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Abstract

We study the bias that arises from using censored regressors in estimation of linear
models. We present results on bias in OLS regression estimators with exogenous censoring,
and IV estimators when the censored regressor is endogenous. Bound censoring such as
top-and bottom-coding result in expansion bias, or e¤ects that are too large. Independent
random censoring results in bias that varies with the estimation method; attenuation bias
in OLS estimators and expansion bias in IV estimators. We note how large biases can
result when there are several regressors, and how that problem is particularly severe when
a 0-1 variable is used in place of a continuous regressor.

1. Introduction

When the values of the dependent variable of a linear regression model are bounded and censored,

the OLS estimates of the regression coe¢ cients are biased. This well-known fact has stimulated

a great deal of work on how to estimate coe¢ cients when there is a censored dependent variable.

Coe¢ cients will also be biased if the values of regressors are censored, but there has been very

little study of this phenomenon in the literature. This is a little odd, because in practice

one encounters censoring in regressors or independent variables as often, or more often, than

censoring in dependent variables. Moreover, as we show in this paper, the biases implied by

censored regressors can be large and very insidious for practical work. In many cases estimated

e¤ects are systematically larger than the true e¤ects, which we refer to as expansion bias. When
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one is trying to discover what are the most important in�uences in an empirical problem, having

estimates that are too large can be at least as troublesome as having estimates that are too small

or of the wrong sign.

The estimation of a model with censored regressors can often be approached as an estimation

problem with missing data, as covered in Little (1992) and Little and Rubin (2002) among

many others. That is, censored values can be treated as missing. As such, many procedures

exist for data missing at random; which often apply to data censored at random, including

various imputation strategies. When censoring is exogenous, estimation can proceed with

complete cases only �where all observations with censored values are omitted. When the

censoring process is modeled parametrically, likelihood methods are applicable �for instance,

bound censoring (top-coding and bottom-coding) is a nonignorable data coarsening that could

be approached as in Heitjan and Rubin (1990, 1991) Alternatively, one may approach censoring

via partial identi�cation as Manski and Tamer (2002) do for interval data; see also Magnac

and Maurin�s (2004, 2007) extension of Lewbel�s(2000) results on identifying binary response

models to interval data. Various semiparametric estimation methods for missing data and for

nonstandard measurement error have been studied in recent work, some of which can be applied

to situations with censored regressors, such as Ai (1997), Chen, Hong and Tamer (2005), Chen,

Hong and Tarossa (2004), Horowitz and Manski (1998,2000), Black, Berger and Scott (2000),

Liang, Wang, Robins and Carroll (2004), Tripathi (2003,2004), Mahajan (2006) and Ichimura

and Martinez-Sanchis (2005), among many others. Ridder and Mo¢ t (2003) survey another

related literature, that on data combination.

Despite this, it is still a common practice to ignore the censored character of regressors in

empirical work in economics. There are several reasons for this. With exogenous censoring,

the set of complete cases is often a very small fraction of the original data, so that estimation

based only on complete cases involves substantially lower precision than with the full sample.

The censoring may occur in control variables that are of secondary interest, such as using a 0-1

variable in place of a continuous regressor. Finally, various kinds of imputations for censored or

missing data values can be viewed as forms of censoring themselves, such as replacing top-coded

values with an estimate of a tail mean. While imputations no doubt improve the situation there

can still be errors introduced into estimation. Finally, some studies include a dummy variable

that indicates censoring as an additional regressor; but this practice is very �awed (see Rigobon
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and Stoker (2007) for a detailed criticism) To understand the implications of these issues, a bias

analysis is in order. To our knowledge, there exists no systematic study of the biases induced

by censored regressors in the literature. That is the purpose of this paper.

We present many results on bias from estimating with censored regressors in a linear model.

We have results for various censoring structures, including our two primary examples of inde-

pendent random censoring and censoring to an upper or lower bound. We cover OLS estimators

for the case where the censored regressor is exogenous, and we cover IV estimators for the case

where the censored regressor is endogenous, including the bias that occurs with random assign-

ment. We derive explicit formulae and illustrate the bias graphically for models with a single

regressor, and we cover the often severe transmission of bias that occurs when there are sev-

eral regressors. While the majority of the exposition focuses on single-value censoring, we close

with some results on the biases that arise when a 0-1 variable is used in place of a continuous

regressor.

It is useful to keep in mind various ways that censoring arises in observed data. One source

is where variables are observed in ranges, including unlimited top and bottom categories. For

instance, observed household income is often recorded in increments of one thousand or �ve

thousand dollars, and would have a top-coded response of, say, �$100,000 and above.�Nonre-

ponses are sometimes recorded at a bound value. For instance, household �nancial wealth (e.g.

stock holdings) may be recorded with a lower bound of zero, and some of those zero values may

be genuine zeros or may be nonresponses.

A second source of censoring occurs because observed data does not match the economic

concept of interest, and is a censored version of it. Suppose we are interested in the impact

of cash constraints on �rm investment behavior. One cannot observe how cash-constrained a

�rm actually is, only imperfect re�ections of it, such as the fact that dividends are paid or

new debt was recently issued. Consider observed dividends as a measure of cash constraints. If

dividends are large and positive, the �rm is very likely not cash constrained. However, dividends

are never observed to be negative, and zero values could represent a �rm with either minimal

cash constraints, or a �rm that is struggling with major cash constraints. As such, observed

dividends are a censored version of �lack of cash constraints,�which is the concept of interest.

Also germane to our discussion is the use of a dummy (0-1) regressor in place of a continuous

regressor. Consider the classical problem of returns to education. Suppose the mean of individual
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log-wages is speci�ed as a function of various controls and the number of years of education,

which is not observed. If a regression analysis of log-wages includes a 0-1 variable indicating

whether the individual has a college degree, the 0-1 variable is a censored version of the true

regressor. The same kind of censoring would exist if there are separate discernible returns to high

school, college, possibly varying with major or specialization and post-graduate study. Such

severe forms of censoring raises issues for the interpretation of the estimates of coe¢ cients of the

0-1 regressor, as well as coe¢ cients of other variables in the equation. We analyze this situation

below, noting how biases can force the coe¢ cient of a 0-1 variable to have the wrong sign, as

well as generate large expansion bias in coe¢ cients of correlated regressors.

The bias induced by censored regressors varies with the type of censoring and the estimation

procedure. For example, with bound censoring, the bias typically induces OLS estimates and

IV estimates to be too large. In contrast, with independent random censoring, the bias typi-

cally induces OLS estimates to be too small, but IV estimates to be too large. We note how

the transmission of bias with correlated regressors can result in enormous bias in estimation,

including the case of 0-1 regressors. Many of our results are straightforward, but again, we

are not aware of any results of this kind reported previously in the literature. The order of the

presentation is as follows; we begin with results for simple regression models for intuition and

explicit formulae, we then cover bias transmission in multivariate models, and �nally examine

bias from 0-1 censoring.

2. Bias from Censored Regressors

We are interested in bias from using a censored regressor in estimating a linear model. We

assume that the true model is an equation of the form

yi = �+ �xi + �
0
wi + "i i = 1; :::; n (1)

where xi is a single regressor of interest, and wi is a k-vector of predictor variables. We assume

that the distribution of
�
xi; w

0
i; "i
�
is nonsingular and has �nite second moments. For studying

regression estimators, we assume E ("ijxi; wi) = 0.

The problem is that we do not observe xi, but rather a censored version of it. Consider

4



a censoring process described by an indicator di, and denote the probability of censoring as

p = Prfd = 1g: When the regressor is censored, it is set to the value �. That is, we observe

xceni = (1� di)xi + di� (2)

where xceni is the censored version of xi. The question of interest is what happens if we estimate

the model

yi = a+ bx
cen
i + f

0
wi + ui i = 1; :::; n; (3)

How are the estimates â; b̂; f̂ biased as estimators of �; �; �?

While the censoring process can be quite general, for our analysis of regression, we exclude

the problems that arise from censoring the dependent variable yi. We assume that the regressor

xi is exogenously censored, by assuming that

E ("ijdi; xi; wi) = 0 (4)

We will drop this assumption in Section 2.3, when xi is assumed to be endogenous.

There are two primary examples we will allude to throughout the text. First is independent

random censoring, where di is taken as independent of xi and wi. Second is bound censoring,

as in top-coding with censoring above an upper bound, where di = 1 [xi > �], or bottom-coding

with censoring below a lower bound, where di = 1 [xi < �]. Many of our results will extend

immediately to the case of double bounding, where there is top-coding with upper bound �1
together with bottom coding with lower bound �0. In the terminology of Little and Rubin

(2002), our notion of independent random censoring occurs when a censoring value assigned to

observations that are MCAR ("missing completely at random"). Top-coding and bottom-coding

involve censoring determined by the value of the regressor, so that they are analogous to NMAR

processes ("not missing at random.") Similarly, in line with Horowitz and Manski (1995) and

the robustness literature, independent random censoring corresponds to �contaminated sample�

of x values, whereas bound censoring is a �corrupted sample.�

For the next two subsections, we focus on models with a single regressor, where much of the

intuition is available.

5



2.1. Censoring with a Single Regressor

We now assume that the true model has only a single regressor,

yi = �+ �xi + "i i = 1; :::; n (5)

with the same distributional assumptions, including E ("ijxi) = 0. We are interested in the

(asymptotic) bias in the OLS coe¢ cient b̂ from estimating the model

yi = a+ bx
cen
i + ui i = 1; :::; n: (6)

where xceni is the censored version of xi given in (2), namely

b̂ =

Pn
i=1 (x

cen
i � �xcen) (yi � �y)Pn

i=1 (x
cen
i � �xcen)2

: (7)

It is useful to express the bias in proportional terms, as

plim b̂ = � (1 + �) : (8)

There is no bias if � = 0. Attenuation bias refers to the situation where �1 < � < 0. Expansion
bias refers to the situation when � > 0.

Proposition 1 gives a general characterization of the bias in simple OLS regression .

Proposition 1. OLS Bias: Single Regressor: Provided that 0 < p < 1, we have

� = p (1� p) � (E(xjd = 1)� �) (� � E(xjd = 0))
V ar (xcen)

: (9)

Consequently,

1. � = 0 if and only if � = E(xjd = 1) or � = E (xjd = 0) ;

2. � > 0 if and only if

E(xjd = 0) < � < E (xjd = 1) or E(xjd = 1) < � < E(xjd = 0);
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so that � < 0 otherwise.

The proofs of all results are direct, and given in Appendix A. It is clearly important to

consider the censoring process di and the censoring value � separately. For instance, the sign

and extent of the bias are a¤ected by the position of �: there is no bias if � equals either

conditional mean E(xjd = 1) or E (xjd = 0), there is expansion bias if � is between the means,
and there is attenuation bias in all other circumstances.

Our primary examples are addressed by two immediate corollaries. First, with independent

random censoring, there is attenuation bias in OLS coe¢ cients:

Corollary 2. OLS Bias: Uncorrelated Censoring. SupposeCov(x; d) = 0 andCov(x2; d) =
0. Then

� = p � � (� � E (x))2

V ar (x) + p (� � E (x))2
: (10)

We have � � 0, with equality holding only if � = E (x).

For bound censoring, there is expansion bias in OLS coe¢ cients:

Corollary 3. OLS Bias: Bound Censoring. Suppose xceni is

1. top-coded at �1, with di = 1 [xi > �1] ; then plim b̂ = � (1 + �1) where �1 > 0:

2. bottom-coded at �0, with di = 1 [xi < �0] ; then plim b̂ = � (1 + �0) where �0 > 0:

3. top-coded at �1 and bottom-coded at �0, with �0 < �1, then plim b̂ = � (1 + �) where

� > �1 + �0 above.

Figure 1 illustrates bias with independent random censoring, where � > E (x). The small

circles indicate the censored data points, including the block of points with xi = �. Clearly the

observations with xi = � have center of mass below the regression line, which induces attenuation

bias. The case with � < E (x) is similar, and no bias arises only if � = E (x). In contrast,

Figure 2 illustrates the bias with top-coding, or censoring to an upper bound �. The "pile-up"

of observations on the bound induces expansion bias in the coe¢ cient. The same result would

arise with a lower bound from bottom-coding, or with both top-coding and bottom-coding.
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The speci�c formula for bias from top-coding and bottom-coding depends on expectations

over truncated distributions. We can get a sense of the size of the bias by computing it for a

speci�c distribution. Figure 3 presents the expansion bias from one-sided and two-sided bound

censoring under the assumption that xi is normally distributed. (Detailed bias formulae are

available from the authors.) This is computed for di¤erent levels of censoring (p), which is

equivalent to setting di¤erent bound limits (�). The solid line displays the bias � of from top-

and bottom-coding under the assumption of symmetric (two-sided) censoring, with probability p

censored in each tail, and it is plotted against the total probability of censoring 2p. The dashed

line is the expansion bias �1 from using top-coded data (one-sided censoring), which is plotted

against the total same total censoring probability. For instance, plotted over 2p = :20 is the

two-sided bias from censoring 10% in each tail, and the one-sided bias from censoring 20% in

the upper tail. For comparison, the diagonal (2p; 2p) is included as the dotted line. We see that

the bias is roughly linear in 2p for low censoring levels, up to around 30% of the data censored.

After that the bias rises nonlinearly, but a bias that doubles the coe¢ cient value involves a lot

of censoring; 60% or more of the data. The two-sided bias is greater than the one-sided bias

over the whole range of probabilities.

2.2. Problems with Residuals

At this point it is useful to make some points about using the residuals from a regression with a

censored regressor. These points apply in all the situations we consider below, but are easiest

seen with simple regression.

Often, regression analysis is used in a �rst-stage analysis, with residuals of primary interest.

That is, the original model

yi = �+ �xi + "i i = 1; :::; n

captures the notion that "i represents yi after removing the in�uence of xi. Here "i is mean

independent of xi or at least, there is zero correlation between "i and xi. First-stage regression

analysis produces residuals "̂i that are consistent estimators of "i, which are used for the subse-

quent, second-stage analysis. In this setting, the coe¢ cient values (�) are of secondary interest,

whereas the residuals are of primary importance. For instance, household consumption is often

regressed on some life-cycle controls, with the residuals from that regression used in subsequent
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analysis.

Suppose that the �rst-stage estimates are performed with a censored regressor. This creates

serious problems for computed residuals. In addition to using biased coe¢ cients, the residuals

also re�ect variation in the censored data. That makes the computed residuals very poor proxies

for the true "i�s, which would often invalidate their use in second-stage analysis.

To see these points, suppose that (6) is estimated (with the censored regressor) and the

residual is computed as

ûi � yi � â� b̂xceni i = 1; :::; n: (11)

We eliminate sampling variation in the coe¢ cients by working with Ui � plim ûi = yi �
(plim â)�

�
plim b̂

�
� xceni . Our interest is in how similar Ui is to "i.

Using our notation that plim b̂ = � (1 + �), it is straightforward to show that

Ui = "i � �� � (xi � E (x)) + � (1 + �) � [di (xi � �)� E (d (x� �))]

= "i � A� �� � xi + � (1 + �) � di (xi � �)

Therefore Ui is seriously di¤erent than "i, by terms that vary with xi. The di¤erence arises

because of coe¢ cient bias (if � 6= 0), but more seriously, because Ui contains di (xi � �), the
part of xi that is censored. To check similarity to the correlation condition Cov ("; x) = 0, we

have

Cov (U; x) = ��� � V ar (x) + � (1 + �) � V ar (xjd = 1)
+� (1 + �) � p (1� p) [E (xjd = 1)� �] [E (xjd = 1)� E (xjd = 0)]

using derivations similar to those in the Appendix. Even when there is no bias, � = 0, there

still is nonzero covariance (unless � = 0). For instance, in view of (9), if the censoring point is

set to � = E (xjd = 1), then � = 0 but we still have

Cov (U; x) = � � V ar (xjd = 1)

This occurs because censored variations in xi appear in Ui (through yi).
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The residual Ui will typically bear a nonlinear relationship to the true xi. For instance, if

E ("ijxi = x) = 0, we have

E (Uijxi = x) = �A� �� � x+ � (1 + �) � p (x) (x� �)

where p (x) = E (dijxi = x) is a nonzero function of x. If the censoring is independent of xi,

with p (x) = p, then E (Uijxi = x) is linear in x.

These dependencies would have serious consequences for using ûi in second-stage analysis.

That is, e¤ects estimated using ûi could be due to variations in xi, which invalidates the purpose

of the �rst-stage analysis. When censoring is severe, such as with 0-1 censoring as described

later, it would be di¢ cult to see how to correct for such substantial error in measurement.

2.3. Endogenous Censored Regressors

We now consider the case where the regressor that is censored is endogenous, and where we have

a valid instrument for the uncensored regressor. We will see that censoring induces bias in IV

estimators that is quite di¤erent than bias in OLS coe¢ cients.

As above, we remain with the single regressor format

yi = �+ �xi + "i i = 1; :::; n (12)

where xi is now an endogenous regressor and zi denotes a valid instrument for xi. In particular,

we assume that f(xi; zi; "i) j i = 1; :::; ng is an i.i.d. random sample from a distribution with

�nite second moments, with E (") = 0, Cov(z; x) 6= 0 and Cov (z; ") = 0. This implies that

Cov (z; y)

Cov (z; x)
= � (13)

which is the consistent limit of the IV estimator if there were no censoring.

Instead of xi, assume we observe

xceni = (1� di)xi + di�: (14)
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where again di represents a general censoring process with p = Prfd = 1g 6= 0. We assume that
di is such that Cov(z; xcen) exists and is nonzero. (Note, for bias analysis, we do not assume an

exogenous censoring condition such as E ("ijdi; zi) = 0)

When we use xceni in estimation, we compute the IV estimator ĉ that uses zi to instrument

xceni . We have

ĉ =

Pn
i=1 (zi � �z) (yi � �y)Pn

i=1 (zi � �z) (xceni � �xcen) !
Cov (z; y)

Cov (z; xcen)
(15)

where Cov(z; xcen) 6= 0 is assumed, since otherwise ĉ has no probability limit. Thus

plim ĉ =
Cov (z; x)

Cov (z; xcen)
� �: (16)

The bias of the IV estimator is expressed in proportional form as

plim ĉ = (1 + �) � �; with � = Cov (z; xo)

Cov (z; xcen)
: (17)

where xi = xceni + xoi , with

xoi = di (xi � �) (18)

the part of xi lost by censoring. This makes it clear why the IV estimator is biased. The instru-

ment zi is valid in the �true�data; zi is correlated with xi and uncorrelated with the disturbance

"i. With censored data, the di¤erencexoi is omitted and correlated with the instrument. That

is, zi is correlated with �xoi + "i, so zi is not a valid instrument for the equation with x
cen
i .

Proposition 4 characterizes IV bias.

Proposition 4. IV Bias: Single Endogenous Regressor: The proportional IV bias � of
(17) is

� =
p

1� p
Cov (z; xjd = 1) + (1� p)�z [E (xjd = 1)� �]
Cov (z; xjd = 0) + p�z [� � E (xjd = 0)]

(19)

where

�z � E (zjd = 1)� E (zjd = 0) :

The expression (19) shows that IV bias depends on the distribution of (z; x) for censored

and uncensored data through conditional means and covariances, but also on the value � that
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the data is censored to.

For independent random censoring, we have a striking result:

Corollary 5. IV Bias: Uncorrelated Censoring. If Cov(z; d) = 0, Cov(x; d) = 0 and

Cov(zx; d) = 0, then

� =
p

1� p (20)

with � > 0 always.

The conditions are equivalent to assuming that z, x and zx are mean independent of d, and

clearly include statistical independence of (z; x) and d. The IV bias is always positive, varies

directly with the amount of censoring p, but is not a¤ected by the distribution of (z; x) or the

censoring point �. This is in strong contrast to the attenuation bias induced in OLS estimators

(or zero bias when � = E (x)). (While not related to censoring, Black, Berger and Scott (2000)

note the same feature, that the bias in OLS coe¢ cients is in the opposite direction of the bias

in IV estimates, for a speci�c measurement error model.)

The role of the distribution and of the censoring point are clari�ed by simplifying (19) using

�partial" lack of correlation. First, if censoring is only uncorrelated with the instrument,

Cov(z; d) = 0, then

� =
p

1� p
Cov (z; xjd = 1)
Cov (z; xjd = 0) (21)

so that (20) is modi�ed by the covariances in censored and uncensored data. Expansion bias

follows if they are of the same sign. If censoring is only uncorrelated with the endogenous

regressor, Cov(x; d) = 0, then

� =
p

1� p
Cov (z; xjd = 1) + (1� p)'
Cov (z; xjd = 0)� p' (22)

where ' � �z � [E (x)� �]. Here the censoring value � is relevant, and ' = 0 only when

� = E (x).

For bound censoring, we have the following result, where we have assumed Cov(z; x) >

0 without loss of generality:
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Corollary 6. IV Bias: Bound Censoring. Suppose Cov (z; xcen) > 0. If x is top-coded at
� and Cov (z; d) > 0 or x is bottom-coded at � and Cov (z; d) < 0, then

� > 0

if and only if

Cov (z; xjd = 1) > � (1� p) ��z � [E (xjd = 1)� �] (23)

This result says that expansion bias arises unless the correlation structure of the censored

data is radically di¤erent than that of the uncensored data. With either top-coding or bottom-

coding, �z� [E (xjd = 1)� �] > 0, so that right-hand side of (23) is negative. The proportional
bias � > 0 unless Cov (z; xjd = 1) is so negative as to invalidate (23). Clearly, � > 0 if

Cov (z; xjd = 1) � 0 in either case.

It would be desirable to discover some primitive conditions that are closely associated with IV

expansion bias when there is bound censoring. Unfortunately, all the primitive conditions that

the authors have discovered are much stronger than the tenets of Corollary 6. Of those, there

is one set of conditions worth mentioning, which essentially assures a positive relation between

the endogenous regressor, instrument and censoring. This is where z is mean-monotonic in
x; namely

E (zjx = x1) � E (zjx = x0) for any values x1 � x0 (24)

This condition guarantees all the conditions of Corollary 6, as summarized in

Corollary 7. IV Bias: Bound Censoring withMeanMonotonicity of z in x. Suppose (24)
holds, then � > 0 if x is top-coded at � or x is bottom-coded at �.

Mean-monotonicity gives a uniform structure to the covariance of z and x over ranges of x

values. It is not a counterintuitive condition. For instance, if (z; x) is joint normally distrib-

uted then z is mean-monotonic in x. But it clearly implies a strong relationship between the

endogenous regressor and the instrument.
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2.3.1. Special Case: Random Assignment

We can get some intuition for the bias results from the case where the instrument represents

random assignment into two groups. Assume z is a binary instrument indicating groups 0 and

1, and denote the probability of being in group 1 as q = Prfz = 1g 6= 0. Here Cov(z; x) > 0
implies E (x j z = 1) > E (x j z = 0), or that the grouping is associated with a shift in the mean
of x. Likewise Cov (z; ") = 0 implies E (" j z = 1) = E (" j z = 0) = 0, or that there is no shift
in the mean of " associated with the grouping.

The IV estimator with instrument zi is the group-di¤erence estimator of Wald (1940); without

censoring, this is 
̂ = (�y1 � �y0) = (�x1 � �x0) where �y0; �x0 are averages over group 0 and �y1; �x1,
are the averages over group 1. Equation (13) is now

E (y j z = 1)� E (y j z = 0)
E (x j z = 1)� E (x j z = 0) = �: (25)

When we use the censored regressor xceni instead of xi, the IV estimator is the group di¤erence

estimator ĉ = (�y1 � �y0) = (�xcen1 � �xcen0 ), with

plim ĉ =
E (y j z = 1)� E (y j z = 0)

E (xcen j z = 1)� E (xcen j z = 0) = (1 + �) � �; (26)

� =
E (xo j z = 1)� E (xo j z = 0)
E (xcen j z = 1)� E (xcen j z = 0) : (27)

and again, xoi = xi�xceni = di (xi � �). The size and sign of the IV bias � is determined by how
the censoring operates on the two di¤erent assignment groups. There is expansion bias, � > 0,

when

E (xcen j z = 1)� E (xcen j z = 0) < E (x j z = 1)� E (x j z = 0) (28)

or equivalently that the mean shiftsE (xo j z = 1)�E (xo j z = 0) andE (xcen j z = 1)�E (xcen j z = 0)
are of the same sign. There is attenuation bias, � < 0, only when they are of opposite signs.

Consider independent random censoring. It is easy to show that

E (xcen j z = 1)� E (xcen j z = 0) = (1� p) � [E (x j z = 1)� E (x j z = 0)]
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so (28) always holds, and the proportional IV bias is

� =
p

1� p:

This matches Corollary 5. The expansion bias arises because the (between group) mean shift

for xcen is a simple proportion of that for x, with the relative amount not varying with the

distribution of x.

For intuition on bound censoring, consider the implication of top-coding. SinceE (x j z = 1) >
E (x j z = 0), one might expect more large x values in group 1 than 0, with a bigger mean impact
of censoring on group 1 than group 0, or

E (x j z = 1)� E (xcen j z = 1) > E (x j z = 0)� E (xcen j z = 0) : (29)

But this is just condition (28) for expansion bias. The problem is that if group 0 has much

bigger variance than group 1, top-coding would have a greater impact on group 0 mean and (29)

would fail. This type of situation is eliminated by mean monotonicity.

Figures 4 and 5 illustrate IV bias with independent random censoring, with the following

speci�cation. The true model is yi = 2+ :5xi+ "i. The probability of zi = 1 is q = :6. We have

(xi; "i) joint normal conditional on zi; with mean (2; 0) for zi = 0 and mean (6; 0) for zi = 1.

The covariance of (xi; "i) is the same for each zi; the variance of xi is 4 and of "i is 1 and the

correlation between xi and "i is �:5. Figure 4 shows the uncensored data, including the z value
grouping, with substantial overlap between the groups. Also illustrated are the group means

and the uncensored IV (group di¤erence) estimator.

Figure 5 shows what happens with 30% random censoring. The censored data are shown

as small circles, with the censoring value � = 4. The IV �t is clearly steeper, which illustrates

the positive IV bias. Mechanically, the within-group means of x are both shifted toward � but

the within-group means of y are unchanged, so that the slope (26) is increased. As consistent

with the our formulae, slope bias does not depend on the speci�c censoring value �. The same

tilting would occur if � = 0 or � = 6, for instance.

Figure 6 illustrates how expansion bias arises from top-coding. The same data are used here

as in Figures 4 and 5, and now censoring occurs for values greater than � = 6. Clearly, much
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more censoring occurs for observations with z = 1 than for those with z = 0, so this example

illustrates (29). Alternatively, if the z = 0 group had much wider dispersion than the z = 1

group, then top-coding could involve censoring more of the right tail of the z = 0 group than

that of the z = 1 group, and (29) would fail. In our calculations, we found that this occured if

the standard error of xi for zi = 0 were multiplied by 4.

3. Multivariate Regression

The case when there are several regressors is the most relevant to empirical practice. Bias from

censoring one variable can contaminate the estimates of coe¢ cients of other variables, which

we refer to as bias transmission. This is important when the censored variable is representing

an e¤ect of great interest, but perhaps of more importance when the censored variable is not

the primary focus of interest. We may, in fact, care the most about the coe¢ cients of the other

variables, including the censored variable as a generalized control. With bias transmission, the

estimates of the coe¢ cients of primary interest can be badly wrong because of including an

imperfect control. We now focus on this situation for censoring as we have studied above. In

Section 4, we focus on the same problem when we use a 0-1 variable in place of a continuous

regressor.

3.1. Bias Transmission with Several Regressors

It is often very di¢ cult to obtain speci�c results on coe¢ cient bias when there are several

regressors (a exception is Klepper and Leamer (1984) on multivariate errors-in-variables). When

one regressor is censored, we are able to get some broad insight as well as a couple speci�c results,

as presented below. We focus only on OLS estimators, although results of a similar nature should

be available for IV estimators.

We return to basic model (1), where we assume a single additional regressor wi, given as

yi = �+ �xi + �wi + "i i = 1; :::; n: (30)

The regressor xi is censored as xceni = (1� di)xi + di�, and we are interested in what happens
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when we estimate the model

yi = a+ bx
cen
i + fwi + ui i = 1; :::; n:; (31)

How are the OLS estimates b̂ and f̂ biased as estimators of � and �?

In broad terms, the issue centers on how well wi proxies xi for the censored observations.

Write (30) as

yi = �+ �x
cen
i + �wi + �x

o
i + "i i = 1; :::; n; (32)

with xoi = di (xi � �) as before. If wi and xoi are only slightly correlated, then f̂ will estimate
� with little bias, and b̂ will estimate � with the bias appropriate for regression with a single

regressor. If wi and xoi are highly correlated, then f̂ will be very biased as an estimate of �, as

wi acts to proxy for xi in the censored data.

We can sharpen this logic somewhat. There is no bias transmission when f̂ is consistent for

�, which occurs if Cov (xcen; w) = 0. We can develop this as

0 = Cov (xcen; w) = Cov (x;w)� Cov (xo; w) (33)

= (1� p) [Cov (x;wjd = 0)
�p fE (wjd = 1)� E (wjd = 0)g f� � E (xjd = 0)g]

Notice that it is not su¢ cient for wi to be uncorrelated with xi in the uncensored data. We

either must have censoring to the mean, � = E (xjd = 0), or wi uncorrelated with the censoring,
E (wjd = 1) = E (wjd = 0).

On the nature of bias when wi and xi are correlated, we appeal to our primary examples.

Consider independent random censoring, where di is statistically independent of x and w. With

calculations similar to those applied in Corollary 2, it is easy to show that

plim

 
b̂

f̂

!
=

"
V ar (xcen) Cov (xcen; w)

Cov (xcen; w) V ar (w)

#�1 "
Cov (xcen; y)

Cov (w; y)

#
(34)

= [G+ pH]�1G

 
�

�

!
+ [G+ pH]�1 (pH)

 
0

�+ � � Cov(x;w)
V ar(w)

!
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where

G =

"
V ar (x) Cov (x;w)

Cov (x;w) V ar (w)

#
and H =

"
(� � E (x))2 0

0 1
(1�p)V ar (w)

#
(35)

This gives the asymptotic bias as

plim

 
b̂

f̂

!
�
 
�

�

!
= �p � [G+ pH]�1H

 
�1

Cov(x;w)
V ar(w)

!
(36)

This re�ects attenuation bias (as found before) if there is low correlation between wi and xi,

as well as the transmission of bias if wi and xi are highly correlated. Moreover, recall that

Corollary 2 showed that there is zero bias with a single regressor when � = E (x). That is not

true in multivariate regression with a correlated regressor. Equation (36) shows there is nonzero

bias if Cov (x;w) 6= 0; even when � = E (x).

For bound censoring, the exact bias formula are too complicated to admit easy interpretation

(and too tedious to derive here). Some interpretation is possible if we expand the exact bias in p

and examine the leading terms. In particular, suppose we have top-coding with di = 1 [xi > �],

and we assume E (x) = 0, E (w) = 0 for simplicity. Then we have

plim

 
b̂

f̂

!
�
 
�

�

!
�=

� � p
V ar (x)V ar (w)� Cov (x;w)

 
V ar (w) � E � Cov (x;w) � C
V ar (x) � C � Cov (x;w) � E

!
(37)

with
C = Cov (x;wjd = 1) + E (wjd = 1) fE (xjd = 1)� �g

E = � � fE (xjd = 1)� �g
(38)

Suppose that w and x are positively correlated (in censored and uncensored data), and that

� > 0. Because of top-coding, we have E > 0 and because of the positive correlation we have

C > 0. Thus the bias in each coe¢ cient is a di¤erence of positive terms. With low correlation

between w and x, the term C is small and the expansion bias term E dominates for b̂, together

with a negative bias term induced for f̂ . As the correlation increases, expansion bias in b̂

decreases and, in essence, transmits to bias in f̂ .
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Bias of: Correlation
Censoring -50% 0% 50% 75% 95%
10% bb 6.2% 7.4% 6.2% 3.2% -17.6%

f̂ -2.0% 0.0% 2.0% 5.7% 24.3%
20% bb 12.2% 15.5% 12.2% 5.0% -32.8%

f̂ -5.2% 0.0% 5.2% 11.8% 43.8%
40% bb 26.2% 34.3% 26.2% 7.4% -52.5%

f̂ -12.2% 0.0% 12.0% 26.8% 68.0%
60% bb 45.5% 62.8% 45.5% 12.8% -61.8%

f̂ -20.9% 0.0% 20.9% 41.3% 80.5%

Table 1: Coe¢ cient Biases: One Top-Coded Regressor.

It is possible for the bias to have either sign depending on the correlation between x and w.

For extremely large correlation, the positive expansion bias in b̂ can be wholly reversed, and a

positive bias arises for f̂ . In that case, it appears that w is doing a better job of proxying for x

than the censored xcen is. We now illustrate these cases.

3.2. Bias Transmission with Normal Regressors

To clarify the intuition discussed above, we assumed that the underlying (uncensored) regressors

x and w are joint normally distributed, and simulated the biases for di¤erent levels of censoring

and di¤erent correlations between x and w. (Speci�cally, we set � = 1, � = 1, and � = 1

and assumed that x and w have the same variance.) The biases resulting from top-coding are

presented in Table 1. There are four levels of censoring from mild (10%) to severe (60%). There

are �ve correlation values between x and w, from no correlation (0%) to moderate correlation

(50%, 75%) and �nally, extreme correlation (95%).

For the coe¢ cient b̂ of the censored regressor, the zero correlation case shows the highest

expansion bias, increasing with censoring, and there is no bias in f̂ , the coe¢ cient of the other

regressor. As correlation is increased, expansion bias in b̂ is reduced and bias emerges in f̂ . The

amount of transmission is pretty substantial with moderate correlation, and we have included

the cases of -.5 and .5 correlation to illustrate the symmetry in the structure of these biases.

Finally, with extreme correlation, the bias is reversed for b̂ and there is large bias in _f: In this

case w does a better job of representing the omitted x than the censored version xcen. This is

all in line with the intuition discussed above.
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Bias of: Correlation
Censoring -50% 0% 50% 75% 95%
10% bb -3.1% 0.0% -3.1% -11.3% -47.9%

f̂ -6.3% 0.0% 6.3% 15.1% 50.2%
20% bb -6.3% 0.0% -6.3% -20.6% -64.8%

f̂ -12.6% 0.0% 12.6% 27.5% 68.4%
40% bb -11.7% 0.0% -11.7% -33.4% -78.6%

f̂ -23.6% 0.0% 23.6% 45.3% 82.6%
60% bb -16.7% 0.0% -16.7% -44.1% -84.9%

f̂ �33.3% 0.0% 33.3% 58.2% 89.1%

Table 2: Coe¢ cient Biases: One Regressor Independently Censored to Mean.

Table 2 presents bias results for the situation where x is independently censored to its mean

� = E (x), with an additional regressor w in the equation. With zero correlation, there are

no bias, which is consistent with the single regressor result for independent random censoring

to the mean. As the correlation is increases, bias emerges in f̂ , as w is proxying for x for

the censored observations, and we have a resultant attenuation bias in b̂. This phenomenon

increases monotonically in both the censoring level and the correlation value, with moderate

correlation and censoring resulting in large bias in f̂ and b̂. In particular, censoring to the

mean eliminates bias only in situations analogous to those with a single regressor �with several

correlated regressors, huge bias can result in the case. With extreme correlation, even random

censoring of 10% can result in coe¢ cient biases of 50%.

3.3. Illustration with Consumption and Income Data

We now illustrate the impact of various types of censoring of income data in estimating a

consumption equation. We use data from Parker (1999), which is a synthetic panel of cohorts

constructed from PSID and CEX data. The model for estimation is .

� ln ci = �+ �1 �� lnWi + �2 �� lnY Pi + � � lnYi + "i (39)

where � ln ci is the �rst di¤erence (between t and t� 1) of consumption of household i, � lnWi

is the �rst-di¤erence of log �nancial wealth (housing, stock holdings, etc.), � lnY Pi is the �rst-

di¤erence of a measure of log permanent income (which proxies human capital wealth), and Yi
is current income (period t). See Parker (1999) for details on the construction of this data,
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� lnW � lnY P ln Y
Base Estimates 0.0297 (0.0057) 0.0910 (0.0099) 0.0646 (0.0062)

Random Censoring
to median 0.0327 (0.0058) 0.1064 (0.0098) 0.0586 (0.0086)
to zero 0.0349 (0.0058) 0.1170 (0.0097) -0.0021 (0.0010)

Top Coding
25% 0.0305 (0.0057) 0.0916 (0.0099) 0.0773 (0.0075)
50% 0.0316 (0.0058) 0.0943 (0.0099) 0.0890 (0.0092)

Table 3: OLS Estimates of the Consumption Model

which includes 2656 observations after dropping all original observations that had top-coded

income and zero �nancial wealth. In the model, �1 and �2 represent the marginal propensities

to consume out of �nancial wealth and human capital respectively, and � measures the excess

sensitivity (or degree of credit constraint) of consumption in current income.

Here we illustrate what happens to the estimates when we arti�cially censor log income in

fairly severe ways. We consider two speci�cations where we randomly censor log income ��rst,

we censor 50% of the values to the median, and second, we censor 50% of the values to 0. We

consider two levels of top-coding �bound censoring the top 25% of the values, and the top 50%

of the values.

The OLS estimates are displayed in Table 3 (with standard errors in parentheses). The base

estimates display signi�cant excess sensitivity with regard to current income, with the estimate

�̂ = :0646. There is relatively little change in the propensities to consume out of wealth across

the censoring scenarios, which is consistent with the relatively low correlations of .19 between

� lnWi and lnYi and of .24 between � lnY Pi and lnYi. By the same token, the estimates of

excess sensitivity fall roughly in line with single regressor results. That is, random censoring to

the median coincides with relatively little bias, as expected, and random censoring to zero has

severe bias, with a tiny estimate of the wrong sign. Top coding gives rise to larger estimates of

excess sensitivity than the base, which are in line with expansion bias.

When there are higher correlations between the censored regressor and the other regressors,

the bias can manifest in all coe¢ cients. For comparison, in levels the correlation between lnW
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lnW lnY P ln Y
Base Estimates 0.050 (0.0045) 0.2188 (0.0127) 0.1829 (0.0101)

Random Censoring
to median 0.0557 (0.0046) 0.3429 (0.0094) 0.1162 (0.0102)
to zero 0.0587 (0.0046) 0.3973 (0.0082) 0.0002 (0.0010)

Top Coding
25% 0.0611 (0.0045) 0.2788 (0.0116) 0.1541 (0.0108)
50% 0.0621 (0.0046) 0.3303 (0.0104) 0.1222 (0.0118)

Table 4: OLS Estimates of the Consumption Model in Levels

and lnY is .38 and the correlation between lnY P and lnY is .82 so we would expect di¤erent

impacts from the censoring. That is exactly what we �nd if we estimate the log consumption

equation in levels (with dependent variable ln ci), with results displayed in Table 4. Here the base

estimates are di¤erent than the �rst-di¤erenced equation, with a smaller �nancial wealth e¤ect

and larger permanent income and excess sensitivity estimates. Censoring of current income

now manifests largely in the impact of permanent income. That is, random censoring results

to the median results in a smaller current income e¤ect but a larger permanent income e¤ect

and a somewhat larger wealth e¤ect. Those di¤erences are increased when random censoring is

to zero. Here top-coding results in a smaller current income e¤ect, but again larger permanent

income and wealth e¤ects. Here, it is pretty clear that lnY P , and to some extent lnW , is

taking the place of lnY when the values of the latter are censored.

To illustrate the impact of censoring on IV estimators, we consider the possibility that

the change in consumption is determined jointly with current income, making current income

endogenous. We computed IV estimates of the �rst-di¤erenced consumption equation using

lagged log- income as instrument to identify the current log income e¤ect. The IV estimates are

displayed in Table 5. Here the base estimates display negative excess sensitivity with estimate

�̂ = �:0324, and again, there is not much variation in the estimated propensities to consume out
of wealth across all the censoring scenarios. Here, each of the estimates with random censoring

is larger in absolute value as expected �the single regressor results imply expansion bias and

insensitivity to the censoring value, in contrast to the OLS results in Table 3. Top-coding gives

rise to larger absolute values that again depend on the extent of the amount of censoring, as
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� lnW � lnY P ln Y
Base Estimates 0.0376 (0.0060) 0.1290 (0.0106) -0.0324 (0.0097)

Random Censoring
to median 0.0375 (0.0060) 0.1275 (0.0105) -0.0660 (0.0199)
to zero 0.0341 (0.0074) 0.1323 (0.0138) -0.0503 (0.0189)

Top Coding
25% 0.0374 (0.0060) 0.1304 (0.0108) -0.0440 (0.0133)
50% 0.0373 (0.0060) 0.1323 (0.0111) -0.0646 (0.0195)

Table 5: IV Estimates of the Consumption Model

expected.

4. Censoring a Regressor to a 0-1 Variable

Our �nal topic is to consider the implications of replacing a continuous regressor with a dummy

(0-1) variable indicating low and high values. This is a severe form of two-value censoring, where

almost all of the information of the original continuous variable is lost. Nevertheless, empirical

practice is replete with examples of the use of dummy variables where an underlying continuous

variable may be more appropriate. We wish to open this area of inquiry with a few general

points in line with the ones we have raised above.

4.1. Single Regressor Case

Begin with the original framework (5). With the true model

yi = �+ �xi + "i i = 1; :::; n; (40)

we are interested in the results from estimating

yi = a+ bDi + ui i = 1; :::; n: (41)
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where Di is a dummy variable indicating whether xi exceeds a threshold �,

Di = 1 [xi > �] : (42)

Obviously, this represents two-value censoring (0, 1), and all information about xi is lost except

whether it above the threshold or not. We denote Pr fD = 1g � P .

From the practical point of view it is clear that b and � are not the same. However, in

practice, it is common to interpret one coe¢ cient as a measure of the other. In our example

about returns to years of schooling, the issue is how the return � is related to the �college e¤ect�

measured by estimating (41). For the OLS estimators, we have the expressions

plim â = E (yjD = 0) = �+ � � E (xjD = 0)

plim b̂ = E (yjD = 1)� E (yjD = 0) = � � [E (xjD = 1)� E (xjD = 0)]
(43)

The OLS slope coe¢ cient b̂ measures � up to a positive scale. So, if the only question of

interest concerns the sign of �, then estimation with 0-1 censoring allows a consistent answer to

that question. Any further interpretation of the value of b̂ depends on the between-di¤erence

E (xjD = 1) � E (xjD = 0), which is an unknown aspect of the distribution of the uncensored
variable x.

The same sort of bias arises for IV estimators. Suppose that zi is a valid instrument for xi
in (40) and that ĉ is the IV estimator using zi to instrument Di in (41). It is straightforward to

show that

plim ĉ = � �
�
[E (xjD = 1)� E (xjD = 0)] + (1� P )Cov (x; zjD = 0) + PCov (x; zjD = 1)

P (1� P ) [E (zjD = 1)� E (zjD = 0)]

�
:

(44)

There is an additional bias term that depends on the within interaction of the instrument zi with

xi. If zi and xi are positively correlated, then it is natural to expect that the �nal covariance term

is positive (higher xi broadly associated with higher zi values), in which case the IV estimator

would estimate a term with same sign as �. However, it is easy to construct examples where the

covariance term of (44) is negative and outweighs the �rst term, so that ĉ estimates an e¤ect of

the wrong sign. In such cases the censoring of xi to Di gives a completely wrong depiction of
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the relation between yi and xi.

4.2. Multivariate Case

Given the extreme nature of 0-1 censoring, one might expect the biggest bias issues to arise

when there are additional regressors in the equation. If an additional regressor wi is correlated

with xi, then the censoring will cause wi to proxy xi. The resulting transmission of bias is

likely to be more extreme than in the cases studied earlier (since xi was observed for a positive

fraction of the data). This will contaminate the coe¢ cient of wi, and will likely a¤ect bias in

the coe¢ cient of Di as well.

Now the true model is (30), reproduced as

yi = �+ �xi + �wi + "i i = 1; :::; n: (45)

and we are interested in the OLS estimates â, b̂, f̂ of the coe¢ cients of

yi = a+ bDi + fwi + ui i = 1; :::; n: (46)

where Di is observed instead of xi.

To develop the bias in this case, denote the residual of yi regressed on Di as

�yi = yi � (1�Di) �y0 �Di�y1

where �y1 =
Pn

i=1Diyi/
Pn

i=1Di is the average of yi forD = 1 and �y0 =
Pn

i=1 (1�Di) yi/
Pn

i=1 (1�Di),

for D = 0. Now, sweep Di from both sides of the true model (45) to give

�yi = ��xi + ��wi +�"i i = 1; :::; n: (47)

The bias in f̂ of (46) is the same as the bias from omitting �xi from (47), or estimating f̂ from

�yi = f�wi + vi i = 1; :::; n: (48)
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From the standard omitted variable bias formula, we have

plim f̂ = �+ �� � f (49)

where

� =
Cov (�w;�xi)

V ar (�w)
=
(1� P )Cov (x;wjD = 0) + PCov (x;wjD = 1)
(1� P )V ar (wjD = 0) + PV ar (wjD = 1) (50)

The parameter � gauges how the within-deviations of xi are proxied by the within-deviations of

the other regressor wi. If the within-deviations of x are closely proxied by those of wi, say with

� �= 1, then wi�s estimated coe¢ cient will re�ect both the true e¤ect � as well as �, the e¤ect
of xi: This veri�es the intuition about proxying outlined above. There is no bias in f̂ only if

the within-covariances are zero (or net to zero with � = 0). If one has no information regarding

within-variation of xi, it is impossible to assess or disentangle the bias.

This bias will a¤ect the other parameters as well. For the OLS intercept of (46), we have

plim â = E (yjD = 0)� f � E (wjD = 0) (51)

= �+ � � E (xjD = 0) + (�� f)E (wjD = 0)
= �+ � � [E (xjD = 0) + �E (wjD = 0)]

and for the coe¢ cient of Di, we have.

plim b̂ = E (yjD = 1)� E (yjD = 0)� f � [E (wjD = 1)� E (wjD = 0)] (52)

= � � [E (xjD = 1)� E (xjD = 0)� � � fE (wjD = 1)� E (wjD = 0)g]

Focusing on b̂, the multivariate bias di¤ers from the single regressor bias by a term that depends

on how the additional regressor varies with the censoring. If � 6= 0, the di¤erence vanishes only
if wi is mean-independent of Di.

It is possible for b̂ to be so severely biased as to be systematically of the wrong sign. � is

determined by the covariation of x and w within the D = 1 and D = 0 groups; and is una¤ected

by the position of the group means. Therefore, if

E (wjD = 1)� E (wjD = 0) > (1=�) � [E (xjD = 1)� E (xjD = 0)] (53)
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Bias of: Correlation
PrfD = 1g -50% 0% 50% 75% 95%
10% bb 60.0% 95.9% 60.0% 5.4% �72.1%

f̂ -35.9% 0.0% 35.9% 61.0% 90.2%
20% bb 49.3% 75.0% 49.3% 5.3% -70.1%

f̂ -29.2% 0.0% 29.2% 52.8% 87.0%
40% bb 42.9% 61.0% 42.9% 8.1% -65.1%

f̂ -22.4% 0.0% 22.4% 43.9% 82.3%
50% bb 42.1% 60.1% 42.1% 9.0% -63.9%

f̂ -21.7% 0.0% 21.7% 42.4% 81.2%

Table 6: Coe¢ cient Biases: One 0-1 Regressor Censored from Normal.

then b̂ consistently measures a value that is the opposite sign of the coe¢ cient �. In any event,

knowledge of the joint distribution of xi and wi is required to assess or understand the impact

of the 0-1 censoring on the full regression.

We conclude this section with some bias calculations. Table 6 presents the results of 0-1

censoring, where x and w are assumed to be joint normal as in Section 3.2, and censoring is

de�ned as in (42). The biases are computed as the di¤erence between the coe¢ cient limits

and the true values of the coe¢ cients for uncensored regressors (each value is 1.0). There is a

very clear pattern of bias in f̂ . Namely, there is no bias only with 0 correlation, and increasing

bias (transmission) with increasing correlation. The scale of the bias in b̂ is not immediately

interpretable, but we see the value of its limit is highest with 0 correlation, and then decreases

sharply as the bias in f̂ increases. It is not clear why this phenomena is slightly less severe for

a balanced design (PrfD = 1g = :5), but it is still very pronounced in that case.

Table 6 took the normal design from before. In order to illustrate sign changes, in Table

7 we present the results where we have adjusted the second regressor wi by adding 3Di. This

shifts the mean, adding 3 to the mean E (wjD = 1)�E (wjD = 0) without changing the within
covariance between x and w. In view of (53), this shift will increase the bias in b̂. In fact, for

the higher correlation values, b̂ estimates a value that is the opposite sign of �. In this case, the

bias transmission is so severe that the impact of both regressors is over attributed to w through

f̂ , with b̂ is the wrong sign to accommodate this erroneous attribution.
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Bias of: Correlation
PrfD = 1g -50% 0% 50% 75% 95%
10% bb 167.8% 94.9% -49.5% -179.5%� �343.2%�

f̂ -35.9% 0.0% -35.9% 61.0% 90.2%
20% bb 136.1% 75.0% -38.8% -152.7%� -331.6%�

f̂ -29.2% 0.0% 29.2% 52.8% 87.0%
40% bb 110.3% 61.0% -24.1% -122.7%� -309.9%�

f̂ -22.4% 0.0% 22.4% 43.9% 82.3%
50% bb 107.6% 60.1% -22.6% -118.3%� -305.7�

f̂ -21.7% 0.0% 21.7% 42.4% 81.2%
� Coe¢ cient Negative (Bias Produces Wrong Sign)

Table 7: Coe¢ cient Biases: One 0-1 Regressor Censored from Normal, with Mean Shift

5. Conclusion

This paper has shown many results on bias that arises with censored regressors. Our intention

was to provide a rich depiction of the kinds of issues that censored regressors can bring to

empirical work. While there are certain situations where coe¢ cient estimates are too small

(such as attenuation bias in OLS estimates with independent censoring), our view is that the

more common situation is that e¤ects are too large, such as the many cases of expansion bias

noted above. Part of this view is the intuition that censoring involves eliminating important

variation in the regressors, so that estimated e¤ects will overcompensate. But this intuition is

clearly too simplistic, as the nature and sign of the bias depends on both the censoring process

and the censoring value. Hence, it is important to study each case separately.

Another lesson concerns the transmission of bias with several regressors. There is no surprise

in the �nding that censoring bias a¤ects correlated regressors, but rather that the impacts can

be huge. Using a dummy (0-1) variable as a control in place of a continuous variable, when the

true model depends on the continuous variable, can result in biases of 50-100% in the coe¢ cients

of the other regressors. Using a top-coded version of a continuous variable can have a similar

impact. The common practice of using 0-1 variable generates this problem in a severe form.

Almost all of the variation (all of the within variation) is censored away, and will be proxied by

any other correlated variables.

This paper has been mostly about the problems caused by censored regressors, not solutions

to those problems. In general, �exible methods of estimating the bias in an empirical analysis do
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not exist. One can adopt a parametric model of the true data and censored data, but estimates

will be based on distributional assumptions made in that model. Without any restrictions,

the censored data have zero semiparametric information, so some additional structure must

be assumed to make use of the censored data. These issues are discussed in Rigobon and

Stoker (2007), who also include a normal parametric model applied to the analysis of household

consumption and wealth.

When exogenous censoring holds, consistent estimation is possible using the complete cases

alone. This allows the assessment of bias, by comparing estimates using the complete cases

with estimates using the full sample (see Rigobon and Stoker (2005) for a test of this type).

Comparison of this type would seem to be a prudent empirical step whenever any of the regressors

of interest are censored; that is to see whether the censored character of the data has changed

the basic results. But even this is not justi�ed with general endogenous and censored regressors.

That is, the complete cases likely involve selection of the dependent variable, and instruments

available in the uncensored sample will not be valid in the complete cases. The endogenous

case is very di¢ cult, for which some preliminary results are presented in Chernozhukov, Rigobon

and Stoker (2007). Finally, with 0-1 censoring, the true value of the regressor is (almost) never

observed, so such data has no complete cases.
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A. Appendix: Notes on Proofs

For Proposition 1, the true model (5) is

yi = �+ �x
cen
i + �xoi + "i i = 1; :::; n (54)

where xoi = di (xi � �) is the omitted term. Since xceni is uncorrelated with "i, we have

plim b̂ = � �
�
1 +

Cov (xo; xcen)

V ar (xcen)

�
(55)

We have:
Cov (xo; xcen) = E (xo � xcen)� E (xo)E (xcen)

= E (�d (x� �))� E (xo)E (xcen)
= E (xo) � [� � E (xcen)]
= p [E(xjd = 1)� �] � (1� p) [� � E (xjd = 0)]

(56)

Substituting this into (55) gives Proposition 1. Corollary 2 and Corollary 3, parts 1. and
2.are immediate, and since Cov (x2; d) = 0, it is easy to derive V ar (xcen) as used in (10) .
For Corollary 3, part 3., we note that the numerator of the bias is the sum of the analogous
numerator terms for 1. and 2., and that the denominator V ar (xcen) is smaller than the analogous
denominators in 1. and 2., so the strict inequality holds.

Proposition 4 is also a direct calculation that follows from

Cov (z; xcen) = (1� p)Cov (z; xjd = 0) + p (1� p)�z [� � E (xjd = 0)] ; (57)

Cov (z; xo) = pCov (z; xjd = 1) + p (1� p)�z [E (xjd = 1)� �] (58)

The formulae (57) and (58) follow from straightforward arithmetic. For instance, for (57), we
have

Cov (z; xcen) = Cov (z; (1� d)x) + Cov (z; d) � �
= E ((1� d)xz)� E (z) � E ((1� d)x) + p (1� p)�z�

Write out all of the expectations in terms of expectations conditional on d = 1, and simplify to
get (57).

Corollary 5 follows from noting that three things. First, Cov (z; d) = 0 implies �z = 0.
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Second, Cov (zx; d) = 0 and Cov (x; d) = 0 imply that E (zxjd = 1) = E (zxjd = 0) and
E (xjd = 1) = E (xjd = 0), so that Cov (z; xjd = 1) = Cov (z; xjd = 0) = Cov (z; x). Finally,
Cov (z; xjd = 0) 6= 0 since Cov (z; x) 6= 0.
Corollary 6 1.and 2. follow from (19). The �nal statement is true for top-coding since �z > 0

and E (xjd = 1)� � > 0, and for bottom coding since �z < 0 and E (xjd = 1)� � < 0:
Corollary 7 follows from three steps. First, note that Cov(z; x) 6= 0 implies that � (x0) �

E (zjx = x0) is not a constant function. Second,

Cov (z; d) = p (1� p) [E (zjd = 1)� E (zjd = 0)]
= p (1� p) [E (� (x1) jx1 > �)� E (� (x0) jx0 � �)] > 0

by mean-monotonicity. Finally,

Cov (z; xjd = 1) = E (zxjd = 1)� E (zjd = 1)E (xjd = 1)
= E (z � [x� E (xjd = 1)] j d = 1)
= E (� (x) � [x� E (xjx > �)] j x > �)
= E f [� (x)� � [E (xjx > �)]] � [x� E (xjx > �)] jx > �g
� 0

by mean-monotonicity, since the �nal expectation is an integral of non-negative terms.
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Figure 1: OLS: Independent Censoring and Attenuation Bias
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Figure 2: OLS: Top-Coding and Expansion Bias
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Figure 3: Bias from Bound Censoring with a Normal Regressor
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Figure 4: IV: Data with Random Assignment
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Figure 5: IV: Independent Censoring and Expansion Bias
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Figure 6: IV: Top-Coding and Expansion Bias
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