

Promises and Pitfalls of Technology and Data in Planning

JOINT Session

SPURS FELLOWS & Urban Science & Digital Transition: e-Planning XX years later

Pedro Ferraz de Abreu

pfa@mit.edu

I am a proud SPURS Fellow and this is my class

But ... Where is Pedro?

I am a proud SPURS Fellow and this is my class

But ... Where was Pedro?

... Then, I was DOWNGRADED... to PhD Student... ... and MANY years later, PhD

Promises and Pitfalls of Technology and Data in Planning

Technology in Planning:

We need a theoretical framework

Pedro Ferraz de Abreu

pfa@mit.edu

"Science without Activism, is Frivolous;

Activism without Science, is **Blind**"

e-Planning XX years ago...

Pedro Ferraz de Abreu

MIT - DUSP, e-Planning Seminar

"e-Planning in a world embattled by war

and poverty: Why should planners study and influence the information technology revolution?"

Friday, December 5, 2003

MIT Rm. 3-401, 12:05PM - 2:00PM

Discussants: Bish Sanyal, David Laws

The Cost of Free:

Understanding the new equation relating technology, market economy, regulation, privacy and power.

Pedro Ferraz de Abreu

pfa@mit.edu

MIT - DUSP • October 16 , 2023

Urban Science & Digital Transition: e-Planning XX years later

- Dangerous Paradox
- ICT Qualitative Leap Theory
- ICT unequal Added-value Theory
- Cost of Free The Cost of Love ex.

- Dangerous Paradox
- ICT Qualitative Leap Theory
- ICT unequal Added-value Theory
- Cost of Free The Cost of Love ex.

QVO VADIS, World?

Main Stream ACADEMIA goes on teaching:

- Society model: Market Economy, Free Competition, Entrepreneurship
- Values Proclaimed: Democracy, Freedom, Social Justice, Property
- Promises: Social Equality Convergence, Peace

Free Competition? Entrepreneurship?

Show source 3

tickets.

E-Commerce > B2C E-Commerce

0.0%

Etcu

USA Market share of leading retail e-commerce companies in the United States as of 2021 October on-line DOWNLOAD shopping Amazon Amazon 41% PDF + XLS + PNG + PPT + Walmart 6.6% market eBay .2% share Source Apple Show sources information 2018 Show publisher information The Home Depot 2.2% Use Ask Statista Research Service Target 2% **Release date** October 2021 Best Buy 1.8% Amazon = 41%Region 1.6% Costco United States Survey time period 1.4% Kroger October 2021 Wayfair 1.3% Supplementary notes Represents the gross value of products or services Chewv 1% sold (browser or app) regardless of the method of © Statista 2021 🎮

payment or fulfillment; excludes travel and event

Free Competition? Entrepreneurship?

World Top-10 Companies 2021

Ranl	k Company name	Location	Sector
1	APPLE INC	III III United States	Technology
2	SAUDI ARAMCO	ᆙ 때 Saudi Arabia	Energy
3	MICROSOFT CORP	III III United States	Technology
4	AMAZON.COM INC	III III United States	Consumer Discretionary
5	ALPHABET INC google	3編 225 United States	Technology
6	FACEBOOK INC	III III United States	Technology
7	TENCENT	1個 0日 China	Technology
8	TESLA INC	14 1년 United States	Consumer Discretionary
9	ALIBABA GRP	パ語 パ語 China	Consumer Discretionary
10	BERKSHIRE HATHAWAY	III III United States	Financials
	ing 1 to 10 of 100 optrion		

Inequality evolution: Reality Check

Social Progress? Equal Opportunity?

"The socio-economic divide has been on the rise in Europe over the past decades, and has intensified since the onset of the global financial crisis. High and rising inequality harms our societies in many respects."

UNDERSTANDING THE SOCIO-ECONOMIC DIVIDE IN EUROPE

26 January 2017, OECD

21/10/2008 - The gap between rich and poor has grown in more than three-quarters of OECD countries over the **past two decades**, according to a new OECD report.

OECD **2019**'s Growing Unequal? finds that the economic **growth of recent decades has benefitted the rich more than the poor**.

Launching the report in Paris, OECD Secretary-General Angel Gurra warned of the dangers posed by inequality

Inequality evolution: Reality Check

"globalization also had a dark side. Lurking behind it was a **large and growing chasm between rich and poor** especially **within countries**."

Dominique Strauss-Kahn, Managing **Director**,

International Monetary Fund (IMF)

Agadir, November 1, 2010

Social Progress? Equal Opportunity?

"Income inequality has been rising in many parts of the world in recent decades."

At The Peterson Institute for International Economics Washington, D.C., March 13, **2014**

David Lipton First Deputy Managing **Director**, International Monetary Fund (IMF)

Digital Transition: Reality Check

UN

"New and rapidly developing **technologies** such as artificial intelligence, biotechnology, material sciences and robotics hold incredible promise for the **advancement of human welfare**. They also hold the potential to generate **more inequality and more violence**." (A. Guterres, <u>UN Secretary-General</u>'s Strategy On New Technologies, 2018)

But then, what makes the difference?

inequalities and violence...

Then, is Technology per se to Blame?

We closed that argument in 1993

The answer is **No.** With solid evidence.

Our model was validated through all these years and still is.

- Dangerous Paradox
- ICT Qualitative Leap Theory
- ICT unequal Added-value Theory
- Cost of Free The Cost of Love ex.

Computers began with the paradigm *The bigger The better*

ENIAC-wide-view-1ENIAC at 75

© 2023 Pedro Ferraz de Abreu

Computers began with the paradigm The bigger The better

CDC 7600 supercomputer, 1970s

And more powerful computing required industrial instalations

Liquid Cooling Options for Computing Centers-Hyperion

And more powerful computing required industrial instalations

HPE-Cray-EX-exploded-view

The Microprocessor Inverted that trend. From there on, the Smaller, the Better

1953- Transistorized Computers Emerge The Silicon Engine

Did you know? In 1985, the world's fastest supercomputer was a Cray-2. Today, an iPad2 has as much computing power as the Cray-2 system. " to supercomputers Apple iPhone 12 Smartphone to smartphones CRAY-2 1980s Supercomputer EL OOS Apollo 11 Guidance Computer billion Hors 20 Approximately 5,000 times faster than the CRAY-2 supercomputer and about 900 million times faster than the Apollo 11 Approximately guidance computer. 155,000 times faster than the Apollo 11 guidance computer FLOPS: floating point operations per second

Table 7.3.1.-1 - Period before broadcasting

>600 BC	The abacus (=arithmetic unit of CPU) is invented in China	
387 BC	Foundation of Plato's Academy	
1450	Printing press invented (Johannes Gutenberg)	
1876	First telephone patent (Alexander Bell)	

Table 7.3.1.-2 - Period between broadcasting and microcomputer + world wide network

1906	First broadcast of human voice, AM radio (Reginald Fessenden)
1930	18 million radios owned by 60% USA households
1936	Regular TV broadcast begins in UK
1956	72 % USA households own a TV
1968	First ARPANET (IMP), installed at UCLA (precursor to INTERNET)

Table 7.3.1.-3 - Period after microcomputer + world wide communications network

1971	First microcomputer in USA	
1972	Created the InterNetwork Working Group, creating the INTERNET	
1975	First Personal Computer (PC) introduced	
1991	First Internet Web Server and Web Browser (CERN)	
2001	529 million people on-line (Internet)	

In Ferraz de Abreu, P/. 2002 "New Information Technologies in Public Participation: A Challenge to Old Decision-making Institutional Frameworks" © 2023 Pedro Ferraz de Abreu

	Information Technology	Features / Attributes	Decision Models
		from "few" to "few"	
			Direct Democracy
	Voice	 limited reach 	,
	Manuscript	 without auxiliary processing 	Heterogeneous Empires
		 cheap, potentially universal access 	
		(low cost to enter the market)	
		(iow coor to onior the market)	
		 low control / regulatory costs 	
		 from "few" to "many" 	
	Press		<u>Representative</u>
		 non-limited reach 	Democracy
	Radio	 with processing in source 	
			Homogeneous
		 expensive, restricted access (high 	Dictatorships
	TV	cost to enter the market)	
		 average control / regulatory costs 	
		 from "many" to "many" 	
	Satellite network		Participatory
		 non-limited reach 	Democracy
	Fiber optics net	 with processing in source and 	
		destination	
			Technocrat
	µcomputer	 moderate access cost, potentially 	Dictatorships
		universal (low cost to enter the	
		market)	
© 2023 Pedro Ferraz de	Internet		
e 2020 i culo i cilaz u		 high control / regulatory costs 	

Did you know? In 1985, the world's fastest supercomputer was a Cray-2. Today, an iPad2 has as much computing power as the Cray-2 system.

Citizen Computing Nets enabled superCPU

UNIVERSITY OF CALIFORNIA, BERKELEY

Public Affairs, (510) 642-3734

NEWS RELEASE, 8/16/99

More than a million people world-wide have signed up with UC Berkeley's SETI@home to search for intelligent life in the universe

By Robert Sanders, Public Affairs

BERKELEY--The popularity of UC Berkeley's <u>SETI@home</u> screen-saver - software that allows anyone with a desktop computer to aid in the search for intelligent life in space - has skyrocketed in the three months since its release, with the number of participants world-wide now topping a million.

Did you know? In 1985, the world's fastest supercomputer was a Cray-2. Today, an iPad2 has as much computing power as the Cray-2 system.

Citizen Computing Nets enabled superCPU

≡

The Alercury News

1~9

Millions of volunteers around the world have downloaded the SETI@home screen saver over the years, to help analyze radio telescope data and search for extraterrestrial intelligence, according to the group. SETI stands for Search for Extraterrestrial Intelligence.

It requires huge amounts of computing power, so the program broke the data that into chunks that an ordinary PC could handle. Since it was a screen saver, it runs when volunteers are not actively using their machines.

It created a huge, virtual supercomputer, the group said.

Did you know? In 1985, the world's fastest supercomputer was a Cray-2. Today, an iPad2 has as much computing power as the Cray-2 system.

Citizen Computing Nets enabled superCPU

BOINC computing power

Totals

24-hour average: 12.817 PetaFLOPS. Active: 40,068 volunteers, 131,700 computers. Daily change: +16 volunteers, -100 computers.

Top 100 volunteers · Statistics

Featured volunteer

Farscape is contributing 66,786 GFLOPS.

Technology Developments, can be the great Empowerment...

Equalizer

(From e-Planning PhD courses, 2009-2022, PFA)

© 2023 Pedro Ferraz de Abreu

ICT Qualitative Leap:

- **2.** The Nature of Information Technologies
- Thermodynamics and information theory (negative entropy)
- $(I = \log_2 1/P; S = K \log_e P K -> Ct. Boltzman)$
- Engine eficiency gains / energy transfers (heat transfer & "feedback"/regulated systems, Watt)
- Extension of brain vs. Extension of muscle.

3. ICT Role and transversal Societal impact

e-Planning Qualitative Leap Theory - why and how

(e.g. economy, business, sovereignty, regulation and administration, etc.)

• New Production Modes (ex. fabric & stock of "hardware" products vs. software cloning; added-value and appropriation of innovation, new (re)production of Capital)

• New Competition Modes (ex. Changing brand vs. software learning curve + standard compatibity; e-escolas, captive markets; cost of market entry; the cost of "free")

• New Business Models (ex. Microsoft vs. OpenSource; temporal contract lock; ISPs non-neutrality; "free" vs. advertising, profiling monetizing; programmed obsolescence)

• **New Organization Modes** (ex. Time-shared mainframe vs. PC; "chain of tenure" -> paper vs. email; network vs hierarchy; remote work; erosion of privacy, ICT ubiquity)

Sources of Power	How Information and Communication Technologies can impact
Information Knowledge Intelligence	 Speed (Real-time) Quantity / Quality Range / Breadth / Reach Access – tendencially open& wider - restriction implies added costs.
Force / Violence vectors Cinetic weapons	 Weapon contro Mass production - Quantity / Quality- dicotom veryy cheap vs very expensive Weapons of Mass Destruction - Amplified gravity of impact (immediate and long-term Precision – decreased cost / benefit Weapon Power and Potency (Power projection reach) Virtual weapons - Cyber weaponry Intelligent weapons, Guided vs fire & Forget Programability, Adptability, Portability Distributed Architecture , Variable Geometry parametrizatio
Financial / Capital + Economy Property Ownership	 Lower Production & Transaction Costs, increased Transaction Speed, More Competing Advantage of scale push towards Oligopoly / Monopoly Open Acess top new markets, Erosion of Sovereignity and Border control Emission of virtual coin and virtual territory coin, so far a reserve of Sovereign land-based Increase in Programability Advantage in industrial machinery and Production
People Choices Behaviour Free-will ("Hearts & Minds")	 Impact Decision – and Decision-making Process Participatory Pressure due to ease of participation Subliminar manipulation sophistication increase People inter-connection and networking amplified and changes in nature Allows appropriation of inovation by wider range of audiences Challenges to traditional identity and Cultural References - Virtual Bridges over Walls Literacy levels, new artisan empowerment

- Dangerous Paradox
- ICT Qualitative Leap Theory
- ICT unequal added-value Theory
- Cost of Free The Cost of Love ex.

Did you know? In 1985, the world's fastest supercomputer was a Cray-2. Today, an iPad2 has as much computing power as the Cray-2 system.

Industry quickly Re-orgaanized. It invented the "Cloud" ...and the "Free"

Did you know? In 1985, the supercomputer was a CrayiPad2 has as much computer the Cray-2 system.

Industry quickly Re-orgaanized. It invented the "Cloud" ...and the "Free"

... And back to supercomputers centralized

Some

- Facebook, Whatsup, Google, Twitter, Skype, Apple, etc.

recent examples

Pseudo-Networks:

Herding people to "Bubbles" or Lines of "Followers" ("Influencers") vs. True Network (nodes in graphs) empowerment

The "Curator" model

Content censorship ("regulating") power by private corporations vs. citizen power, through democratic institutions

constant messaging, alerts, etc "Smart" phones, etc
"Push" technology / hardware designed as a consumption vector
vs. free choice, privacy and real entrepreneur empowerment

Software as service (subscription), forceful ads, profile monetizing vs. true ownership (**consumer property rights erosion**)

On **Technology Developments**, we must ask just like did Roman Consul **Lucius Cassius**:

Cui Bono?

Omar Razzaz Property Rights Theoretical Framework

- Owner is who can exclude others from benefiting
- Property Rights are a "bundle" of rights, not a single one

Omar Razzaz Property Rights Theoretical Framework

Is at the core of the e-planning theories on

- The unequal appropriation of the technology innovation added-value

- The Cost of "Free"

The Cost of "Free"

An engine to transfer costs to users & non-users A trap to appropriate individual information

WHO IS MORE VULNERABLE TO THE TRAP OF "FREE" SERVICES ?

Some recent examples

t - Goverment, Private Corporations that rely on ICT* (most of them) ples

Erosion of Privacy and Appropriation of Personal Data

- Government PRISM known (and predictable) before Snowden disclosure
- Microsoft "phone home" opens "pandora box"; Visio TV, Siri is listening, etc.
- Private Sector Privacy invasion and manipulation even larger than State
- BigBrother real scale and depth makes Orwell look like a naif simpleton

ICT Ubiquity is not just enabling this, it is increasingly designed for this

* ICT-Information & Communication Technologies

• e-Planning theory explains the paradox Free Competition? Entrepreneurship?

e-Planning theory explains the paradox

Free Competition? Entrepreneurship?

- Dangerous Paradox
- ICT Qualitative Leap Theory
- ICT unequal Added-value Theory
- Cost of Free The Cost of Love ex.

• The "Cost of Love":

○ A https://docs.google.com/forms/d/e/1FAlpQLSfafuw82kCsDcg-O/ ☆ Q Search

A LOVE LETTER to Boston activists, educators & visionaries!

In the spirit of love and appreciation, we're drafting a communal love letter to Boston legends and movement makers Tunney Lee, Chuck Tuner & Mel King. The ask is small and the collective impact will be big:

- share one word dedicated to Tunney Lee, Chuck Turner and Mel King
- share one sentence about what you've learned from them or how their lives have affected yours
- and, if you like, share a picture that shows what they mean to you

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Google Forms

• The "Cost of Love":

This license allows Google to:

- host, reproduce, distribute, communicate, and use your content (...)

- publish, publicly perform, or publicly display your content, if you've made it visible to others

- modify your content, such as reformatting or translating it

- sublicense these rights to:

(...) our contractors who've signed agreements with us that are consistent with these terms, only for the limited purposes described in the Purpose section below

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Google Forms

• The "Cost of Love":

This license allows Google to:

(...) using automated systems and algorithms to analyze your content:(...) to recognize patterns in data,

to customize our services for you, such as providing recommendations and personalized search results, content, and ads (...) This analysis occurs as the content is sent, received, and when it is stored.

- using content you've shared publicly to promote the services (...)

- developing new technologies and services for Google consistent with these terms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Google Forms

On **Technology Developments**, we must ask just like did Roman Consul **Lucius Cassius**:

Cui Bono?

"Science without Activism, is Frivolous;

Activism without Science, is **Blind**"

55

Promises and Pitfalls of Technology and Data in Planning

Technology in Planning:

We need a theoretical framework

Pedro Ferraz de Abreu

pfa@mit.edu

56

www.e-planning.org/news e bookeplanubig20210219.html

e-Planning theory: some elements

ICT current Qualitative Leap: intrinsic pro-equal attributes vs.distorted development to favor unequal empowerment

Asymmetric bandwith & Non-net neutrality real rationale & implications on market faillures

New property rights framework: capturing dematerialization and digital flexibility to erode citizen property rights and empowerment

Appropriaton of technology innovation added-value

ICT Ubiquity and privacy erosion: dual cause-effect

Cost of "free": advertising as a cost-transfer engine also to non-users, so "consumer-pays" rule is gone

New land-use structural effect of ICT: new gravity model factors, new distance measure

Pedro Ferraz de Abreu

Urban Science & Digital Transition: e-Planning XX years later

THANK YOU ! THE END

http://web.mit.edu/uis/e-planning2023/

Joseph Ferreira Jr. ; Pedro Ferraz de Abreu

jf@mit.edu

pfa@mit.edu

(Designation) •Why e-Planning

From Social & Political Science:

In concrete:

•At the core of any Planning, is Decision-Making

•At the core of any Decision, is Power

•At the core of any form of Power are People Relationships

At the core of any Relationship is Communication

•At the core of any Communication is Information transfer

•Thus, ICTechnology plays a key role in all these steps

In modern ICT Qualitative Leap, electronic ICT is key

(among alternative paths) (to implement and enforce) (aquiescence or violence) (on the decision and outcome) (on foundation & evaluation) (amplifies reach & effect)

Planning => e-Planning

ICT - Information and Communication Technologies

•Why e-Planning (Designation)

From "Hard" Sciences & Engineering:

Planning's goal is to decrease a degree of chaos (entropy) in society, bringing more predictability in the desired direction (a more "organized system");

e- prefix depicts information entropic nature and key role.

Planning => Decision => from *n* solution space to 1 => introduce Human & Nature Constraints =>

⇒ guiding the future => restrict alternative future paths => + organized environment =>

⇒ more information on predicting future system behaviour => reduce uncertainty

<=> Decrease entropy

Corollary: (e)Planning *requires* Increase of Information *In all society,* not just planners, decision-makers

ICT - Information and Communication Technologies

Social Sciences vs. Engineering & 'Hard' Sciences

Value Systems - Cultural Choc

- Conservation vs. Development (Olmstead)
- Road Cross Blessing or Curse

1996 - Foundation of CITIDEP - Research Center on Information Technologies & Participatory Democracy

CITIDEP became an international network active on e-Planning agenda

• e-Planning approach...is back at MIT

MIT will reshape itself to shape the future, investing \$1 billion to address the rapid evolution of computing and AI – and its global effects. At the heart of this effort: a \$350 million gift to found the MIT Stephen A. Schwarzman College of Computing.

Photo: Christopher Harting

A new MIT "College", 2018

-**1 billion dollars**, 50 new faculty posts, 25 Computation & IA + 25 Social Sciences & others

MIT reshapes itself to shape the future

Gift of \$350 million establishes the MIT Stephen A. Schwarzman College of Computing, an unprecedented, \$1 billion commitment to world-changing breakthroughs and their ethical application.

MIT News Office

October 15, 2018

MIT today announced a new \$1 billion commitment to address the global opportunities and challenges presented by the prevalence of computing and the rise of artificial intelligence (AI). The initiative marks the single largest investment in computing and AI by an American academic institution, and will help position the United States to lead the world in preparing for the rapid evolution of computing and AI.

PRESS MENTIONS

President Reif speaks with Gerry Baker of WSJ at Large about the impact of AI on the future of education and work. "Part of the goal of the [MIT Schwarzman] college is, as we educate people to use these [AI] tools, to educate them in a way that empowers human beings, not replaces human beings," says Reif. - Change Computation & IA to include literacy on social science & ethics;

- Change all other to include literacy on Computation & IA)

ASSEMBLEIA DA REPÚBLICA

2019

www.e-planning.org

e-Planning transdisciplinary research agenda was presented to the Portuguese Parliament

Audiência de delegação e-Planning e CITIDEP Comissão da Cultura, Comunicação, Juventude e Desporto 26 de Fevereiro de 2019

www.e-planning.org/eplan ar cccjd_20190226.html

Pedro Ferraz de Abreu, UA, CITIDEP João Cabral, FA-UL José Beirão, FA-UL José Moreira, CITIDEP

© 2023 Pedro Ferraz de Abreu

DUSP MIT

THIS SUCHUSE IN T

e-Planning Agenda, was created at MIT

Professor Ferreira (Joseph Ferreira Jr.) was the founding director of the Planning Department's Computer Resource Lab and is now head of Urban Information Systems. He teaches analytical methods and computerbased modeling for planning and urban management including courses involving extensive use of geographic information systems (GIS) and database management. Both Prof. Ferreira's undergraduate degree (in electrical engineering) and his PhD degree (in operations research) are from MIT. His research uses GIS and interactive spatial analysis tools to model land use, transportation, and environmental interactions and to build sustainable information infrastructures for supporting urban and regional planning. He is a past-president of the Urban and Regional Information Systems Association (URISA) and has been principal investigator of numerous research projects studying job-housing balance, urban performance measures, and urban information infrastructure. His current research includes the Future Urban Mobility project within the Singapore/MIT Alliance for Research and Technology where he is the SMART Research Professor of Urban Information Systems."

e-Planning Agenda, was created at MIT first "e-Planning Seminar" course, 2003

e-Planning Seminar, MIT course, by Prof. P. Ferraz de Abreu, 2003

www.e-planning.org/news_e_bookeplanubiq20210219.html

"e-Planning & Ubiquity" Book

30 Authors 5 Comentators Portugal, UK, Belgium, USA, Brazil

C-Press Edition

Aline Almeida Maia, Anabela Costa Neves, António Pires Fernandes, Bárbara Barbosa Neves, Carlos Eduardo Rabachini Araújo, Claudia Pato Carvalho, Emile de Saeger, Fernando Miguel Seabra, Gary T. Marx, Glória Magalhães Ramalho, Heliomar Medeiros de Lima, Jorge Martins Rodrigues, José Fidalgo Gonçalves, José Manuel dos Santos Moreira, José Magalhães, José Rocha Andrade da Silva, Joseph Ferreira Jr., Luís António Reis Mata, Luisa Schmidt, Mariana Lupi Costa, Mario Augusto Carneiro, Melissa Jeanne Shinn, Michael Batty, Muriel de Oliveira Gavira, Pedro Ferraz de Abreu, Silvio Spinella, Tania Dias Fonseca, Tatiane Borges De Vietro, Vasco Lupi Costa, Zuleide Oliveira Feitosa, Carlos Francisco Lucas Dias Coelho, João Carlos Vassalo Santos Cabral, João Manuel Machado Ferrão, José Manuel Pinto Paixão, Manuel António Cotão de Assunção

magalhaes.ramalho@gmail.com

www.e-planning.org

www.citidep.net

www.labtec-cs.net

e-Planning Team - some faces

30 Authors **5** Comentators Portugal, UK, Belgium, USA, Brazil (book) ... Italy, France, Angola, Serbia, Cabo Verde, Poland, Spain...

www.e-planning.org

www.citidep.net

et www.labtec-cs.net

CITIDEP Team - some faces

Links:

http://web.mit.edu/uis/e-planning2023/

http://www.e-planning.org/mit2023/

e-Planning Lab is open to faculty teaching doctoral and master e-Planning courses

PhD Program (FC-UL / FA-UL / FCT-UNL / UA) Pos-Graduation (UL - F. Architecture)

LILishoa / CITIDEP			
Courses at the	Foundations of e-Planning		2010 22
Joint PhD & Post grad	e-Planning Live Laboratory	FA-UL	2019-23
& FOS-glau			
Program on	Research Methodologies on e-Planning		
e-Planning	e-Government	UA	2015-19
Coordination:	e-Health		
	Public Participation & Decision Support Systems	FC-UL	2013-14
	ICT Challenges to the Institutional & Regulatory Framework		
	Artificial Intelligence in Planning	ISCSP-UTI	2008-12
Pedro Ferraz de Abreu Prof. Catedrático Conv.	Smart Cities & Digital Citizenship		2000 12

ULisboa / CITIDEP

Pedro Ferraz de Abreu, PhD pfa@mit.edu

CITIDEP - Research Center on Information Technologies & Participatory Democracy President

MIT - Massachusetts Institute of Technology DUSP - Dept. of Urban Studies & Planning Research Affiliate , Visiting Scholar

Universidade de Lisboa e Universidade de Aveiro ISCSP-UTL (2007-12); FC-UL (2013-14); UA (2015-19); FA-UL (2019-21) Prof. Catedrático Convidado (Full Professor), Researcher at CIAUD-UL (2022-curr) CITIDEP

www.citidep.net

