

e-Planning, Urban Science & Digital Transition

Knowledge Representation & Artificial Intelligence in Planning

2012-2023

Pedro Ferraz de Abreu

MIT - DUSP 11.S955 (grad) & 11.S189 (undergrad) UL-UA-UNL Joint PhD Program on e-Planning

The Nature and Limits of A.I.

2012-2023

Pedro Ferraz de Abreu

MIT - DUSP 11.S955 (grad) & 11.S189 (undergrad) UL-UA-UNL Joint PhD Program on e-Planning

The Nature and Limits of A.I.

- What is Artificial Intelligence
- Introduction to Gödel and Tarski Theorems
- Towards an e-Planning Theory of Complexity
- How can AI help / hurt ... and be regulated

What is Artificial Intelligence

- What is Intelligence
- Turing Test, Eliza, Asimov Laws paradox
 1972 Stanford
 Mycin expert system and accountability paradigm
- Minsky's robot & common sense knowledge paradigm
- Mental processes and Body exponentiation 3 "schools" of AI: Stanford, Carneggie Mellon, MIT

What is Artificial Intelligence

3 "schools" of AI: Stanford , Carneggie Mellon, MIT

- Stanford: Predicate calculus, Logic, Deduction / Induction

- Carneggie Mellon: Expert Systems, Taxonomy, Lenat's common sense

- MIT: Psychology, Brain cognitive science, micro-worlds and Piaget

The Nature and Limits of A.I.

- What is Artificial Intelligence
- Introduction to Gödel and Tarski Theorems
- Towards an e-Planning Theory of Complexity
- How can AI help / hurt ... and be regulated

Gödel Theorem - Incompleteness

Theorem 1. Any recursively enumerable axiomatic theory, capable of expressing basic truths of arithmetic cannot be, at the same time, **complete** and **consistent**. In other words, in a consistent theory, there are always prepositions that cannot be demonstrated to be either true or false.

Theorem 2. A recursively enumerable theory, capable of expressing basic truths of arithmetic and statements of *proof theory*, can prove its own **consistency** if, and only if, it is **inconsistent**.

Tarski Theorem - Undefinability

Tarski's undefinability theorem, stated and proved by Alfred Tarski in 1936, is an important limitative result in mathematical logic, the foundations of mathematics, and in formal semantics. Informally, the theorem states that *arithmetical truth cannot be defined in arithmetic*.

The theorem applies more generally to any sufficiently strong formal system, showing that truth in the standard model of the system cannot be defined within the system.

Gödel Theorem - Incompleteness

Can human-made AI overtake human Intelligence?

If Gödel Theorem applies - No.

Tarski Theorem - Undefinability

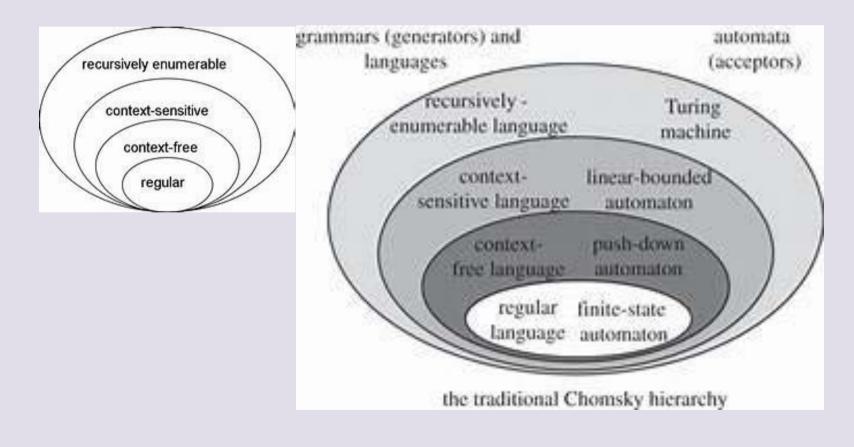
Can Humans design & create a Super-Human Species?

If Tarski Theorem applies - No.

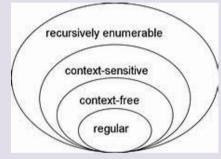
Gödel Theorem - Incompleteness Tarski Theorem - Undefinability

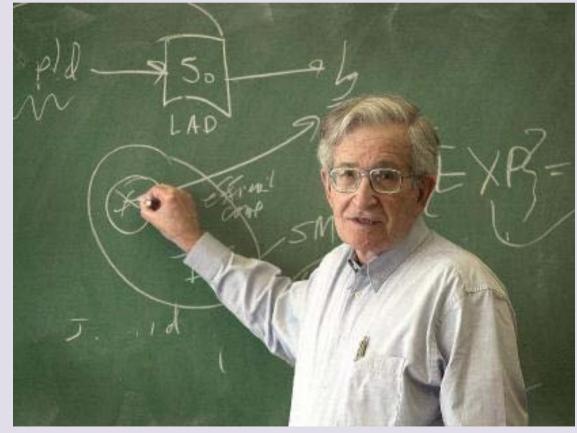
Then, How do we know if these theorems apply?

In other words, are we within the boundaries of validity?

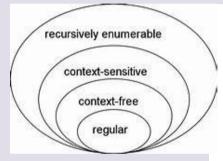

Al requires code; Code is a computer language;

Any Language is defined by an initial set of symbols and a set of "production rules" of its elements: **a Grammar.**

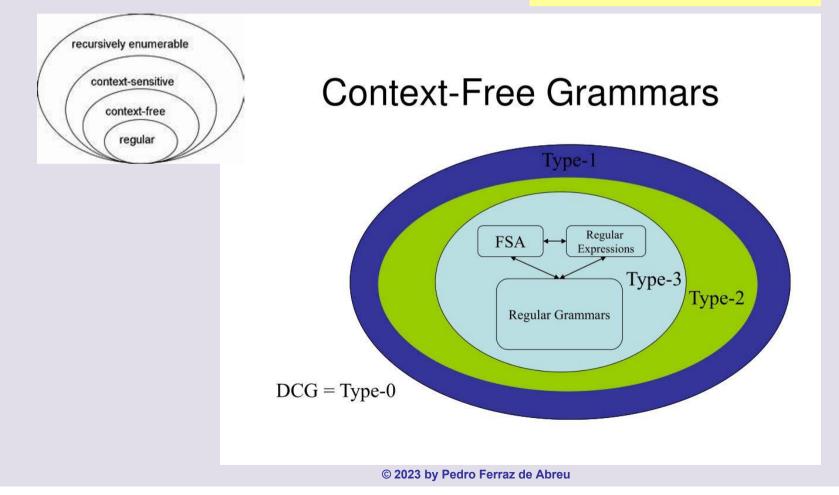

Regular Grammars



Regular Grammars



Regular Grammars


Chomsky Hierarchy

Grammars	Languages	Automaton	Restrictions (w1 → w2)
Туре-0	Phrase-structure	Turing machine	w1 = any string with at least 1 non-terminal w2 = any string
Type-1	Context-sensitive	Bounded Turing machine	w1 = any string with at least 1 non-terminal w2 = any string at least as long as w1
Type-2	Context-free	Non-deterministic pushdown automaton	w1 = one non-terminal w2 = any string
Туре-3	Regular	Finite state automaton	w1 = one non-terminal w2 = tA or t (t = terminal A = non-terminal)

Regular Grammars

The Nature and Limits of A.I.

- What is Artificial Intelligence
- Introduction to Gödel and Tarski Theorems
- Towards an e-Planning Theory of Complexity
- How can Al help / hurt ... and be regulated

"Planning Complexity" & Chaos

Planning => Decision => from solution (space) to 1
⇒ introduce Human & Nature Constraints
⇒ More ordered environment => guiding the future
⇒ Reduce uncertainty => restrict alternative spaces

<=> Decrease entropy

Ergo... Requires Increase of Information In society, not just Planners, decision-makers

"Computational Complexity" =

The cost of a program's execution

(running time, memory, ...)

rather than

The cost of the program

(# of statements, development time)

[In this sense, less-complex programs require more development time.]

"Planning Complexity"

Cost of a Plan Execution

Implementation, management, monitoring, enforcement, evaluation, readjustaments

But also +

Cost of *Decision* on a Plan

User needs assessment, problem and solution space, prioritizing, impacts evaluation, risk assessement cost benefit analysis, opportunity costs, optimization, sustainable capacity assessment...

Rather than the cost of making a Plan...

The Nature and Limits of A.I.

- What is Artificial Intelligence
- Introduction to Gödel and Tarski Theorems
- Towards an e-Planning Theory of Complexity
- How can AI help / hurt ... and be regulated

• How can Al help

-Qualified & Quantified Search (problem & solution space)

-Knowledge Libraries (for Intelligent Multimedia Geo-referenced Systems)

-State Machines (graph theory)

-Intelligent Models and Simulations (with inference engines)

-Expert Systems and Predicate Calculus, Truth Maintenance Systems

-Managing Distributed Systems and Participory Science-based Data

-Data Mining - "Big Data Problem"

-...

İğİğİAİ

Artificial Intelligence in Planning

How can AI hurt

-...

-Displacing jobs - if development is directed that way vs complementing

-Losing transparency (knowledge & assumptions are encapsulated)

-Increasing the literacy gap (complexity is more demanding)

-Harder to debug (genetic "self-altering" algorythms and programming)

-Lost of Human heuristics (common-sense paradigm problem)

-False security & reliability ("shit in shit out" is time sensitive and amplified by inference jumps)

-Amplification, Replication and Exponentiation of mistakes and bad decisions

• How can we regulate A.I.

- PROBLEM 1.

The main challenge of AI to Regulation and Compliance Enforcement, is its design to *learn* and *change its own code* - in other words, its OPACITY to non-experts, without AI Knowledge and AI Tools

- PROBLEM 2.

The power and potential of last generation AI Tools, is not based solely on its own sophistication levels; it is compounded, in a major and critical way, by the MASSIVE SCALE of DATA it has at its disposal.

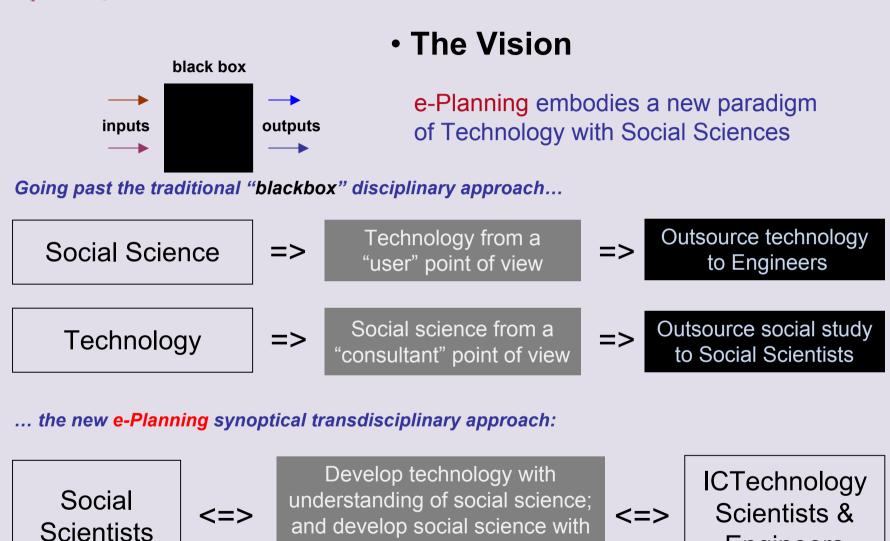
-SOLUTION SPACE:

Any AI Regulation requires Societal real control of both Technology Development AND Data. In other words: PROPERTY RIGHTS - on Technology and on Data - is the KEY issue.

ICT Qualitative Leap:

The Frog Qualitative Jump Paradigm

Without e-Planning


With e-Planning

understanding of technology

© 2023 by Pedro Ferraz de Abreu

Engineers

|||iT

e-Planning scientific domains	Summary of key objectives		
e-Planning knowledge infrastructure (e- infrastructure)	Mapping of the knowledge society. Mapping of the planning knowledge. Develop the new ICT infrastructures and strategic frameworks		
e-Planning for the government of the future (e-government)	More efficient and responsive government, closer to citizens; better enabling role; better services; better adjustment to the challenge and new potential of digital implementation of administrative procedures, beyond raw automation; two-way G2G, G2C, G2B.		
e-Planning for a new governance (e-governance)	Foster institutional culture towards the common good, more equity and less exclusion; build strategic institutional capacity within globalized world; better institutions; better regulation framework and handling of market failures, aware of the new ICT context; better balance of security & efficiency vs. freedoms, liberty and accountability.		
e-Planning for the city of the future (e-city) and territory	Build the cities of the future, as sustainable environments with new functionality that breed innovation; foster cities with better quality of life, more attractive and competitive; better spatial planning, promoting social and territorial cohesion, incorporating new structural impacts of ICTs.		
e-Planning for a new citizenship (e-citizenship)	Enable a better informed and educated citizen, more participative, more critical, more responsible; better balance of technology challenges with ethics & individual freedoms & privacy.		

e-Planning Consortium (informal – since 2006)

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				57 II
	Par	ticipatc	ry Science	
	CITIDEP	PROGRAMS	Citizenship & ICT	
Contact nodes:	since 19	96	pfa@mit.edu	
Charlote De Kock	Belgium	11-	T	
Timothy Sieber	USA	A	+	
Luis Rionda	Mexico		ITIDEP	
Muriel Gavira	Brasil			
Clelia Guinazu	Argentina	¥ ¥ %. W,	₩. w, ₩. w, ₩. w, ₩	5
Valérie Aillaud	France			
Laura Colini	Italy			
Vesna Dolnicar	Slovenia		X	
Pedro Ferraz de Abreu	Portugal	**/**	w.citidep.net	
		** **	w.citucp.nct	7

- ICT & participatory science
- ICT & participatory democracy
- ICT, inclusion & cooperation
- ICT, policy & strategy

Laboratórios de Tecnologia para as Ciências Sociais

2007-2012 **ISCSP-UTL**

CITIDEP + e-Planning Lab @ CAPP/TSG

www.labtec-cs.net

• Smart Cities, Cohesion & Participatory Systems

• Internet Governance, Open Data, Security & Privacy

Laboratórios de Tecnologia e Sociedade

2013-2014

FC-UL

CITIDEP + e-Planning Lab @ DEGGE

www.labtec-cs.net

• Smart Cities, Cohesion & Participatory Systems

• Internet Governance, Open Data, Security & Privacy

Laboratórios de Tecnologia e Sociedade

2015-2018

UA

CITIDEP + e-Planning Lab @ GOVCOP

www.labtec-cs.net

(ficou em fase de proposta na UA)

• Smart Cities, Cohesion & Participatory Systems

• Internet Governance, Open Data, Security & Privacy

Laboratórios de Tecnologia e Sociedade

2019-2023

FA-UL

CITIDEP + e-Planning Lab @ CIAUD

www.labtec-cs.net

(em fase de proposta na FA-UL)

• Smart Cities, Cohesion & Participatory Systems

• Internet Governance, Open Data, Security & Privacy

Laboratories of Technology and Society

2023-???

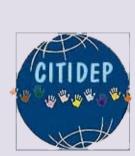
MIT-DUSP

CITIDEP + Urban Science? <u>http://web.mit.edu/uis/e-planning2023/</u>

MIT Proposal ?

© 2023 by Pedro Ferraz de Abreu

nisp mr


Pedro Ferraz de Abreu, PhD pfa@mit.edu

CITIDEP - Research Center and Participatory Democracy President

MIT - Massachusetts Institute of Technology DUSP - Dept. of Urban Studies & Planning Research Associate, Visiting Scholar

https://dusp.mit.edu/people/pedro-ferraz-de-abreu

Universidade de Lisboa, Universidade de Aveiro ISCSP-UTL (2007-12); FC-UL (2013-14); UA (2015-19); FA-UL (2019-23) Prof. Catedrático Convidado, Invited Full Professor; (ret) CIAUD Researcher

