Signal Amplification of a “Turn-On” Sensor: Harvesting the Light Captured by a Conjugated Polymer

D. Tyler McQuade, Ashleigh H. Hegedus, and Timothy M. Swager*

Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Received September 5, 2000

Excited states can travel large distances in multiple dimensions within conjugated polymer thin films.1 The facile transport of excitons within these materials has made them attractive candidates for creating a variety of electrooptical devices,2 and vectorial transport has been exploited in light-harvesting systems.3 Recently, we have reported highly sensitive chemosensors which utilize the fluorescence intensity.4 In our studies we have reported highly sensitive chemosensors which utilize the fluorescence intensity.4b a dramatic decrease (a “turn-off”) in the polymer’s initial transport has been exploited in light-harvesting systems.3 Recently, exitons within these materials has made them attractive candidates much more sensitive.5 Herein, we present a chemosensor design where we substantially amplify the output of a pH-sensitive polymer (PPE) (1) and an anionic polyacrylate (2).6,7 The system is designed so that pH alters the absorption cross-section, energy migration efficiency, and emission efficiency of the fluoresceinamine (FA) dye appended off of polymer 2. In this case, the dye acts as a shunt, withdrawing energy from the conjugated polymer. At high pH, FA is highly absorptive and highly fluorescent, while at low pH, the dye’s extinction coefficient decreases and the fluorescence is lost. In our case, electrostatic binding of anionic polymer 2 onto the cationic surface formed by depositing 1 directly onto a glass substrate provides a facile method for placing the appended FA in close proximity to the conjugated polymer.10 The sulfonate co-monomer comprising polymer 2 was selected to ensure that the polymer would remain ionic over a wide pH range. Polymer 1 was synthesized via an aqueous-DMF Sonagashira-Hagihara cross-coupling and polymer 2 via radical polymerization.11

Polymer 1 and the FA dye appended to the polycrylate (2) were selected so that the polymer emission overlaps the absorbance band of the dye (Figure 1). This overlap encourages Fluorescence Resonance Energy Transfer (FRET) between the polymer and the dye.12 The absorbance maximum of polymer 1 is centered at 439 nm and the emission maximum is centered at 471 nm. The absorbance maximum of the polymer-bound FA dye is 490 nm and the emission band is centered at 535 nm.

The films were deposited onto base-washed glass slides by alternate immersion into 1 mg/mL solutions of 1 and 2. The deposition was monitored by UV/vis spectroscopy and the optical density increased linearly over twenty depositions (10 for each polymer).13 In contrast to the UV/vis results, the fluorescence spectrum of 1 did not increase after each successive deposition. The self-quenching was investigated further by measuring the quantum yields (QY) of polymer 1 (420 nm) alone and polymer 1 separated via polymer 2, as well as by sulfonated poly(styrene) (PSS). PSS was chosen because it has no absorption bands above

![Figure 1. Normalized absorbance and emission spectra for polymers 1 and 2: A is the absorbance of a thin film of polymer 1 on glass and B is the emission (excited at 420 nm). (C) Absorbance spectrum of a film of polymer 2 and (D) emission (excited at 500 nm).](Image)

The construction of thin films was accomplished via layer-by-layer deposition7 of a new water-soluble, cationic poly(phenylene ethynylene) (PPE) (1) and an anionic polyacrylate (2),9,8 The system is designed so that pH alters the absorption cross-section, energy migration efficiency, and emission efficiency of the fluoresceinamine (FA) dye appended off of polymer 2. In this case, the dye acts as a shunt, withdrawing energy from the conjugated polymer. At high pH, FA is highly absorptive and highly fluorescent, while at low pH, the dye’s extinction coefficient decreases and the fluorescence is lost. In our case, electrostatic binding of anionic polymer 2 onto the cationic surface formed by depositing 1 directly onto a glass substrate provides a facile method for placing the appended FA in close proximity to the conjugated polymer. The sulfonate co-monomer comprising polymer 2 was selected to ensure that the polymer would remain ionic over a wide pH range. Polymer 1 was synthesized via an aqueous-DMF Sonagashira-Hagihara cross-coupling and polymer 2 via radical polymerization.

Polymer 1 and the FA dye appended to the polycrylate (2) were selected so that the polymer emission overlaps the absorbance band of the dye (Figure 1). This overlap encourages Fluorescence Resonance Energy Transfer (FRET) between the polymer and the dye. The absorbance maximum of polymer 1 is centered at 439 nm and the emission maximum is centered at 471 nm. The absorbance maximum of the polymer-bound FA dye is 490 nm and the emission band is centered at 535 nm.

The films were deposited onto base-washed glass slides by alternate immersion into 1 mg/mL solutions of 1 and 2. The deposition was monitored by UV/vis spectroscopy and the optical density increased linearly over twenty depositions (10 for each polymer). In contrast to the UV/vis results, the fluorescence spectrum of 1 did not increase after each successive deposition. The self-quenching was investigated further by measuring the quantum yields (QY) of polymer 1 (420 nm) alone and polymer 1 separated via polymer 2, as well as by sulfonated poly(styrene) (PSS). PSS was chosen because it has no absorption bands above

Figure 2. A film composed of 2 electrostatically bound to 1 on glass was used. The film was dipped into a 0.001 M KHPO₄ solution at the denoted pH. The PL spectra spanning from 435 to 650 nm and the spectra beginning at 515 nm were excited at 420 and 500 nm, respectively. Inset: The emission maximum of the FA band after excitation at 420 nm plotted against the pH.\(^\text{18}\)

300 nm.\(^\text{14}\) One layer of polymer 1 has a modest QY of 8%. A film composed of two layers of 1 separated by a layer of PSS has a QY of 3.7%, corroborating that polymer 1 self-quenches. A two-layer film consisting of a layer of 2 (deposited at pH 8) on a layer of 1 has a QY of 1.6%. A three-layer film consisting of two layers of 1 separated by 2 has a similar QY of 1.5%. We attribute the self-quenching to interpolymer interactions mediated by the ionic shielding provided by the presence of the anionic polymer.\(^\text{15}\) Despite self-quenching, which limits the amplification, multiple layer films respond to pH in a different manner than a bilayer of 1 and 2 (vide infra).

Initially, bilayer films composed of one layer of 2 deposited onto a layer of 1 were immersed in solutions of varying pH.\(^\text{16}\) The dried film’s response after removal from the solution was measured in air by selectively exciting 1 (420 nm)\(^\text{17}\) and comparing the resulting emission at 535 nm to direct excitation of the FA dye (500 nm) (Figure 2). At pH 11, >90% of the conjugated polymer’s emission is transferred to the dye. In contrast, the FA’s fluorescence is completely absent at pH 6.

At each pH, the measured excitation at 420 nm resulted in an approximate 10-fold increase in the emission at 535 nm relative to that measured by direct excitation (500 nm) of the FA. Excitation spectra indicate that the emission at 535 nm is maximal when 1 is excited at its absorbance maximum, further corroborating that the amplification observed results from energy transfer.\(^\text{19}\)

Recently, a self-assembled mixed monolayer containing laser dyes electronically coupled to chromogenic dendrons was reported to produce a chemosensor displaying a dramatically brighter emission, clearly establishing an on-off response to pH.\(^\text{20}\) As stated above, the deposition of more than one layer of 1 does not result in an increase in the fluorescence intensity. However, a three-layer film has a ratio between the polymer 2 emission maximum (at low pH) and polymer 1 emission maximum (at high pH) of >2, whereas the two-layer film has a ratio of only 1. The number of polymer 1 layers surrounding polymer 2 clearly influences the film’s response. We suggest that the addition of a second polymer layer increases the amount of energy harvested by the film, thus increasing the available energy accessible to the dye. However, the level of signal amplification remains the same due to the increase in the emission resulting from direct excitation of the dye. The increased emission from direct excitation of the dye indicates that the second layer of 1 may also influence the photophysical properties of the dye.

A plot of the dye’s emission peak versus pH for the three-layer film (inset, Figure 3) displays a sigmoidal shape consistent with a titration. The pKₐ has been shifted to approximately 9, which is higher than that observed previously (6.5).\(^\text{8a}\) The shift is most likely due to the destabilization of the phenolic anion of FA by the highly anionic environment provided by polymer 2.

The combination of layer-by-layer deposition, of pH-sensitive dye, and the transport properties of a conjugated polymer has produced a chemosensor displaying a dramatically brighter response. The easy synthesis of polyacrylates containing appended dyes makes this system very flexible and represents a simple approach for creating different chemosensors in which an analyte-sensitive dye is electrostatically bound to a cationic conjugated polymer.

Acknowledgment. We thank the ONR, Draper and ARO (MURI) for support. D.T.M. thanks the NIH for a postdoctoral fellowship. We thank Catherine M. B. Santini for GPC data.

Supporting Information Available: Experimental details, characterization of polymers 1 and 2, excitation spectra, and a plot of the OD versus layer (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA003255L