Stochastic Programming I
Linear Programming

Berk Ustun
11/7/2011
ESD 862 | Fall 2011
ESD.862 To Date

\[V_t(s_t) = \max_{a_t} \{ r_t(s_t, a_t) + E_{w_t}[V_{t+1}(s_{t+1})] \} \]

\[\pi_t(s_t) = \arg\max_{a_t} \{ r_t(s_t, a_t) + E_{w_t}[V_{t+1}(s_{t+1})] \} \]
Approximate with ADP or Infinite Horizon.

\[
V_t(s_t) = \max_{a_t} \{ r_t(s_t, a_t) + E_{w_t}[V_{t+1}(s_{t+1})] \}
\]

\[
\pi_t(s_t) = \arg\max_{a_t} \{ r_t(s_t, a_t) + E_{w_t}[V_{t+1}(s_{t+1})] \}
\]

Estimate using Monte Carlo Methods.
ESD.862 To Date

Optimization Problems

\[V_t(s_t) = \max_{a_t} \{ r_t(s_t, a_t) + E_{w_t} [V_{t+1}(s_{t+1})] \} \]

\[\pi_t(s_t) = \arg\max_{a_t} \{ r_t(s_t, a_t) + E_{w_t} [V_{t+1}(s_{t+1})] \} \]
ESD.862 for the Next 3 Lectures

Decision Making Problem at $t-1$ → Optimal Decision at $t-1$ → Decision Making Problem at t → Optimal Decision at t → Decision Making Problem at $t+1$
ESD.862 for the Next 3 Lectures

Model these as **Constrained Optimization Problems**

Sequentiality: dependence on previous stage decision
Uncertainty: parameters are uncertain with a probability distribution
Decision Making Problem at $t-1$

Optimal Decision at $t-1$

Decision Making Problem at t

Optimal Decision at t

Decision Making Problem at $t+1$

Decision at stage t: x_t

Uncertainty at stage t: ω_t

Cost at stage t: z_t

Decision making problem at stage t:

$$\min_{x_t} z_t = f_t(x_t, \omega_t, x_{t-1})$$
Upcoming Lectures

Linear Programming
Formulating and solving static decision making problems

Two Stage Stochastic Programming
Formulating and solving sequential decision making problems under uncertainty

Multistage Stochastic Programming
Formulating and solving multistage decision making problems under uncertainty using sampling
Mathematical Programming

Formulating and Solving Constrained Optimization Problems

$$\min_{x} \quad f(x)$$
$$\text{st.} \quad g(x) \geq 0$$
$$x \in X$$
Mathematical Programming

Formulating and Solving Constrained Optimization Problems

Find a decision x

$$
\min_{x} f(x) \\
\text{st.} \
g(x) \geq 0 \\
x \in X
$$
Mathematical Programming

Formulating and Solving Constrained Optimization Problems

Find a decision x

$$\min_{x} f(x)$$

$$\text{st. } g(x) \geq 0$$

$x \in X$

Minimizes a cost $f(x)$
Mathematical Programming

Formulating and Solving Constrained Optimization Problems

\[
\begin{align*}
\text{min} & \quad f(x) \\
\text{st.} & \quad g(x) \geq 0 \\
& \quad x \in X
\end{align*}
\]

Find a decision \(x \)

Minimizes a cost \(f(x) \)

Such that constraints \(g(x) \geq 0 \) are valid
Linear Programming

$f(x)$ and $g(x)$ are linear functions of x

X is convex

\[
\begin{align*}
\min_{x} & \quad f(x) \\
\text{st.} & \quad g(x) \geq 0 \\
& \quad x \in X
\end{align*}
\]
Linear Programming Framework

Standard Form for \(n \) variables and \(m \) constraints

\[
\begin{align*}
\min_{x} & \quad c^T x \\
\text{st.} & \quad Ax \geq b \\
& \quad x \geq 0
\end{align*}
\]
Linear Programming Framework

Standard Form for n variables and m constraints

$$\min_{x} \quad c^T x$$
$$st. \quad Ax \geq b$$
$$x \geq 0$$

$(n \times 1)$
Linear Programming Framework

Standard Form for n variables and m constraints

\[
\begin{align*}
\min_{x} & \quad c^T x \\
\text{st.} & \quad Ax \geq b \\
& \quad x \geq 0
\end{align*}
\]
Linear Programming Framework

Standard Form for \(n \) variables and \(m \) constraints

\[
\begin{align*}
\min_{x} & \quad c^T x \\
\text{st.} & \quad Ax \geq b \\
& \quad x \geq 0
\end{align*}
\]
LP Example: Advertising Problem

- A company has started an advertising campaign and has to decide how many commercials spots to purchase during comedy shows and football games.

- Each comedy show is watched by 7M women and 2M men.
- Each football game is watched by 2M women and 12M men.

- Spots during comedy shows cost $50’000
- Spots during football games cost $100’000

- Ads need to be seen by at least 28M women and 24M men.
Advertising Problem LP

\[\min_{x_1, x_2} \quad z = 50x_1 + 100x_2 \]

s.t. \[7x_1 + 2x_2 \geq 28 \]
\[2x_1 + 12x_2 \geq 24 \]
\[x_1, \quad x_2 \geq 0 \]

\(x_1 \): # spots purchased during comedy shows
\(x_2 \): # spots purchased during football games
Advertising Problem LP

\[\min_{x} \; z = \; c^{T} \; x \]

\[A \; x \; \geq \; b \]

\[x \; \geq \; 0 \]
Advertising Problem LP

\[
\begin{align*}
\min_{x} z &= \quad c^T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\
A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} &\geq b \\
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} &\geq 0
\end{align*}
\]
Advertising Problem LP

$$\min_{x} z = \begin{bmatrix} c^T \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 \\ 2 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 28 \\ 24 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \geq 0$$
Advertising Problem LP

\[
\min_{x_1,x_2} z = \begin{bmatrix} 50 & 100 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\
\begin{bmatrix} 7 & 2 \\ 2 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 28 \\ 24 \end{bmatrix} \\
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]
Advertising Problem Solution

• $x^* = \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} = \begin{bmatrix} 3.6 \\ 1.4 \end{bmatrix}$

• $z^* = c^T x^*$

 $= [50 \ 100] \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix}$

 $= 320$

 $= 320'000$
Transportation Problem

• $i = 1 \ldots M$ Factories
• $j = 1 \ldots N$ Stores
• s_i units produced at each factory i
• d_j units demanded at each store j
• $c_{ij} =$ cost to ship from factory i to store j
• Minimize shipping costs required to meet the demand at each store
Transportation Problem LP

\[
\min_{x_{ij}} \quad z = \sum_i \sum_j c_{ij} x_{ij}
\]

subject to

\[
\sum_i x_{ij} \geq d_j
\]

\[
\sum_j x_{ij} \leq s_i
\]

\[
x_{ij} \geq 0
\]
Transportation Problem LP

4M

1

$2

2

$1

$2

3

$3

10M

25M

25M

Transportation Problem LP

4M

1

$2

2

$1

$2

3

$3

10M

25M

Transportation Problem LP

4M

1

$2

2

$1

$2

3

$3

10M

25M
Transportation Problem LP

\[
\begin{align*}
\min_{x_{ij}} \quad & z = 2x_{11} + x_{21} + 2x_{22} + 3x_{32} \\
\text{st.} \quad & x_{11} + x_{21} \quad \geq 10 \\
& x_{11} \quad \leq 4 \\
& x_{21} + x_{22} \quad \leq 20 \\
& x_{32} \quad \leq 50 \\
& x_{ij} \quad \geq 0
\end{align*}
\]
Transportation Problem LP

\[
\min_{x_{ij}} \quad z = \quad 2x_{11} + x_{21} + 2x_{22} + 3x_{32} \\
\text{st.} \quad x_{11} + x_{21} \quad \geq \quad 10 \quad \\
x_{22} + x_{32} \quad \geq \quad 25 \quad \\
x_{11} \quad \leq \quad 4 \quad \\
x_{21} + x_{22} \quad \leq \quad 20 \quad \\
x_{32} \quad \leq \quad 50 \quad \\
x_{ij} \quad \geq \quad 0
\]
Transportation Problem LP

\[
\begin{align*}
\min_{x_{ij}} & \quad z = 2x_{11} + x_{21} + 2x_{22} + 3x_{32} \\
\text{st.} & \quad x_{11} + x_{21} \geq 10 \\
& \quad x_{22} + x_{32} \geq 25 \\
& \quad -x_{11} \geq -4 \\
& \quad -x_{21} - x_{22} \geq -20 \\
& \quad -x_{32} \geq -50 \\
& \quad x_{ij} \geq 0
\end{align*}
\]
Transportation Problem LP

\[
\min_{x_{ij}} \quad z = \begin{bmatrix} 2 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{21} \\ x_{22} \\ x_{32} \end{bmatrix} \leq \begin{bmatrix} 10 \\ 25 \\ -4 \\ -20 \\ -50 \end{bmatrix}
\]

\[
x_{ij} \geq 0
\]
Transportation Problem LP

\[x_{11}^* = 4M \]
\[x_{21}^* = 6M \]
\[x_{22}^* = 14M \]
\[x_{32}^* = 4M \]
\[z^* = 75M \]
Q: When will an LP have a solution?

Q: Why can we solve LPs so quickly
Advertising Problem LP

\[x_1: \text{# spots purchased during comedy shows} \]
\[x_2: \text{# spots purchased during football games} \]

\[
\min_{x_1,x_2} \quad z = 50x_1 + 100x_2 \\
\text{st.} \quad 7x_1 + 2x_2 \geq 28 \\
2x_1 + 12x_2 \geq 24 \\
x_1, x_2 \geq 0
\]
Geometry of Advertising Problem

\[
\min_{x_1, x_2} \quad z = \quad 50x_1 + 100x_2 \\
\text{st.} \quad 7x_1 + 2x_2 \quad \geq \quad 28 \\
2x_1 + 12x_2 \quad \geq \quad 24 \\
x_1, \quad x_2 \geq 0
\]
Geometry of Advertising Problem

\[
\begin{align*}
\min_{x_1, x_2} & \quad z = 50x_1 + 100x_2 \\
st. & \quad 7x_1 + 2x_2 \geq 28 \\
& \quad 2x_1 + 12x_2 \geq 24 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Geometry of Advertising Problem

\[
\begin{align*}
\min_{x_1, x_2} & \quad z = 50x_1 + 100x_2 \\
\text{st.} & \quad 7x_1 + 2x_2 \geq 28 \\
& \quad 2x_1 + 12x_2 \geq 24 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Geometry of Advertising Problem

\[\begin{align*}
\min_{x_1, x_2} \quad & z = 50x_1 + 100x_2 \\
\text{st.} \quad & 7x_1 + 2x_2 \geq 28 \\
& 2x_1 + 12x_2 \geq 24 \\
& x_1, \ x_2 \geq 0
\end{align*} \]
Geometry of Advertising Problem

\[
\begin{align*}
\min_{x_1, x_2} & \quad z = 50x_1 + 100x_2 \\
st. & \quad 7x_1 + 2x_2 \geq 28 \\
& \quad 2x_1 + 12x_2 \geq 24 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Geometry of Advertising Problem

\[\min_{x_1, x_2} \quad z = 50x_1 + 100x_2 \]

\[\text{st.} \quad 7x_1 + 2x_2 \geq 28 \]

\[2x_1 + 12x_2 \geq 24 \]

\[x_1, x_2 \geq 0 \]
Geometry of Advertising Problem

\[
\begin{align*}
\min_{x_1, x_2} & \quad z = 50x_1 + 100x_2 \\
\text{st.} & \quad 7x_1 + 2x_2 \geq 28 \\
& \quad 2x_1 + 12x_2 \geq 24 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Geometry of Advertising Problem

\[
\begin{align*}
\min_{x_1, x_2} & \quad z = 50x_1 + 100x_2 \\
\text{st.} & \quad 7x_1 + 2x_2 \geq 28 \\
& \quad 2x_1 + 12x_2 \geq 24 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Geometry of Advertising Problem

\[
\min_{x_1, x_2} \quad z = 50x_1 + 100x_2
\]
\[
\text{st.} \quad 7x_1 + 2x_2 \geq 28
\]
\[
2x_1 + 12x_2 \geq 24
\]
\[
x_1, \ x_2 \geq 0
\]
Geometry of Advertising Problem

\[
\begin{align*}
\min_{x_1, x_2} & \quad z = 50x_1 + 100x_2 \\
st. & \quad 7x_1 + 2x_2 \geq 28 \\
& \quad 2x_1 + 12x_2 \geq 24 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Geometry of Advertising Problem

\[
\begin{align*}
\min_{x_1, x_2} \quad & z = 50x_1 + 100x_2 \\
st. \quad & 7x_1 + 2x_2 \geq 28 \\
& 2x_1 + 12x_2 \geq 24 \\
& x_1, x_2 \geq 0
\end{align*}
\]
Geometry of Advertising Problem

\[
\begin{align*}
\min_{x_1, x_2} \quad & z = 50x_1 + 100x_2 \\
st. \quad & 7x_1 + 2x_2 \geq 28 \\
& 2x_1 + 12x_2 \geq 24 \\
& x_1, x_2 \geq 0
\end{align*}
\]
LP Geometry 101

\[
\begin{align*}
\min_{x} & \quad c^T x \\
\text{st.} & \quad Ax \geq b \\
& \quad x \geq 0
\end{align*}
\]

- Each constraint in \(Ax \geq b \) marks a half-space
- All constraints result in a polyhedron \(P = \{ x \mid Ax \geq b, x \geq 0 \} \)
- Every point within \(P \) is feasible
- \(x^* \) is at one of the vertices of \(P \)
Will an LP always have a Solution?

- LP will have a solution if P is closed and nonempty.
- LP will be infeasible if P is empty.
- LP will be unbounded if P is not closed.
Infeasibility

When $\not\exists \ x \ st. Ax \geq b, \ x \geq 0$

\[
\min_{x_1, x_2} \quad z = \quad 50x_1 + 100x_2 \\
\text{st.} \quad 7x_1 + 2x_2 \quad \geq \quad 28 \\
2x_1 + 12x_2 \quad \geq \quad 24 \\
x_1, \ x_2 \geq 0
\]
Infeasibility

When $\nexists \; x \; st. \; Ax \geq b, \; x \geq 0$

\[\begin{align*}
\min_{x_1, x_2} \quad & z = 50x_1 + 100x_2 \\
\text{st.} \quad & 7x_1 + 2x_2 \geq 28 \\
\quad & 2x_1 + 12x_2 \geq 24 \\
\quad & x_1 + x_2 \leq 2 \\
\quad & x_1, \; x_2 \geq 0
\end{align*} \]
Infeasibility

When \(\not\exists \ x \text{ st. } Ax \geq b, \ x \geq 0 \)

\[
\begin{align*}
\min_{x_1, x_2} & \quad z = 50x_1 + 100x_2 \\
\text{st.} & \quad 7x_1 + 2x_2 \geq 28 \\
& \quad 2x_1 + 12x_2 \geq 24 \\
& \quad x_1 + x_2 \leq 2 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Infeasibility

When \(\not\exists \; x \; st. \; Ax \geq b, \; x \geq 0 \)

\[
\min_{x_1, x_2} \quad z = \quad 50x_1 + 100x_2 \\
\text{st.} \quad 7x_1 + 2x_2 \quad \geq \quad 28 \\
2x_1 + 12x_2 \quad \geq \quad 24 \\
x_1 + x_2 \quad \leq \quad 2 \\
x_1, \; x_2 \geq 0
\]
Unboundedness

When $\exists x \text{ st. } Ax \geq b, x \geq 0$ and $c^T x = -\infty$

$$\begin{align*}
\min_{x_1, x_2} \quad & z = 50x_1 + 100x_2 \\
\text{st.} \quad & 7x_1 + 2x_2 \geq 28 \\
\quad & 2x_1 + 12x_2 \geq 24 \\
\quad & x_1, x_2 \geq 0
\end{align*}$$
Unboundedness

When $\exists \ x \geq 0 \ s.t. \ Ax \geq b$ and $c^T x = -\infty$

\[
\begin{align*}
\min_{x_1,x_2} \quad & z = 50x_1 + 100x_2 \\
\text{st.} \quad & 7x_1 + 2x_2 \geq 28 \\
\quad & 2x_1 + 12x_2 \geq 24 \\
\quad & x_1, \ x_2 \geq 0
\end{align*}
\]
Unboundedness

When $\exists \ x \geq 0 \ st. \ Ax \geq b$ and $c^T x = -\infty$

$$\min_{x_1, x_2} \ z = -50x_1 - 100x_2$$

$$st. \quad 7x_1 + 2x_2 \geq 28$$
$$\quad 2x_1 + 12x_2 \geq 24$$
$$\quad x_1, \ x_2 \geq 0$$
Sensitivity Analysis

Existing LP

\[
\begin{align*}
\min_{x_1, x_2} & \quad z = 50x_1 + 100x_2 \\
\text{st.} & \quad 7x_1 + 2x_2 \geq 28 \\
& \quad 2x_1 + 12x_2 \geq 24 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

\[z^* = 320\]

New LP

\[
\begin{align*}
\min_{x_1, x_2} & \quad z = 50x_1 + 100x_2 \\
\text{st.} & \quad 7x_1 + 2x_2 \geq 30 \\
& \quad 2x_1 + 12x_2 \geq 24 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

\[z^* = ?\]

Q: Can we get an estimate of \(z^*\) without having to solve the LP once again?
Sensitivity Analysis

Existing LP

\[
\begin{align*}
\min_{x_1, x_2} & \quad z = 50x_1 + 100x_2 \\
\text{st.} & \quad 7x_1 + 2x_2 \geq 28 \\
& \quad 2x_1 + 12x_2 \geq 24 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

\[z^* = 320\]

New LP

\[
\begin{align*}
\min_{x_1, x_2} & \quad z = 50x_1 + 100x_2 \\
\text{st.} & \quad 7x_1 + 2x_2 \geq 30 \\
& \quad 2x_1 + 12x_2 \geq 24 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

\[z^* = ?\]

Q: Can we get an estimate of \(z^*\) without having to solve the LP once again?

A: Yes but we will need to know how \(z^*\) changes with respect to \(b\).
Dual Variables

- Every LP has dual variables π that describe how z^* changes wrt b

- For an LP has m constraints, then π is an $m \times 1$ vector where

$$\pi_i = \frac{\delta z^*}{\delta b_i}$$

$$\pi = \begin{bmatrix} \pi_1 \\ \vdots \\ \pi_m \end{bmatrix} = \begin{bmatrix} \frac{\delta z^*}{\delta b_1} \\ \vdots \\ \frac{\delta z^*}{\delta b_m} \end{bmatrix}$$
Sensitivity Analysis

Existing LP

\[
\begin{align*}
\min_{x_1, x_2} & \quad z = 50x_1 + 100x_2 \\
st. & \quad 7x_1 + 2x_2 \geq 28 \\
& \quad 2x_1 + 12x_2 \geq 24 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

\[
\pi = \begin{bmatrix} \pi_1 \\ \pi_2 \end{bmatrix} = \begin{bmatrix} \frac{\delta z^*}{\delta b_1} \\ \frac{\delta z^*}{\delta b_2} \end{bmatrix} = \begin{bmatrix} 5 \\ 7.5 \end{bmatrix}
\]

\[
z^* = 320
\]

New LP

\[
\begin{align*}
\min_{x_1, x_2} & \quad z = 50x_1 + 100x_2 \\
st. & \quad 7x_1 + 2x_2 \geq 30 \\
& \quad 2x_1 + 12x_2 \geq 24 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

\[
z^* = z + \frac{\delta z^*}{\delta b_1} (\delta b_1)
\]

\[
= z + \pi_1 (\delta b_1)
\]

\[
= 320 + 5(2) = 330
\]
More about Dual Variables

π only gives **local** information with respect to **one** component
- Estimate of z^* only accurate for **small** changes in **one** b_j

More about dual variables:

- **Strong Duality**: if an LP has a Solution: $\pi b = cx^*$

- Every LP can be formulated using **only** its Dual Variables
 - Explains many infeasibility and unboundedness results
 - Motivates numerous algorithms to solve LP
Wrap Up

Linear Programming is only one of the ways to formulate static decision making problems

Other ways to formulate and solve static problems

- Integer Programming
 - linear cost + linear constraints + integer variables

- Quadratic Programming
 - quadratic cost + linear constraints + real variables

- Nonlinear Programming
 - nonlinear cost + nonlinear constraints + real variables