™, y) ]
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where

= Cov (z,w) Var(w) 0 —=Var (w) (35)

(1-p)

Var (z) cw@mwlzde:[(g—E@»Q 0 ]

This gives the asymptotic bias as

b -1
plim< ; ) — ( 2 ) = fBp- [G+PH]_1H< Cou(z.w) ) (36)
Var(w)

This reflects attenuation bias (as found before) if there is low correlation between w; and z;,

as well as the transmission of bias if w; and x; are highly correlated. Moreover, recall that
Corollary 2 showed that there is zero bias with a single regressor when ¢ = E (z). That is not
true in multivariate regression with a correlated regressor. Equation (36) shows there is nonzero
bias if Coov (z,w) # 0, even when { = E (z).

For bound censoring, the exact bias formula are too complicated to admit easy interpretation
(and too tedious to derive here). Some interpretation is possible if we expand the exact bias in p
and examine the leading terms. In particular, suppose we have top-coding with d; = 1 [x; > £],

and we assume F (x) =0, E (w) = 0 for simplicity. Then we have

, b (B B-p Var (w) - E — Cov (z,w) - C
mm<f> <¢>_VW@NMMM—Cw@wO<VW@yC—cw@wa>(W)

with

C=Cov(z,wld=1)+FE(w|d=1){FE(z|d=1) - &}
(38)
E=¢{E(zld=1)—¢}

Suppose that w and = are positively correlated (in censored and uncensored data), and that
¢ > 0. Because of top-coding, we have £ > 0 and because of the positive correlation we have
C > 0. Thus the bias in each coefficient is a difference of positive terms. With low correlation
between w and z, the term C is small and the expansion bias term E dominates for b, together
with a negative bias term induced for f . As the correlation increases, expansion bias in b

decreases and, in essence, transmits to bias in f.
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Bias of: Correlation
Censoring -50% 0%  50% 75% 95%

10% b 6.2% 7.4% 62% 3.2% -17.6%
f 2.0% 0.0% 20% 57% 24.3%
20% b 12.2% 155% 12.2%  5.0% -32.8%
f 52%  0.0% 52% 11.8%  43.8%
40% b 26.2% 34.3% 262% 7.4% -52.5%
f -12.2%  0.0%  12.0% 26.8%  68.0%
60% b 455% 62.8% 45.5% 12.8% -61.8%
f 20.9%  0.0% 20.9% 41.3%  80.5%

Table 1: Coefficient Biases: One Top-Coded Regressor.

It is possible for the bias to have either sign depending on the correlation between x and w.
For extremely large correlation, the positive expansion bias in b can be wholly reversed, and a
positive bias arises for f . In that case, it appears that w is doing a better job of proxying for x

cen

than the censored z°" is. We now illustrate these cases.

3.2. Bias Transmission with Normal Regressors

To clarify the intuition discussed above, we assumed that the underlying (uncensored) regressors
x and w are joint normally distributed, and simulated the biases for different levels of censoring
and different correlations between x and w. (Specifically, we set a = 1, § = 1, and ¢ = 1
and assumed that x and w have the same variance.) The biases resulting from top-coding are
presented in Table 1. There are four levels of censoring from mild (10%) to severe (60%). There
are five correlation values between z and w, from no correlation (0%) to moderate correlation
(50%, 75%) and finally, extreme correlation (95%).

For the coefficient b of the censored regressor, the zero correlation case shows the highest
expansion bias, increasing with censoring, and there is no bias in f , the coefficient of the other
regressor. As correlation is increased, expansion bias in b is reduced and bias emerges in f . The
amount of transmission is pretty substantial with moderate correlation, and we have included
the cases of -.5 and .5 correlation to illustrate the symmetry in the structure of these biases.
Finally, with extreme correlation, the bias is reversed for b and there is large bias in f. In this
case w does a better job of representing the omitted x than the censored version z°". This is

all in line with the intuition discussed above.
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Bias of: Correlation
Censoring -50% 0% 50% 5% 95%

10% b 31% 0.0% -31% -11.3% -47.9%
f 6.3% 0.0%  63% 151%  50.2%
20% b 6.3% 0.0% -6.3% -20.6% -64.8%
f -12.6%  0.0%  12.6% 27.5%  68.4%
40% b A11.7%  0.0% -11.7%  -33.4%  -78.6%
f -23.6% 0.0% 23.6% 45.3%  82.6%
60% b -16.7%  0.0% -16.7% -44.1% -84.9%
f -33.3% 0.0% 33.3% 582%  89.1%

Table 2: Coefficient Biases: One Regressor Independently Censored to Mean.

Table 2 presents bias results for the situation where z is independently censored to its mean
¢ = E(z), with an additional regressor w in the equation. With zero correlation, there are
no bias, which is consistent with the single regressor result for independent random censoring
to the mean. As the correlation is increases, bias emerges in f , as w is proxying for x for
the censored observations, and we have a resultant attenuation bias in b. This phenomenon
increases monotonically in both the censoring level and the correlation value, with moderate
correlation and censoring resulting in large bias in f and b. In particular, censoring to the
mean eliminates bias only in situations analogous to those with a single regressor — with several
correlated regressors, huge bias can result in the case. With extreme correlation, even random

censoring of 10% can result in coefficient biases of 50%.

3.3. Illustration with Consumption and Income Data

We now illustrate the impact of various types of censoring of income data in estimating a
consumption equation. We use data from Parker (1999), which is a synthetic panel of cohorts
constructed from PSID and CEX data. The model for estimation is .

Alngg=a+ ¢, - AlnW; 4+ ¢y - AlnY P, + 5-InY; + ¢ (39)

where Aln¢; is the first difference (between ¢ and ¢ — 1) of consumption of household i, A In W;
is the first-difference of log financial wealth (housing, stock holdings, etc.), AlnY P; is the first-
difference of a measure of log permanent income (which proxies human capital wealth), and Y;

is current income (period t). See Parker (1999) for details on the construction of this data,
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AlnW AlnYP InY
Base Estimates 0.0297 (0.0057) 0.0910 (0.0099) 0.0646 (0.0062)

Random Censoring
to median 0.0327 (0.0058) 0.1064 (0.0098) 0.0586 (0.0086)

to zero 0.0349 (0.0058) 0.1170 (0.0097) -0.0021 (0.0010)
Top Coding

25% 0.0305 (0.0057) 0.0916 (0.0099) 0.0773 (0.0075)

50% 0.0316 (0.0058) 0.0943 (0.0099) 0.0890 (0.0092)

Table 3: OLS Estimates of the Consumption Model

which includes 2656 observations after dropping all original observations that had top-coded
income and zero financial wealth. In the model, ¢; and ¢, represent the marginal propensities
to consume out of financial wealth and human capital respectively, and § measures the excess

sensitivity (or degree of credit constraint) of consumption in current income.

Here we illustrate what happens to the estimates when we artificially censor log income in
fairly severe ways. We consider two specifications where we randomly censor log income — first,
we censor 50% of the values to the median, and second, we censor 50% of the values to 0. We
consider two levels of top-coding — bound censoring the top 25% of the values, and the top 50%

of the values.

The OLS estimates are displayed in Table 3 (with standard errors in parentheses). The base
estimates display significant excess sensitivity with regard to current income, with the estimate
B = .0646. There is relatively little change in the propensities to consume out of wealth across
the censoring scenarios, which is consistent with the relatively low correlations of .19 between
AlnW; and InY; and of .24 between AInY P, and InY;. By the same token, the estimates of
excess sensitivity fall roughly in line with single regressor results. That is, random censoring to
the median coincides with relatively little bias, as expected, and random censoring to zero has
severe bias, with a tiny estimate of the wrong sign. Top coding gives rise to larger estimates of

excess sensitivity than the base, which are in line with expansion bias.

When there are higher correlations between the censored regressor and the other regressors,

the bias can manifest in all coefficients. For comparison, in levels the correlation between In W/
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InW InYP InY
Base Estimates  0.050 (0.0045) 0.2188 (0.0127) 0.1829 (0.0101)

Random Censoring
to median 0.0557 (0.0046) 0.3429 (0.0094) 0.1162 (0.0102)

to zero 0.0587 (0.0046) 0.3973 (0.0082) 0.0002 (0.0010)
Top Coding

25% 0.0611 (0.0045) 0.2788 (0.0116) 0.1541 (0.0108)

50% 0.0621 (0.0046) 0.3303 (0.0104) 0.1222 (0.0118)

Table 4: OLS Estimates of the Consumption Model in Levels

and InY is .38 and the correlation between InY P and InY is .82 so we would expect different
impacts from the censoring. That is exactly what we find if we estimate the log consumption
equation in levels (with dependent variable In ¢;), with results displayed in Table 4. Here the base
estimates are different than the first-differenced equation, with a smaller financial wealth effect
and larger permanent income and excess sensitivity estimates. Censoring of current income
now manifests largely in the impact of permanent income. That is, random censoring results
to the median results in a smaller current income effect but a larger permanent income effect
and a somewhat larger wealth effect. Those differences are increased when random censoring is
to zero. Here top-coding results in a smaller current income effect, but again larger permanent
income and wealth effects. Here, it is pretty clear that InY P, and to some extent In W, is

taking the place of InY when the values of the latter are censored.

To illustrate the impact of censoring on IV estimators, we consider the possibility that
the change in consumption is determined jointly with current income, making current income
endogenous. We computed IV estimates of the first-differenced consumption equation using
lagged log- income as instrument to identify the current log income effect. The IV estimates are
displayed in Table 5. Here the base estimates display negative excess sensitivity with estimate
B = —.0324, and again, there is not much variation in the estimated propensities to consume out
of wealth across all the censoring scenarios. Here, each of the estimates with random censoring
is larger in absolute value as expected — the single regressor results imply expansion bias and
insensitivity to the censoring value, in contrast to the OLS results in Table 3. Top-coding gives

rise to larger absolute values that again depend on the extent of the amount of censoring, as

22



AlnW AlnYP InY

Base Estimates 0.0376 (0.0060) 0.1290 (0.0106) -0.0324 (0.0097)
Random Censoring

to median 0.0375 (0.0060) 0.1275 (0.0105) -0.0660 (0.0199)

to zero 0.0341 (0.0074) 0.1323 (0.0138) -0.0503 (0.0189)
Top Coding

25% 0.0374 (0.0060) 0.1304 (0.0108) -0.0440 (0.0133)

50% 0.0373 (0.0060) 0.1323 (0.0111) -0.0646 (0.0195)

Table 5: IV Estimates of the Consumption Model

expected.

4. Censoring a Regressor to a 0-1 Variable

Our final topic is to consider the implications of replacing a continuous regressor with a dummy

(0-1) variable indicating low and high values. This is a severe form of two-value censoring, where

almost all of the information of the original continuous variable is lost. Nevertheless, empirical

practice is replete with examples of the use of dummy variables where an underlying continuous

variable may be more appropriate. We wish to open this area of inquiry with a few general

points in line with the ones we have raised above.

4.1. Single Regressor Case

Begin with the original framework (5). With the true model
yi=a+Bri+e 1=1,..n,
we are interested in the results from estimating

yi=a+bD;+u; i=1,...,n.
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where D; is a dummy variable indicating whether x; exceeds a threshold &,

Obviously, this represents two-value censoring (0, 1), and all information about x; is lost except
whether it above the threshold or not. We denote Pr{D =1} = P.

From the practical point of view it is clear that b and [ are not the same. However, in
practice, it is common to interpret one coefficient as a measure of the other. In our example
about returns to years of schooling, the issue is how the return f is related to the “college effect”

measured by estimating (41). For the OLS estimators, we have the expressions

plima=FE(y|D=0)=a+ (- E(z|D=0)
(43)
plimb=E(y[D=1) — E(y|D=0) =3 [E(|D =1) - E (2D = 0)]

The OLS slope coefficient b measures B up to a positive scale. So, if the only question of
interest concerns the sign of 3, then estimation with 0-1 censoring allows a consistent answer to
that question. Any further interpretation of the value of b depends on the between-difference
E(xz|D =1) — E (z|D = 0), which is an unknown aspect of the distribution of the uncensored

variable z.

The same sort of bias arises for IV estimators. Suppose that z; is a valid instrument for z;
in (40) and that ¢ is the IV estimator using z; to instrument D; in (41). It is straightforward to
show that

plimézﬁ~{[E(x]Dzl)_E(x|D:0)]+(1_P)COU(%Z|D20)+PCov(x,z|D:1)}

P(1-P)[E(:lD=1)— E(z|D =0)]
(44)

There is an additional bias term that depends on the within interaction of the instrument z; with
x;. If z; and x; are positively correlated, then it is natural to expect that the final covariance term
is positive (higher z; broadly associated with higher z; values), in which case the IV estimator
would estimate a term with same sign as 5. However, it is easy to construct examples where the
covariance term of (44) is negative and outweighs the first term, so that ¢ estimates an effect of

the wrong sign. In such cases the censoring of z; to D; gives a completely wrong depiction of

24



the relation between y; and x;.

4.2. Multivariate Case

Given the extreme nature of 0-1 censoring, one might expect the biggest bias issues to arise
when there are additional regressors in the equation. If an additional regressor w; is correlated
with z;, then the censoring will cause w; to proxy z;. The resulting transmission of bias is
likely to be more extreme than in the cases studied earlier (since x; was observed for a positive
fraction of the data). This will contaminate the coefficient of w;, and will likely affect bias in

the coefficient of D; as well.

Now the true model is (30), reproduced as
yi =a+ Bx; +ow; +¢; i=1,...,n. (45)
and we are interested in the OLS estimates a, Z;, f of the coefficients of
yi=a+bD; + fw;+u; i=1,..,n. (46)

where D; is observed instead of z;.

To develop the bias in this case, denote the residual of y; regressed on D; as
Ay; =yi — (1= Dy) Yo — Dith

where g1 = > " Dyyi/ >, D;isthe average of y; for D = land gjo = > i, (1 — Di) yi/ doiy (1 — Dy),
for D = 0. Now, sweep D; from both sides of the true model (45) to give

Ay; = fAx; + pAw; + Ae; i=1,...,n. (47)
The bias in f of (46) is the same as the bias from omitting Az; from (47), or estimating f from

Ay, = fAw; +v; i=1,...,n. (48)
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From the standard omitted variable bias formula, we have

plim f = ¢+ By = f (49)

where

_ Cov(Aw,Az;) (1 —P)Cov(x,w|D = 0)+ PCov (x,w|D = 1)
 Var(Aw)  (1—=P)Var(w|D =0)+ PVar (w|D = 1)

(50)

The parameter 1 gauges how the within-deviations of z; are proxied by the within-deviations of
the other regressor w;. If the within-deviations of x are closely proxied by those of w;, say with
n =2 1, then w;’s estimated coefficient will reflect both the true effect ¢ as well as (3, the effect
of z;. This verifies the intuition about proxying outlined above. There is no bias in f only if
the within-covariances are zero (or net to zero with n = 0). If one has no information regarding

within-variation of x;, it is impossible to assess or disentangle the bias.

This bias will affect the other parameters as well. For the OLS intercept of (46), we have

pima = E(yl[D=0)—f-E(w|D=0) (51)
— 048 E@D=0)+ (6~ f)Ew|D=0)
= a+f-[E(z|D=0)+nE (w|D = 0)]

and for the coefficient of D;, we have.

plimb = E(ylD=1)—E(y|D=0)-f-[E(w|D=1) - E(w|D =0)] (52)
— B-[E@|D=1)~E(@|D=0)—y-{E|D=1) - E(w|D=0)}

Focusing on l;, the multivariate bias differs from the single regressor bias by a term that depends
on how the additional regressor varies with the censoring. If 1 # 0, the difference vanishes only

if w; is mean-independent of D;.

It is possible for b to be so severely biased as to be systematically of the wrong sign. 7 is
determined by the covariation of x and w within the D = 1 and D = 0 groups; and is unaffected

by the position of the group means. Therefore, if

E(w|D=1) = E(w|D =0) > (1/n)- [E(«|D = 1) - E («|D = 0)] (53)

26



Bias of: Correlation
Pr{D =1} -50% 0% 50% 75% 95%

10% b 60.0% 95.9% 60.0% 5.4% -72.1%
f -35.9%  0.0% 35.9% 61.0%  90.2%
20% b 49.3% 75.0% 49.3% 5.3% -70.1%
f -292%  0.0% 29.2% 52.8%  87.0%
40% b 42.9% 61.0% 42.9% 81% -65.1%
f 224%  0.0% 22.4% 43.9%  82.3%
50% b 421% 60.1% 42.1%  9.0% -63.9%
f 21.7%  0.0% 21.7%  424%  81.2%

Table 6: Coefficient Biases: One 0-1 Regressor Censored from Normal.

then b consistently measures a value that is the opposite sign of the coefficient 5. In any event,
knowledge of the joint distribution of x; and w; is required to assess or understand the impact

of the 0-1 censoring on the full regression.

We conclude this section with some bias calculations. Table 6 presents the results of 0-1
censoring, where x and w are assumed to be joint normal as in Section 3.2, and censoring is
defined as in (42). The biases are computed as the difference between the coefficient limits
and the true values of the coefficients for uncensored regressors (each value is 1.0). There is a
very clear pattern of bias in f . Namely, there is no bias only with 0 correlation, and increasing
bias (transmission) with increasing correlation. The scale of the bias in b is not immediately
interpretable, but we see the value of its limit is highest with 0 correlation, and then decreases
sharply as the bias in f increases. It is not clear why this phenomena is slightly less severe for

a balanced design (Pr{D = 1} = .5), but it is still very pronounced in that case.

Table 6 took the normal design from before. In order to illustrate sign changes, in Table
7 we present the results where we have adjusted the second regressor w; by adding 3D;. This
shifts the mean, adding 3 to the mean F (w|D = 1) — E (w|D = 0) without changing the within
covariance between xr and w. In view of (53), this shift will increase the bias in b. In fact, for
the higher correlation values, b estimates a value that is the opposite sign of 5. In this case, the
bias transmission is so severe that the impact of both regressors is over attributed to w through

f, with b is the wrong sign to accommodate this erroneous attribution.
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Bias of: Correlation
Pr{D =1} -50% 0% 50% 75% 95%

10% b 167.8% 94.9% -49.5% -179.5%* -343.2%*
f -35.9%  0.0% -35.9% 61.0% 90.2%
20% b 136.1% 75.0% -38.8% -152.7%* -331.6%*
f -292%  0.0%  29.2% 52.8% 87.0%
40% b 110.3% 61.0% -24.1% -122.7%*  -309.9%*
f -224%  0.0%  22.4% 43.9% 82.3%
50% b 107.6% 60.1% -22.6% -118.3%*  -305.7*
f 21.7%  0.0%  21.7% 42.4% 81.2%

* Coefficient Negative (Bias Produces Wrong Sign)

Table 7: Coefficient Biases: One 0-1 Regressor Censored from Normal, with Mean Shift
5. Conclusion

This paper has shown many results on bias that arises with censored regressors. Our intention
was to provide a rich depiction of the kinds of issues that censored regressors can bring to
empirical work. While there are certain situations where coefficient estimates are too small
(such as attenuation bias in OLS estimates with independent censoring), our view is that the
more common situation is that effects are too large, such as the many cases of expansion bias
noted above. Part of this view is the intuition that censoring involves eliminating important
variation in the regressors, so that estimated effects will overcompensate. But this intuition is
clearly too simplistic, as the nature and sign of the bias depends on both the censoring process

and the censoring value. Hence, it is important to study each case separately.

Another lesson concerns the transmission of bias with several regressors. There is no surprise
in the finding that censoring bias affects correlated regressors, but rather that the impacts can
be huge. Using a dummy (0-1) variable as a control in place of a continuous variable, when the
true model depends on the continuous variable, can result in biases of 50-100% in the coefficients
of the other regressors. Using a top-coded version of a continuous variable can have a similar
impact. The common practice of using 0-1 variable generates this problem in a severe form.
Almost all of the variation (all of the within variation) is censored away, and will be proxied by

any other correlated variables.

This paper has been mostly about the problems caused by censored regressors, not solutions

to those problems. In general, flexible methods of estimating the bias in an empirical analysis do
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not exist. One can adopt a parametric model of the true data and censored data, but estimates
will be based on distributional assumptions made in that model. ~Without any restrictions,
the censored data have zero semiparametric information, so some additional structure must
be assumed to make use of the censored data. These issues are discussed in Rigobon and
Stoker (2007), who also include a normal parametric model applied to the analysis of household

consumption and wealth.

When exogenous censoring holds, consistent estimation is possible using the complete cases
alone. This allows the assessment of bias, by comparing estimates using the complete cases
with estimates using the full sample (see Rigobon and Stoker (2005) for a test of this type).
Comparison of this type would seem to be a prudent empirical step whenever any of the regressors
of interest are censored; that is to see whether the censored character of the data has changed
the basic results. But even this is not justified with general endogenous and censored regressors.
That is, the complete cases likely involve selection of the dependent variable, and instruments
available in the uncensored sample will not be valid in the complete cases. The endogenous
case is very difficult, for which some preliminary results are presented in Chernozhukov, Rigobon
and Stoker (2007). Finally, with 0-1 censoring, the true value of the regressor is (almost) never

observed, so such data has no complete cases.
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A. Appendix: Notes on Proofs

For Proposition 1, the true model (5) is

yi=a+ P + Pl +¢ i=1,..,n (54)

cen
K3

where x¢ = d; (x; — £) is the omitted term. Since xz{*" is uncorrelated with ¢;, we have

N Cov (x°, z°")
phm b= B : <1 + W) (55)
We have:
COU (ZL’O xcen) — 20 . xcen) - B ([EO) E (xcen)
(56)

2°) - [€ — B ()]
[E(zld =1) =¢]- (1 =p)[§ — E(z]d = 0)]

Substituting this into (55) gives Proposition 1. Corollary 2 and Corollary 3, parts 1. and

B(
— B(ed(x - ) - B (2%) E (")
B(
b

2.are immediate, and since Coov (22,d) = 0, it is easy to derive Var (z°") as used in (10) .
For Corollary 3, part 3., we note that the numerator of the bias is the sum of the analogous
numerator terms for 1. and 2., and that the denominator Var (") is smaller than the analogous
denominators in 1. and 2., so the strict inequality holds.

Proposition 4 is also a direct calculation that follows from

Cov (z,2°") = (1 —p)Cov (z,2|d =0)+p(1 —p) A, [ — E(z|d =0)], (57)
Cov (z,2°) = pCov (z,zld=1)+p(1 —p) A, [E (z|d = 1) — ] (58)
The formulae (57) and (58) follow from straightforward arithmetic. For instance, for (57), we
have
Cov (z,2°") = Cov(z,(1 —=d)z)+ Cov(z,d) &

= E((1—d)az) - E(z) - E((1-d)x)+p(l—p) AL

Write out all of the expectations in terms of expectations conditional on d = 1, and simplify to
get (57).

Corollary 5 follows from noting that three things. First, Cov(z,d) = 0 implies A, = 0.

32



Second, Cov (zx,d) = 0 and Cov(z,d) = 0 imply that F(zzx|d =1) = FE(zz|d =0) and
E(z|d=1) = E(z|d =0), so that Cov (z,z|d =1) = Cov (z,z|d =0) = Cov (z,z). Finally,
Cov (z,z|d = 0) # 0 since Cov (z,z) # 0.

Corollary 6 1.and 2. follow from (19). The final statement is true for top-coding since A, > 0
and E (z|d =1) — £ > 0, and for bottom coding since A, < 0 and F (z|d =1) — € < 0.

Corollary 7 follows from three steps. First, note that Cov(z,x) # 0 implies that { (z¢) =
E (z|z = ) is not a constant function. Second,

Cov(z,d) = p(1—p)[E(z|d=1)— E(z|d=0)]
= p(1=p)[E(C(z1)|r1 > &) = E(C(20) |10 < &)] >0

by mean-monotonicity. Finally,

Cov(z,z|d=1) =

v

by mean-monotonicity, since the final expectation is an integral of non-negative terms.
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