Taxonomy of Defects: Classify by Dimensionality

0-dimensional: point defects *1-dimensional*: line defects

2-dimensional: interfacial defects

3-dimensional: bulk defects

Point Defects

- localized disruption in regularity of the lattice

- on and between lattice sites

1. Substitutional Impurity

- occupies normal lattice site
- dopant ©, e.g., P in Si; or B in C_(diamond)
- alloying element ©, e.g., Mg in Al; or Ni in Au
- contaminant ⊗, Li⁺ in NaCl

2. Interstitial Impurity

- occupies position between lattice sites
- alloying element [©], e.g., C in Fe; or H in LaNi₅
- contaminant ⊗, H in Fe

3. Vacancy

- unoccupied lattice site
- formed at time of crystallization
- formed in service under extreme conditions

Point Defects in Ionic Crystals

- special issues associated with the need to maintain global charge neutrality

1. Schottky Imperfection

- formation of equivalent (not necessarily equal) numbers of cationic and anionic vacancies

2. Frenkel Imperfection

- formation of an ion vacancy and an ion interstitial

3. F-Center

- formation of an ion vacancy and bound electron

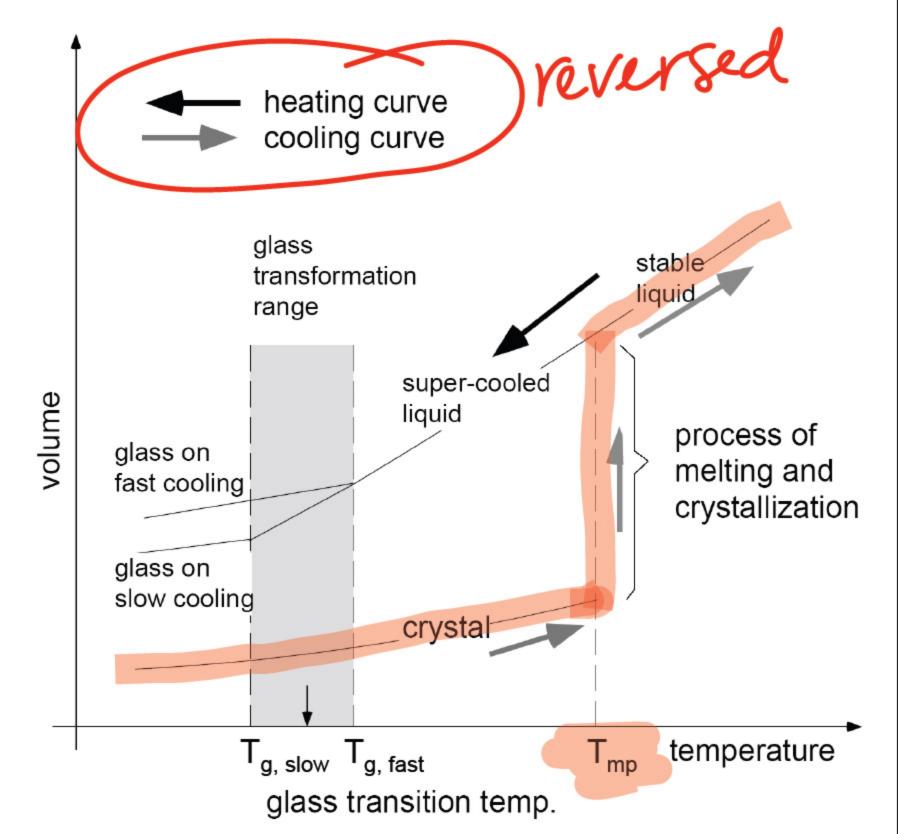


TABLE 14.6 Properties of reactions that obey zeroth-, first-, and second-order rate laws

	Zeroth Order		First Order		Second Order	
Differential rate law	$Rate = -\frac{\Delta[A]}{\Delta t} = k$		Rate = $-\frac{\Delta[A]}{\Delta t} = k[A]$		Rate = $-\frac{\Delta[A]}{\Delta t} = k[A]^2$	
Concentration vs. time	Concentration		Concentration		Concentration	
Integrated rate law	$[A] = [A]_0 - kt$		$[A] = [A]_0 e^{-kt}$		$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$	
	or $ln[A] = ln[A]_0 - kt$					
Straight-line plot to determine rate constant	Slope = -k		Slope = $-k$		Slope = k	
Relative rate vs. concentration	[A], M	Rate, M/s	[A], M	Rate, M/s	[A], M	Rate, M/s
	1	1	1	1	1	1
	2	1	2	2	2	4
	3	1	3	3	3	9
Half-life	$t_{1/2} = \frac{[A]_0}{2k}$		$t_{1/2} = \frac{0.693}{k}$		$t_{1/2} = \frac{1}{k[A]_0}$	
Units of k, rate constant	M/s		1/s		$M^{-1} \cdot s^{-1}$	

Copyright © 2007 Pearson Benjamin Cummings. All rights reserved.

Table 8.7

Solubility Rules for Ionic Compounds in Water

Soluble Ionic Compounds

- The Na⁺, K⁺, and NH₄⁺ ions form *soluble ionic compounds*. Thus, NaCl, KNO₃, and (NH₄)₂CO₃ are *soluble ionic compounds*.
- The nitrate ion (NO₃⁻) forms soluble ionic compounds. Thus, Cu(NO₃)₂ and Fe(NO₃)₃ are soluble.
- The chloride (Cl⁻), bromide (Br⁻), and iodide (I⁻) ions usually form *soluble ionic* compounds. Exceptions include ionic compounds of the Pb²⁺, Hg₂²⁺, Ag⁺, and Cu⁺ ions. CuBr₂ is soluble, but CuBr is not.
- The sulfate ion (SO₄²⁻) usually forms *soluble ionic compounds*. Exceptions include BaSO₄, SrSO₄, and PbSO₄, which are insoluble, and Ag₂SO₄, CaSO₄, and Hg₂SO₄, which are slightly soluble.

Insoluble Ionic Compounds

- Sulfides (S²⁻) are usually *insoluble*. Exceptions include Na₂S, K₂S, (NH₄)₂S, MgS, CaS, SrS, and BaS.
- Oxides (O²⁻) are usually *insoluble*. Exceptions include Na₂O, K₂O, SrO, and BaO, which are soluble, and CaO, which is slightly soluble.
- Hydroxides (OH⁻) are usually *insoluble*. Exceptions include NaOH, KOH, Sr(OH)₂, and Ba(OH)₂, which are soluble, and Ca(OH)₂, which is slightly soluble.
- Chromates (CrO₄²⁻), phosphates (PO₄³⁻), and carbonates (CO₃²⁻) are usually *insoluble*. Exceptions include ionic compounds of the Na⁺, K⁺, and NH₄⁺ ions, such as Na₂CrO₄, K₃PO₄, and (NH₄)₂CO₃.