Synthesis of Conjugated Polymers Containing \textit{cis}-Phenylenevinylene by Titanium-Mediated Reductions

Ryan M. Moslin, Christine G. Espino, and Timothy M. Swager

\textit{Macromolecules}, 2009, 42 (1), 452-454 • DOI: 10.1021/ma8022519 • Publication Date (Web): 16 December 2008

Downloaded from http://pubs.acs.org on January 18, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML
Synthesis of Conjugated Polymers Containing cis-Phenylenevinylene by Titanium-Mediated Reductions

Ryan M. Moslin, Christine G. Espino, and Timothy M. Swager*

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139

Received October 8, 2008
Revised Manuscript Received November 26, 2008

Introduction

Poly(phenylenevinylene)s (PPVs) are among the most actively studied conjugated polymers. Although many techniques to synthesize high-molecular-weight PPVs exist, they are largely limited to the synthesis of predominantly trans-PPVs. Recent work by Katayama and Ozawa has, for the first time, provided access to all cis-PPVs by way of a stereospecific Suzuki—Miyaura cross-coupling polymerization of 1,4-bis((Z)-2-bromovinyl)benzenes with arylbis(boronic acid)s. We have been interested in an alternative approach where, rather than build a PPV with a preordained stereochemistry, a postpolymerization syn-selective reduction on a poly(phenylene ethynylene) (PPE) is employed. This scheme has the advantage that high-molecular-weight PPEs can be synthesized using either Pd catalysis or alkyne metathesis. This route could also potentially allow for the access to an additional array of PPVs that are uniquely accessible from PPEs. The transformation of the triple bonds in PPEs and other acetylene building blocks to alkenes has considerable potential.

Although there are many means by which to reduce alkynes to disubstituted alkenes, we judged the titanium-mediated reduction developed by Sato to be the most promising. This transformation is stoichiometric in both titanium and magnesium, but the reduction is quantitative and completely cis-selective for a wide variety of alkyne systems. Additionally, the titanium and magnesium oxide byproducts can be easily removed with an aqueous work-up, thus minimizing the amount of impurities in the polymer product.

<table>
<thead>
<tr>
<th>entry</th>
<th>alkene</th>
<th>product</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>90%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>69%</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>92%</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>90%</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>92%</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>66%</td>
</tr>
</tbody>
</table>

*Yields are for isolated material and are not necessarily good representations of overall conversion.

Figure 1. Overlay of normalized fluorescence spectrum of 15 (blue) and 16 (red) in THF.
Results and Discussion

In contrast to Sato’s work, diethyl ether was not a suitable solvent for these substrates. However, with toluene as the solvent, the desired cis-olefins are obtained in excellent yields and selectivities (entries 1 and 2, Table 1). The geometry of the olefins was assigned by the coupling constants of the vinyl protons. The reaction is tolerant of a variety of substitution patterns, most notably the ortho-bromo groups of 7 (entry 5) and the meta-alkyne isomer (9, entry 6). The tetrayne 11 was also successfully reduced (entry 7), although isolation difficulties resulted in a slightly diminished yield.

The low temperature of the reaction made application to polymer systems challenging, as many PPEs are insoluble in toluene at −78 °C.9 However, the reaction appears viable for...
systems that are soluble at low temperatures. Using the standard conditions, polymer 15 was cleanly reduced to PPV 16 (Scheme 1, Figure 1). The isolated polymers behaves similarly to the materials described in earlier work describing all cis-PPVs, and these materials undergo an irreversible red shift in absorbance when exposed to UV light (Figure 2).

A means to effectively expand the scope of this reaction in the synthesis of polymers having all-cis-PPV linkages is to convert p-bromo-functionalized diyne systems such as 9 to the corresponding cis-diene and then perform a Sonogashira polymerization with a diyne to make an all-cis-PPV/PPE copolymer (Scheme 2). Polymer 17 shows a similar cis–trans isomerization under irradiation as 16 (Figure 3). all-cis-PPV/PPE copolymers should have greater availability and versatility compared to the all-cis-PPV accessed via the titanium-mediated reduction of PPEs.

Conclusion

This work represents the first and only example of converting a PPE to an all-cis-PPV system. Although limited in polymer scope, this method does appear complementary to existing cis-PPV syntheses, which required lengthy monomer synthesis and did not provide an example of a PPV possessing substitution on both phenyl subunits. Additionally, this technique provides access to potentially useful all-cis-monomers for use in polymer synthesis.

Acknowledgment. This work was supported by the US Army Medical Research (W81XWH-07-1-0649) and the Army Research Office’s IED Stand-Off Detection Research Program (W911NF-07-1-0654). C.G.E. is grateful for a postdoctoral fellowship from the National Institutes of Health.

Supporting Information Available: Spectroscopic information for all new compounds as well as representative experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(8) Unlike common late transition metal catalysts such as palladium and platinum, the titanium and magnesium salts should be highly soluble in aqueous solution. For a discussion of the impact of residual palladium catalyst on PPV properties see: Krebs, F. C.; Nyberg, R. B.; Jürgensen, M. Chem. Mater. 2004, 16, 1313–1318.
(9) Running the reaction at higher temperatures was also unsuccessful.
(10) Conversion appears to be complete, although it is possible that isolated unreacted alkyne exists along the polymer backbone; both IR and Raman spectroscopy failed to show the characteristic C=C stretching frequency in 14.
(11) The higher molecular weight of 15, as compared to 16, can be potentially explained by the propensity for GPC analysis to overestimate the molecular weights of rigid polymers such as PPEs; see: Raber, H. J.; Spicermann, J.; Kreyenschmidt, M.; Müllen, K. Macromol. Chem. Phys. 1996, 197, 3285–3296.