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Abstract

We derive tests for the presence of bias from using censored regressors in linear regression analysis.
The test follows from the principles of (Hausman) speci�cation tests, and is applicable in situations
of exogenous censoring. We apply the test in two substantive empirical applications; the estimation
of the e¤ects of �nancial wealth on household consumption, and the estimation of the impact of
foreign denominated debt on �rm investment decisions. In each application we �nd strong rejection
of the absence of censoring bias.

1. Introduction

Estimating a linear model with a censored regressor implies bias in the coe¢ cient estimates. This is
true regardless of whether the regressor is exogenous in a standard regression model, or endogenous
with estimation using instrumental variables. As we have discussed elsewhere (Rigobon and Stoker
(2005a)), quite di¤erent biases can arise in these cases, although it is di¢ cult to �nd any cases where
using a censored regressor does not induce any bias.1

In this paper, we present tests of the presence of bias from using a censored regressor. We focus
on the case of exogenous censoring, as de�ned below. This provides structure that facilitates standard
approaches to speci�cation tests, as we spell out.2

Censoring is a very prevalent phenomena with observed data on �nancial variables. To understand
the practical role of our test, it is useful to consider the two main sources of censoring of regressors.
The �rst source is censoring that arises because of inadequate measurement or reporting. For instance,
household survey data may contain observations of family income up to a bound of (say) $100,000,
with higher values recorded as �$100,000 or higher.�An upper bound of this sort (top-coding) and/or
a lower bound (bottom-coding) is very common for �nancial variables. In addition, observations may

�Sloan School of Management, MIT, 50 Memorial Drive, Cambridge, MA 02142 USA; email: rigobon@mit.edu,
tstoker@mit.edu. We are grateful to Antoinette Schoar for valuable comments.

1One exception occurs with a bivariate model with an exogenous regressor, with random censoring to the regressor
mean. In this case, the OLS coe¢ cient will not be biased.

2There is a very small literature discussing biases from censored regressors, let alone tests for their absence. One
exception is Nicoletti and Peracchi (2005), who develop tests for the adequacy of data imputation in a GMM framework.
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be assigned to a censoring value in a less systematic way than indicated by bounding. For instance,
zero recording of stock market wealth could indicate zero holdings, or might arise for a household that
was unwilling to disclose their true holdings. Random non-reporting, or other related di¢ culties give
rise to censoring. All these problems cause bias in estimation. Our tests will gauge how seriously such
censoring has a¤ected the empirical results.

The second source of censoring arises when one wants to control for an economic or �nancial concept
that is not observed directly. The observed data represents bounded or otherwise censored versions
of the actual concept of interest. For a concrete example, suppose that one is studying whether cash
constraints a¤ect the amount of investing done by individual �rms. One doesn�t observed �extent of
cash constraints.�Suppose that one uses the new debt issued by a �rm as an imperfect proxy, since
new debt represents a recent infusion of cash, and therefore would vary inversely with cash constraints.
However, new debt represents a censored version of �cash constraints,�since negative values are never
observed. Zero values of new debt could re�ect either mild cash constraints or severe cash constraints.
The same can be said for proxying cash constraints by total outstanding debt. Our tests will judge the
impact of this kind of censoring on the results. With this example, the question addressed by our tests
is whether new debt is the appropriate variable of interest, or whether it is a censored version of the
appropriate �extent of cash constraints.�

Our tests are based on comparing estimates computed from the whole data sample with estimates
computed from the subsample where all censored observations have been deleted. This comparison is a
good starting point for investigating the impact of censoring, and is formally justi�ed under exogenous
censoring as de�ned below. If there is a signi�cant di¤erence in the estimates, then there is evidence
that censoring has biased the empirical �ndings.

Section 2 begins with a more detailed motivation of our testing procedure, followed by the test
statistics and related analytics. With linear regression, the tests are straightforward, but it is important
to consider details carefully. We also note how the procedures extend to IV estimation and situations
with heteroskedasticity. In Section 3, we use the tests in two substantial applications. First is estimating
the marginal propensity to consume out of �nancial wealth. Second is studying the impact of foreign
denominated debt in investment decisions. We �nd substantial impacts of censoring in each of these
applications. Section 4 gives some simulation results on the power of the tests, and Section 5 contains
some concluding remarks.

2. Testing for Bias from Censored Regressors

2.1. Motivation

We now motivate our testing procedure with a stylized version of an application we pursue in Section
3. Assume we are interested in estimating the impact of exchange rate devaluation on the investment
behavior of �rms. Now, it is clear that the e¤ect of the exchange rate depends on the exposure that a
�rm has to exchange rate risk. A �rm that has net liabilities indexed or denominated in foreign currency
clearly will experience a negative shock after that currency is devalued, and that is true even for �rms
that do not export or have assets in that foreign currency. Such a depreciation implies a deterioration
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of the balance sheet that would limit the possibilities of investment for the �rm. Alternatively, a �rm
that is actively exporting or has net assets in foreign currency may experience an improvement in its
balance sheet after a devaluation, which may enhance investment possibilities.

However, how do we actually measure the �rm level exposure to exchange rate risk? By looking
at the liabilities denominated in foreign currency, or assets? What about exports, or imports of raw
materials? What about contracts that have their payments indexed to the foreign currency? Finally,
what about �nancial instruments, such as swaps, that can be a¤ected by exchange rate movements
but are out of the balance sheet? In practice, researchers take various values from reported �nancial
statements and use them as proxies of the true exchange rate exposure. This can induce noise as
with standard errors-in-variables structure, but can also induce problems from censoring. For example,
suppose we take liabilities in foreign currency as a proxy for the exposure to exchange rate risk. The
idea is that �rms with higher liabilities have higher exposure to the exchange rate. This is true enough,
but the problem is that in �nancial statements liabilities in foreign currency appear with a lower bound
of zero when the actual exposure might be di¤erent. Indeed, all �rms that have negative net liabilities
in foreign currency will record a value of zero in the observed proxy. In fact, the use of values from
reported �nancial statements is plagued by this type of mismeasurement.

The situation of bias from a censored regressor is illustrated in Figure 1. With our example, suppose
that the x-axis is the debt denominated in foreign currency; while the y-axis is investment. Here, �rm
investment decisions respond to the true exchange rate exposure (represented by the darker points).
We don�t measure the true exposure values, but instead proxy them by using debt in foreign currency,
so that our data is bound censored at zero (the lighter points). Clearly, the regression with the observed
data is biased (the lighter line), with a greater e¤ect estimated than the true regression (the darker
line). Now, under certain conditions we can drop the censored data points, and get consistent estimates
of the true regression with the remaining data points (often called the �complete cases�). We cover
those conditions below, but in any case, it is clear that the use of the censored regressors causes bias.

Contrast this with the situation where the debt in foreign currency is the properly speci�ed regressor
after all, or where the observed zeros in the data are �true�zeros. This situation is depicted in 2. Now,
the variable represented on the x-axis appears censored, but the investment decision actually depends
on the observed variable itself (and not on a variable that it is proxying for). Now, we estimate the
same e¤ect whether the observations with zero values are included or excluded. That is, including the
(apparently) censored observations will not signi�cantly a¤ect the estimates.3

Our test is based on comparing estimates from the full data sample with those obtained when the
censored observations are dropped. Rejection means that censoring has induced bias, which would
lead one to look much more closely at the censoring process, and to use alternative methods to solve

3For an example where zeros are naturally thought of as "true" zeros, consider estimating the behavior of the cash
reserves in the banking sector. It is a common practice of bank regulation that a bank must hold larger cash reserves the
worse its asset position is. A common practice of determining the quality of the assets is that banks use rating agencies.
If rating agencies make mistakes, then the credit rating is a noisy and censored measure of the true riskiness of the assets.
However, that noise is irrelevant from the perspective of the cash reserves. If the asset is investment grade, the bank
does not set aside additional reserves, but if it is non-investment grade then it has to hold additional cash. That is, cash
reserves are a¤ected by the credit rating, not the underlying asset riskiness.
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the problem of estimation. We now introduce the test formally, followed by its distribution and other
analytical features.

2.2. Formal Set-Up and Testing Approach

We consider a situation where we are studying how a response yi is related to a single regressor xi and
a k � 1 vector of regressors w0

i =
�
1; w+i

�
.4 The regressor xi takes on a given value � with probability

p.5 De�ne di � 1 [xi = �] to indicate when that occurs. We consider the simplest situation, where the
observed data

n�
yi; xi; di; w

0
i

�
j i = 1; :::; n

o
is an i.i.d. random sample from a distribution with �nite

second moments.

The issue of interest is whether xi is the correctly speci�ed regressor or whether it is a censored
version of the correct regressor. That is, the null hypothesis is that data is consistent with the regression
model speci�ed as

yi = �xi + 

0
wi + "i i = 1; :::; n (H0)

with E ("jx;w) = 0. For our basic tests, we add the assumption of homoskedasticity, namely E
�
"2jx;w

�
=

�2.

The alternative hypothesis is associated with the regression model speci�ed as

yi = �x
�
i + 


0
wi + "i i = 1; :::; n (H1)

with E ("jx�; w) = 0. Here the observed variable xi is a censored version of the true (but unobserved)
regressor x�i , as in

xi = (1� di)x�i + di�: (1)

where di is the censoring indicator, with Pr fd = 1g = p: If (H1) is the correct speci�cation, then the
OLS coe¢ cients of y regressed on x and w will be biased as estimators of � and 
, as discussed in
Rigobon and Stoker (2005a).6

To facilitate our testing approach, we add the following assumption to the alternative model (H1):

Assumption: Exogenous Censoring. In model (H1), we have that

E ("jx�; w; d) = 0 (2)

4Note that the intercept is included within wi.
5For instance, if xi is bounded below by � = 0, then p is the percentage of observed values of xi that hit the bound 0.

Our framework is not restricted to bounds �we could have various types of random censoring to the value �.
6With regard to our motivation, y is �rm investment, x� is exposure to exchange rate risk, x is liabilities in foreign

currency and w are other controls. The censoring value � is zero, and d indicates which observations have zero liabilities
in foreign currency.
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Exogenous censoring implies that censoring is not systematically related to the value of the response y
under study.7

For notation, suppose that the fyig data is collected in the n � 1 matrix Y and the
n�
xi; w

0
i

�o
data is collected in the n � k matrix X. The data is sorted; the n0 observations with di = 0 are �rst
and the n1 observations with di = 1 are last. The matrices are partitioned accordingly as

Y =

�
Y0
Y1

�
; X =

�
X0
X1

�
=

�
x0 W0

� � � W1

�
(3)

where x0, W0, W1 are the appropriate matrices of observations on x and w, and � is the n1-vector of
ones. We assume that X

0
0X0 and W

0
1W1 are nonsingular.

Denote the regression coe¢ cients compactly as � =
�
�; 


0
�0
. De�ne two estimators of � as follows;

�rst utilizing the full sample of data,

~b =
�
X

0
0X0 +X

0
1X1

��1 �
X

0
0Y0 +X

0
1Y1

�
(4)

and second utilizing only the data points with with di = 0 (the non-censored observations),

b̂0 =
�
X

0
0X0

��1
X

0
0Y0 (5)

Denote the probability limits of these estimators as

plim ~b = ~� (6)

and
plim b̂0 = �̂0 (7)

Our testing approach is based on di¤erences in the two regression estimators (4) and (5). Under
the null hypothesis, and the exogenous censoring assumption (2), it is clear that

�̂0 =
~� = �; (8)

since xi is correctly measured and exogenous. We test (8) against

�̂0 6= ~� (9)

Under these assumptions, b̂0 is a consistent estimator of � under both the null and alternative
hypotheses. Clearly under (H0), there is no bias induced by taking a subsample, since xi is correctly
observed and exogenous. Under the alternative (H1), condition (2) implies that there is no bias induced

7This is in line with the examples we have listed above: the top coding of income and zero debt in the �nancial
statements, etc., which do not depend on household consumption decisions or investment decisions respectively.
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by truncating the sample to those points with di = 0, namely to the uncensored data (or complete
cases). We have �̂0 = �, the true value, under both the null and alternative.

8

Under the null (H0), the full sample regression ~b is a consistent estimator of �, with ~� = �. Under
the alternative (H1), ~� will typically contain biases, as detailed in Rigobon and Stoker (2005a), with
~� 6= �. Therefore, testing (8) against (9) is a test of whether biases have been induced by using a
censored regressor.

2.3. The Test Statistic and Equivalents

We can immediately propose a test statistic by noting that under (H0), ~b is a consistent and e¢ cient
estimator of �. Therefore, we appear to have all the ingredients for a classical speci�cation test as
established by Hausman (1978). Namely, under the null hypothesis ~b is e¢ cient and b̂0 is consistent,
and under the alternative hypothesis, ~b is inconsistent and b̂0 is consistent. This suggests forming a
(Wald) test as

~H =
�
b̂0 � ~b

�0
V̂ �1b

�
b̂0 � ~b

�
(10)

where V̂b is a consistent estimate of

Vb = V ar
�
b̂0

�
� V ar

�
~b
�

(11)

This is the right idea, but a problem arises because under the null, Vb is singular. We can solve this by
using a generalized inverse of V̂b, but it is more informative to examine the source of the singularity.

For this, note that we can set the (censoring) value � = 0 without loss of generality.9 Therefore, we
have xi = 0 when di = 1, or in matrix form, X1 = [0;W1] : The singularity arises because we cannot
identify � using the data with di = 1.

Taking this further, note that the full sample estimator ~b can be written in pooled form as

~b =
�
X

0
0X0 +X

0
1X1

��1
X

0
0X0b̂0 +

�
X

0
0X0 +X

0
1X1

��1 � 0 0

0 W
0
1W1

� �
0
ĉ1

�
(12)

where
ĉ1 =

�
W

0
1W1

��1
W

0
1Y1 (13)

8 If censoring is not exogenous, then dropping points where di = 1 can induce bias from truncating the dependent
variable y, as familiar from models of endogenous sample selection. That is, we could induce �̂0 6= ~� under the null
hypothesis. We need to rule that out.

9 If � is nonzero, note that we can rewrite (H0) and (H1) equivalently in terms of x+i = xi��, with the intercept shifted
by ��.
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is the estimator of the k � 1 vector 
 The di¤erence b̂0 � ~b is then

b̂0 � ~b =
�
X

0
0X0 +X

0
1X1

��1 � 0 0

0 W
0
1W1

��
b̂0 �

�
0
ĉ1

��
(14)

= A fĉ0 � ĉ1g

where ĉ0 is the k � 1 subvector of b̂0 that estimates 
, with

A =
�
X

0
0X0 +X

0
1X1

��1 � 0

W
0
1W1

�
(15)

The expression (14) is interesting for several reasons. First, the k vector di¤erence b̂0 � ~b is deter-
mined by the k� 1 vector ĉ0� ĉ1; again, this is the source of the singularity of the covariance of b̂0�~b.
Second, since W

0
1W1 is nonsingular, the matrix A is of full rank k � 1, so that inference on the basis

of b̂0 � ~b is equivalent to inference on the basis of ĉ0 � ĉ1. Therefore, the Hausman procedure leads to
the test statistic

Ĥ = (ĉ0 � ĉ1)
0
V̂ �1c (ĉ0 � ĉ1) (16)

where V̂c is a consistent estimator of V ar (ĉ0 � ĉ1), namely

V̂c = s
2

"�
W

0
0

�
I � x0

�
x
0
0x0

��1
x
0
0

�
W0

��1
+
�
W

0
1W1

��1#
(17)

where s2 is a consistent estimator of �2.

But further, this development reveals our test of censored regressor bias to be a classical Chow
test on the stability of the estimates of 
 across the 0 sample and the 1 sample. This applies whether
the (censoring) value � = 0 or not. We can assert standard equivalence results (c.f. Chow (1960) and
Fisher (1970)) to get a residual based statistic that is a trivial matter to compute. De�ne the following
residual vectors:

~u = Y �X~b; u0 = Y0 �X0b̂0; u1 = Y1 �W1
̂1 (18)

Then if

F̂ �

24
�
~u0~u�

�
u
0
0u0 + u

0
1u1

��
(k � 1)

35,"
u
0
0u0 + u

0
1u1

n� (2k + 1)

#
(19)

we have
Ĥ = (k � 1) � F̂ (20)

provided (17) uses the estimate s2 �
�
u
0
0u0 + u

0
1u1

�.
(n� (2k + 1)) :

It is clear how our test statistic is distributed under the null hypothesis. Under homoskedasticity
(E
�
"2jx;w

�
= �2), we have that Ĥ is asymptotically �2 (k � 1). If we add normality ("i � N

�
0; �2

�
),

then F̂ is distributed as F (k � 1; n� (2k + 1)). Tests are carried out as in the most standard of
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regression testing situations. The simplicity of the test implies that it can be implemented with any
standard software

2.4. Several Censored Regressors

The clarity of the testing structure permits an immediate extension to situations where several regres-
sors are censored. Consider �rst the case where there are two censored regressors x1 and x2. To be
precise, the null hypothesis is that data is consistent with the regression model speci�ed as

yi = �1x1i + �2x2i + 

0
wi + "i i = 1; :::; n (H0)

with E ("jx1; x2; w) = 0 and E
�
"2jx1; x2; w

�
= �2 and w

0
i =

�
1; w+i

�
is now a k � 2 vector. The

alternative hypothesis is associated with the regression model speci�ed as

yi = �1x
�
1i + �2x

�
2i + 


0
wi + "i i = 1; :::; n (H1)

with E ("jx�1; x�2; w) = 0, where the observed variables x1i; x2i are censored versions of the true (but
unobserved) regressors x�1; x

�
2, as in

x1i = (1� d1i)x�1i + d1i�1 (21)

x2i = (1� d2i)x�2i + d2i�2 : (22)

d1i; d2i are the censoring indicators as before, and �1; �2 are the censoring values.

Testing for bias from censored regressors again is based on a comparison of coe¢ cients from sub-
samples with censored data to those from the full data sample. But with two regressors, there are
now four subsamples to consider; sample 00 of complete cases with d1i = 0; d2i = 0 sample 10 with
d1i = 1; d2i = 0, (or x1 censored but x2 not), sample 01 with d1i = 0; d2i = 1, (or x2 censored but x1
not) and sample 11 with d1i = 1; d2i = 1 (both censored).

Absence of censoring bias implies that the identi�ed coe¢ cients in each subsample are all the same.
Using the above logic, there are k identi�ed coe¢ cients in subsample 00, k � 1 in subsample 10, k � 1
in subsample 01 and k�2 in subsample 11. That is, in the unrestricted speci�cation, the total number
of coe¢ cients estimated is

k� = k + (k � 1) + (k � 1) + (k � 2) = 4k � 4 (23)

and the number of coe¢ cient restrictions associate with the absence of censoring bias is

k�� = k� � k = (k � 1) + (k � 1) + (k � 2) = 3k � 4 (24)

Denote the sum-of-square residuals from the full sample as ~u0~u as above, and from subsample 00 as
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SSR00, from 10 as SSR01, etc. , and form

F̂ �
�
(~u0~u� (SSR00 + SSR01 + SSR10 + SSR11)

k��

��
(25)�

SSR00 + SSR01 + SSR10 + SSR11
n� k�

�
This F statistic provides the test, with Ĥ = k��F̂ distributed as asymptotically �2 (k��) under the
null hypothesis. With normality ("i � N

�
0; �2

�
), then F̂ is distributed as F (k��; n� k�). This logic

extends to any number of censored regressors, with care taken to base the degrees of freedom on the
number of identi�ed regressors.

It is clear that zero bias from censored regressors means that the coe¢ cient estimates should not
di¤er signi�cantly across any of the subsamples. In particular, we can do a quick test based on
comparing estimates with complete cases, or where no variable is at its bound, with the full data
set. We call this a �Partial CR Test� below, and it is really an e¤ortless computation in typical
empirical applications.10 The better approach is exempli�ed by (25), which is to identify all the
relevant subsamples (that is, data segments de�ned by subsets of variables at their bounds, etc.), and
test coe¢ cient stability over all segments. We refer to this as a �Full CR Test�below. We illustrate
both of these tests in the empirical applications of Section 3 below.

We now consider two simple variations, namely to situations of heteroskedasticity and situations
where the censored regressor is endogenous.

2.4.1. Heteroskedasticity

Since our test statistic is based on standard regression coe¢ cients, adjustment for unknown het-
eroskedasticity is easy, say with E

�
"2jx;w

�
= g (x;w). In particular, we use (16) with

V̂c =
h
V̂ � (ĉ0) + V̂

� (ĉ1)
i
; (26)

where V̂ � (ĉ0), V̂ � (ĉ1) are heteroskedasticity-consistent variance estimators. Under standard conditions,
c.f. White (1980), we will have Ĥ distributed asymptotically �2 (k � 1) under the null, as before.

2.4.2. Instrumental Variables

The situation where there is an endogenous censored regressor is substantially di¤erent than the case
of ordinary regression. The biases induced by censoring are of a di¤erent character (c.f. Rigobon and
Stoker (2005a)), and the amount of information available from the censored data is di¤erent when one

10Generally, when there are two or more bounded/censored regressors, all the parameters will be identi�ed in both the
complete case data segment and the non-complete case data segment, so the Partial CR test is literally a Chow test of
coe¢ cient stability across those two groups.
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has an instrument than when one does not. Nevertheless, we can propose a test for bias of the same
style as that discussed above. We now carry that out, but do not delve further into this case, leaving
that for future research (for instance, we make no claims that there are not better tests than the one
given below).

Consider the same situation as above (models (H0) and (H1)) but where x and possibly w are
endogenous. We have a j � k vector z of instruments, which can contain components of w, and the

observed data
n�
yi; xi; di; w

0
i; z

0
i

�
j i = 1; :::; n

o
is an i.i.d. random sample from a distribution with

�nite second moments. We assume E ("jz) = 0 and as before, we add the (relaxable) assumption of
homoskedasticity, namely E

�
"2jz

�
= �2. We assume that there is nonsingular covariance between

(x;w) and a k-subvector of z, conditional on d = 0. In line with (3), denote the matrix of observations
on z as

Z =

�
Z0
Z1

�
(27)

where Z0 refers to observations with di = 0 and Z1 to those with di = 1.

Our testing approach is to compare estimators computed with the full sample to those computed
on the (potentially uncensored) subset. We require an assumption of exogenous censoring as before:
with instruments, the assumption is

Assumption: Exogenous Censoring, with Instruments. In models (H0) and (H1), we have
that

E ("jz; d) = 0: (28)

This assumption is stronger than the usual assumption required by instrumental variables estimation,
and as before, it rules out dependent variable truncation bias.

Our approach to testing is simple. Denote the TSLS estimator of � using the full sample as

~bIV =

�
X

0
Z
�
Z
0
Z
��1

Z
0
X

��1�
X

0
Z
�
Z
0
Z
��1

Z
0
Y

�
(29)

and denote the TSLS estimator of � using only the data points with with di = 0 as

b̂IV0 =

�
X

0
0Z0

�
Z
0
0Z0

��1
Z
0
0X0

��1�
X

0
0Z0

�
Z
0
0Z0

��1
Z
0
0Y0

�
(30)

The presence of censored regressor bias is indicated by a large value of the di¤erence b̂IV0 �~bIV . We
can detect that with the test statistic

~HIV =
�
b̂IV0 � ~bIV

�0 �
V̂ IVb

��1 �
b̂IV0 � ~bIV

�
(31)
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Under the null (H0), ~HIV is distributed at �2 (k). The Appendix contains details on the asymptotic

normality of
�
b̂IV0 � ~bIV

�
as well as the variance estimator V̂ IVb .

There does not appear to be the same kind of singularity issue with ~HIV as with ~H of (10), because
of the alteration of the instruments between (29) and (30).11 However, as we mentioned, we have not
carried out a full analysis of the best ways to detect censored regressor bias in the case with instruments,
and so there might be procedures that are better than using ~HIV of (31).

3. Applications

In this section we apply our test in two applications. The �rst is to the estimation of the marginal
propensity to consume out of �nancial wealth, which is a standard question of household behavior
relevant to macroeconomic policy. The second is the estimation of the impact of foreign denominated
debt in �rms�investment decisions, which is a typical problem in corporate �nance. In these applica-
tions, we are mostly concerned with highlighting the situations where censoring is a problem, rather
than focusing on estimating the coe¢ cients of a particular speci�cation. The objective is to show how
prevalent the censoring problem is, and how it can be detected. Furthermore, we would like to be
able to say something about the direction of such bias in the two applications to help improve future
estimation.

3.1. Marginal Propensity to Consume out of Financial Wealth

An important question in macroeconomics and monetary policy is the measurement of the marginal
propensity to consume out of �nancial wealth. For example, determining how much the central bank
has to increase interest rates after a boom in the stock market depends exclusively on how much
aggregate demand will expand when �nancial wealth increases. Rigobon and Sack (2003) estimated
how much the U.S. Federal Reserve (Fed) reacts to a stock market boom and argued that it was in
line with a wealth e¤ect of 4 percent, the estimate typically used by the Fed. However, there is little
agreement about the actual size of this e¤ect. Some estimates of this marginal propensity are close
to zero12, while others have obtained estimates as large as 10 percent.13 So, the issue is whether
the reaction of the Fed is appropriate or not, or whether their assumption of 4 percent wealth e¤ect
is accurate. There are other instances in which knowing the marginal propensity to consume out of
�nancial wealth is important for policy design: property taxes, or taxes on corporate pro�ts, among
many others.

The main problem in the estimation of marginal propensity to consume out of �nancial wealth is
that �nancial information is very incomplete. Individuals that hold large amounts of wealth in �nancial
markets usually have large incomes. But their income is usually mismeasured � top coded � implying

11Namely, projection on Z versus projection on Z0.
12See Poterba (2000) and Ludvigson and Steindel. (1999).
13See Parker (1999) and all the references therein.
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that estimating the e¤ect using only wealth will bias the coe¢ cients upward due to the censoring of the
income process. Furthermore, the information on wealth is itself censored � especially in the lower end
of the distribution. Typically, there are very few observations that have accurate (uncensored) income
and wealth values.

We now study the impact of censored regressors in an application to household consumption and
wealth. We follow Parker (1999) closely.14 The data includes consumption, current income and a
computed permanent component of consumption that depends on the cohort in which the household
belongs, characteristics of the household (such as retirement status, family size, etc.), and �nancial
information. By construction, in these data the income variables are not censored � the observations
with top-coded income variables of the original survey have been dropped. Therefore we concentrate
on the impact of the censoring of wealth. We observe three �nancial wealth variables: total wealth,
housing wealth, and stock market wealth.

Our analysis is based on estimating wealth e¤ects using a log-form regression equation similar to
that estimated by Parker (1999).

lnCit = �+ �1 lnWit + �2 lnHit + �3 lnSit + �1 lnPINCit + �2 ln INCit + �
0
3Controls it + "it (32)

where Ci;t is consumption of household i at time t and Wit;Hit; Sit are the measures of total wealth,
housing wealth and stock market wealth. There are two income variables; PINCit is a constructed
permanent component of income and INCit is the current income, which are uncensored regressors in
our data. Controls it are variables accounting for retirement status, family size, cohorts, time, etc. For
a detailed description of the data and the de�nition of the variables, see Parker (1999).

Table 1 shows the con�guration of the sample in terms of bounded or censored wealth values.15

There is a moderate fraction, 27,4%, of total wealth observations at the bound, and this increases
to 46% percent for housing wealth and to 76.3% for stock market wealth, so the bounding/censoring
phenomena is substantial. There are three 0 cells that require mention. First, the �only W at bound�
cell is zero by de�nition, since since total wealthW is greater than or equal to the sum H+S of housing
and stock market wealth, so it is impossible for W to be at the bound without either H or S at the
bound. The �only W and H�and �only W and S�cells are not logically constrained to be empty, but
are empty in our data. In summary, there are �ve nonempty data segments to be take account of for
the Full CR test. Finally, the �Identi�ed Parameters�column list the number of parameters in the full
model equation (32) identi�ed in each nonempty segment.16

In Table 2, we present estimates of the wealth elasticities computed using the full sample and the
sample of complete cases (no wealth values at the bounds). The �Full Model�estimates are from (32),

14We thank Jonathan Parker for his tremendous help and support in providing us not only with the data but with
valuable suggestions.
15 In fact, the censoring is at slighly higher values for internal consistency and to faciliate taking logarithms. In

particular, total wealth is censored when it is less than $5,000, housing wealth when it is less than $4,000 and stock
market wealth when it is less than $1,000. We also eliminated a few observations where total wealth was recorded as less
than the sum of housing and stock market wealth.
16We list the sum of all the identi�ed parameters in the segments as the identi�ed parameters in the full sample. The

restricted model estimated with the full sample has 23 parameters.
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Bounded/Censored Observations Percentage Identi�ed Parameters
Complete Cases 2,192 19.9% 23
W only 0 0.0%
H only 429 3.9% 22
S only 3,764 34.1% 22
W and H 0 0.0%
W and S 0 0.0%
H and S 1,626 14.7% 21
W; H and S 3,026 27.4% 20
Full Sample 11,037 100% 108

Table 1: Bounding/Censoring of Total Wealth, Housing Wealth and Stock Market Wealth

No Controls Full Model
Full Sample Complete Cases Full Sample Complete Cases

lnW .1623 .0820 .0436 .0262
(.0055) (.0142) (.0058) (.0147)

ln H .0167 .0610 .0135 .0543
(.0058) (.0129) (.0041) (.0105)

ln S .0231 .0056 .0044 .0033
(.0036) (.0068) (.0025) (.0058)

R2 .29 .11 .63 .50
Observations 11,037 2,192 11,037 2,192

Table 2: Estimated Wealth E¤ects on Consumption

and the �No Controls�estimates are from regressing log consumption on a constant and the log wealth
values only, for comparison. The di¤erences between the estimates from the complete cases and from
the full sample are striking. The overall wealth e¤ect is much smaller for the complete cases. The
(additional) housing wealth e¤ect is much larger, whereas the (additional) stock market wealth e¤ect is
only marginally smaller in the complete cases, with the full model. That is, we see a completely di¤erent
picture of the wealth elasticities from the complete cases. If the model (32) is correctly speci�ed, we
are seeing substantial bias from the censoring of wealth values.

We give the results of our tests for zero bias in Table 3. Recall that the Partial CR tests are based
on comparing the complete cases with the full sample estimates; namely comparing the regressions
reported in Table 2. The Full CR tests are based on comparing estimates of the identi�ed parameters
from each of the �ve data segments. Clearly, there is overwhelming rejection of zero bias from censored
wealth values, using either partial or full tests and with both speci�cations.

To summarize, we have found strong evidence that the wealth values at the bound are not �true�
values, but are consistent with censoring. Ignoring the bounding of the regressors changes the results
substantively. Of course, part of this di¤erence could be due to other misspeci�cation problems such as
important omitted variables. If the censoring itself is endogenous, then other strategies for estimation
would be required.
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No Controls Full Model
Full CR Test

F̂ 46.36 4.28
d.f. 9, 11024 85, 10929
p-value (F ) 1.2E-82 2.2E-35
p-value (�2) 2.9E-84 3.7E-36

Partial CR Test
F̂ 18.26 4.03
d.f. 4, 11029 23, 10991
p-value (F ) 5.8E-15 2.7E-10
p-value (�2) 5.2E-18 2.4E-10

Table 3: Tests of Zero CR Bias in Consumption

3.2. Impact of Foreign Denominated Debt in Investment Decisions

The macroeconomic literature has highlighted the importance that balance sheet e¤ects have on in-
vestment decisions. In the international context, the presence of debt denominated in foreign currency
might exacerbate the impact of devaluations on investment through this channel. In fact, in emerging
markets, the recessionary aspect of recent devaluations has being blamed on this mechanism. As we
discussed in Section 2.1, on theoretical grounds, the issue is not directly concerned with debt in foreign
currency, per se, but rather on the exposure of the �rm to exchange rate risk. Clearly, unhedged
positions will have an e¤ect on the �rm�s balance sheet, and ultimately on credit and investment de-
cisions. One question is how unhedged positions should be measured? Assets or liabilities in foreign
currency are only a small part of unhedged positions. Exports and imports of raw material are part of
the exposure, as are �nancial instruments and contracts indexed or denominated in foreign currency.
In practice, measuring the exposure to exchange rate risk is extremely di¢ cult. For the most part,
researchers have used debt denominated in foreign currency to proxy for the exposure.

In this section, we use data from Cowan, Hansen, and Herrera (2006).17 This includes data on
the investment decisions of Chilean �rms, as well as information on their balance sheets. The data
is a panel of �rms, with information on assets, debts, and other contracts in foreign currency. For a
detailed description of the data see the original paper.

Our empirical analysis is based on the following model:

Iit = �i + �t + �1Dit + �2EtDit + �1Ait + �2EtAit + "it (33)

where i; t refer to �rm and year, I is the investment ratio (investment over assets), D is the total
debt in dollars as a percentage of the total assets, A is total assets in dollars as a percentage of total
assets, and E is the real exchange rate. We include �rm �xed e¤ects and time �xed e¤ects, where the
direct/overall impact of exchange rate variations is captured in the time e¤ects. The impact of foreign
exchange exposure (here dollars) is captured in the coe¢ cients �2, �2 of the interaction terms. For

17We thank Cowan, Hansen, and Herrara for supplying us with the non-proprietary part of their data. They also
provided us with their programs and help. We thank them for their support.
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Bounded/Censored Observations Percentage Firm E¤ects Time E¤ects Identi�ed Parameters
Complete Cases 466 35.5% 89 8 101
D only 51 3.9% 28 8 38
A only 319 24.3% 82 8 92
D and A 476 36.3% 93 8 101
Full Sample 1,312 100% 173 8 332

Table 4: Bounding/Censoring of Debt and Assets

comparison, we also estimate (33) with just the debt terms.

Debt in dollars and assets in dollars are bounded below by zero, and as we have argued before,
may represent censored versions of the true unhedged positions held by �rms.18 There is a substantial
fraction of the observed values at the bounds, as shown in Table 4. For instance, debt in dollars D is
0 for 40.2 % of the observations, and assets in dollars A is zero for 60.6% of the observations. Nonzero
values for both of D and A are given in 35.5% of the observations. In sum, there are four nonempty
segments of data for the Full CR test.

A further complication is introduced by bounding in a panel data context. Namely, the subset
of �rms represented in the di¤erent segments varies, although each segment has observations from
each year. Again, �Identi�ed Parameters�gives the number of parameters identi�ed in each segment,
including the �rm e¤ects and time e¤ects.

The results from estimating (33) over the full sample and over the complete cases are presented in
Table 5. The results display the expected signs, but have di¤erent values for the complete cases that
appear to be signi�cant. This is true for the �dollar debt only�equation as well as the full equation
with dollar debt and dollar assets. Perhaps most interesting is that when the full model is estimated
with the complete cases, the e¤ects appear to vanish. Each coe¢ cient displayed is estimated very
imprecisely, with the largest t-statistic being 1.2, for the E � A term That is, the signi�cance of the
results from estimating with the full sample could be induced by the bias from censored regressors.

The tests of zero bias from censored regressors are presented in Table 6. For the speci�cation with
debt only, there are only two data segments (D nonzero and D zero). Therefore, the Full CR test is the
same as the Partial CR test, and we have a rejection (as predicted by the di¤erence in the D coe¢ cient
above). For the full model (33), the Partial CR test fails to reject, which may re�ect how imprecise
the estimates with the complete cases are (i.e., the full model estimates cannot be ruled out relative
to the complete case estimates). However, the Full CR test, based on estimates from each of the four
data segments, does reject the hypothesis of zero bias. The evidence seems clear that zero dollar debt
and zero dollar asset values are not consistent with the same model as nonzero values. Moreover, the
exposure estimates when the values are nonzero are very imprecise.19

18We focus on the censoring issue, but there can be various other problems. For instance, one may argue that �rms
that have debt in dollars also have asset in dollars to balance, or that their exports are a sizeable proportion of their debt.
This could make dollar debt a poor proxy for unhedged dollar position, leading to error-in-variables problems, etc., which
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Debt included Debt and Assets included
Full Sample Complete Cases Full Sample Complete Cases

D .135 .182 .127 .027
(.060) (.066) (.061) (.063)

E �D -1.416 -1.988 -1.800 -.961
(.566) (.653) (.607) (.641)

A .0591 .0166
(.053) (.047)

E �A .808 .467
(.460) (.402)

R2 .29 .38 .30 .42
Observations 1,312 789 1,312 466

Table 5: Estimated Debt and Asset E¤ects on Investment

Debt included Debt and Assets included
Full CR Test

F̂ 1.88 1.66
d.f. 75, 1054 147, 980
p-value (F ) 1.5E-5 6.5E-6
p-value (�2) 6.2E-6 7.6E-7

Partial CR Test
F̂ (same as .92
d.f. Full) 68, 1059
p-value (F ) .67
p-value (�2) .67

Table 6: Tests of Zero CR Bias in Investment
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4. Notes on the Power and Size of the Test

We complete the exposition by presenting a Monte Carlo exercise that illustrates the power and the
size of the CR tests. The objective is to create two samples: one in which apparently censored values
are true values (our null hypothesis) and one in which the true regressor is mismeasured by censoring.
The procedure is the following

1. Assume that x is a random variable with mean zero. We produce N observations.

2. We assume a value for �; and assumed a level of censoring: 5%, 10%, ... , 90%

3. We construct a censored version of x, where censoring is to a lower bound. We set the bound
level to achieve the desired censoring level of 5%, 10%, etc..

4. We construct two versions of y. One is based on the true value of x (namely y = x�+ "), so that
the alternative hypothesis holds (and censoring bias results). The other is based on the censored
version of x, or where the null hypothesis holds.

5. We study the CR Test applied with these two types of samples.

Figures 4 and 5 show the results of the simulations when N = 10000. Figure 4(a) is the CR Test
computed assuming the alternative hypothesis is correct. On the horizontal axis we depict the di¤erent
degrees of truncation from 5 percent to 95 percent. The di¤erent schedules re�ect the alterantive values
of �. Figure 4(b) is the respective p-value assuming the alternative hypothesis is the true. Several
patterns are worth highlighting. First, the test values increase with the degree of censoring. The
rejections (measured by the p-values) occur when enough censoring exists in the data. In other words,
if there is only 5 to 10 percent censoring it is hard to �nd a rejection. However, when there is 20
percent censoring the p-values are smaller than 5 percent.

Figures 4(c) and 4(d) show the CR Tests and p-value (from the F distribution) when the null
hypothesis is true. This is the case in which the zeros do not represent censored observations, but true
zeros. As can be seen, the CR Test statistics are all small (all smaller than 1.2), and the p-values are
all larger than 20 percent (not even shown in the �gure).

In conclusion, the test has a very good size, in that we do not �nd a rejection when the true model
was correct. However, we found that for small censoring the power of the test is relatively low.

Finally, in Figure 5 we show the estimated coe¢ cients to highlight expansion bias and the di¤erences
between the coe¢ cients estimated in the alternative sub-samples. In each �gure we plot the di¤erence

cause bias in OLS coe¢ cients.
19Our speci�cation di¤ers from the one estimated in Cowan, Hansen, and Herrera (2006). First, they have information

on o¤-balance sheet dollar denominated contracts such as futures and options. We do not have such data because it is
proprietary. Second, they control for exports and imports �we did the same and the results are identical. Third, and
possibly the most important di¤erence, is that we have �rm �xed e¤ects and they do not. Our preliminary work rejected
a random e¤ects speci�cation which drove us to include the �rm �xed e¤ects in the analysis.
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between the estimated coe¢ cient and the true one (which goes from -0.9 to 0.9. Figure 5(a) is the
estimate of � in the full sample, in the simulation where the alternative hypothesis is true. Figure 5(b)
is the estimate in the complete cases sub-sample. Figure 5(c) depicts the estimates in the full sample
when the null hypothesis is correct, and Figure 5(d) are the estimates in the complete case sub-sample.
As can be easily seen, the bias occurs only when the estimates are performed in the full sample, and
when the alternative hypothesis is true. Otherwise, the estimates are all very close to the true value of
�, i.e. the di¤erences are all close to zero.

5. Concluding Remarks

The use of bounded or censored regressors is common in applied work. In most circumstances, censoring
of regressors leads to important biases. In this paper, we develop straightforward tests of whether such
biases are evident, in terms of being statistically signi�cant. The tests is described simple enough that
they can be implemented with standard softwares.

The intuition of the test is standard from speci�cation testing. When there is no bias, we get
consistent and e¢ cient estimates of the parameters using the full data set, but inconsistent estimates
when there are biases. With exogenous censoring, we get consistent estimates of the parameters by
dropping all of the censored observations in all circumstances. So, we can test on the basis of the
di¤erence between full sample estimates and estimates from uncensored observations only. When there
are many censored regressors, there are many di¤erent data segments with some variables censored and
others not, and we can test on the basis of coe¢ cient stability across all those segments. The only subtle
part involves keeping track of the number of identi�ed parameters in each segment, which determines
the appropriate degrees of freedom. We pointed out how the test applies in the heteroskedastic case,
and with instruments. The intuition remains the same.

We have not addressed the question of what to do when censored regressor bias is found. Consistent
estimates are obtained from the uncensored observations, but they often represent a small subset of
the full data. The next step in our research is to resolve various estimation problems when censoring
exists, such as how best to include censored observations in the analysis.20
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A. Appendix: Formulae for Test with Instrumental Variables

The asymptotic distribution of the test statistic ~HIV of (31) follows directly from the asymptotic

normality of
p
n
�
b̂IV0 � ~bIV

�
. In accordance with (3) and (27), let the vector of disturbances E = f"ig

be partitioned as

E =

�
"0
"1

�
with "0 the vector of values with di = 0 and "1 the vector of values with di = 1. Then we can write

b̂IV0 � ~bIV = A"0 +B"1 (34)
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Using standard arguments applied to (34), we have that under the null hypothesis,
p
n
�
b̂IV0 � ~bIV

�
has a limiting normal distribution with mean 0 and variance V IVb , where
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The covariance structure is expressed as follows: let
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where

� =
�
MXZM

�1
ZZM

0
XZ

��1
; �0 =

�
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0
XZ;0

��1
:

Therefore, under the nullHIV = n
�
b̂IV0 � ~bIV

�0 �
V IVb

��1 �
b̂IV0 � ~bIV

�
is asymptotically �2 (k). The

same statement is true for ~HIV =
�
b̂IV0 � ~bIV

�0 �
V̂ IVb

��1 �
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�
of (31), where the estimated

covariance matrix is

V̂ IVb = s2
�
AA

0
+BB

0
�
;

with s2 a consistent estimator of �2, such as s2 = (1=n)
�
Y �X~bIV

�0 �
Y �X~bIV

�
.
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Figure 1: Bias when using censored data versus only the complete cases.
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Figure 2: True data is not truncated. The observed zeros of the independent variable are true zeros.
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Figure 3: Estimates using all data and only the complete cases.
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(a) F-test under H1 (b) P-value under H1

(c) F-test under H0 (d) P-value under H0

Figure 4: F-test and P-values for di¤erent values of � and di¤erent degrees of censoring.
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(a) Estimate of �, full sample, under H1 (b) Estimate of �, CC sub-sample, under H1

(c) Estimate of �, full sample, under H0 (d) stimate of �, CC sub-sample, under H0

Figure 5: Estimates of � for the full sample and the complete cases sub-samples.
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