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Abstract

The US National Aviation System (NAS) is a complex system with multiple, interact-
ing agents including airlines, passengers, and system operators, each with somewhat
different objectives and incentives. These interactions determine the state of the sys-
tem. NAS congestion and delays result in additional operating costs and reduced
profitability for the airlines, a decrease in the level-of-service to passengers, and a
decrease in the efficiency of NAS resource utilization. We evaluate the congestion
impacts on the NAS stakeholders while explicitly accounting for their interactions
and propose congestion mitigation mechanisms that are beneficial to these different
stakeholders.

We measure the extent to which the NAS capacity is being inefficiently utilized.
We show that at the current level of passenger demand, delays are avoidable to a large
extent if we control the negative effects of competitive airline scheduling practices,
thus providing critical insights into the nature and causes of delays.

We develop a detailed framework using data fusion and discrete choice modeling
for generating disaggregate passenger travel data. We characterize the impacts of
airline network structures, schedules and operational decisions on passenger delays.

We propose a parametric game-theoretic model consistent with the most popular
characterization of frequency competition. We prove that the level of congestion in a
system of competing airlines is an increasing function of 1) the number of competing
airlines, 2) a measure of the gross profit margin, and 3) the frequency sensitivity of
passenger demand.

We propose a game-theoretic model of frequency competition under slot con-
straints and provide empirical and algorithmic justifications of the suitability of the
Nash equilibrium solution concept for modeling these games. We devise and assess
new administrative strategies for congestion mitigation. We show that a small reduc-
tion in the total number of allocated slots translates into a substantial reduction in
delays, and also a considerable improvement in airlines’ profits.
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We develop an equilibrium model of frequency competition in the presence of delay
costs and congestion prices. We find that the success of congestion pricing critically
depends on the characteristics of frequency competition in individual markets. We
also identify critical differences between flat pricing and marginal cost pricing.

Key words: Airline Scheduling, Airline Frequency Competition, National Aviation
System, Stakeholders, Multi-agent Models, Nash Equilibrium, Game Theory, Price
of Anarchy, Passenger Delays, Cancellations, Missed Connections, Cost of Passenger
Disruptions, Administrative Slot Controls, Slot Reduction, Congestion Pricing.

Thesis Supervisor: Cynthia Barnhart
Title: Professor of Civil and Environmental Engineering and Engineering Systems
Associate Dean of Engineering
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Executive Summary

The US National Aviation System (NAS) is a large and complex system consisting of

multiple, interacting agents including airlines, passengers, and the system operators,

each with a somewhat different set of objectives and incentives. Interactions between

the actions and decisions of these autonomous agents determine the state of the

system. Over the past several years, congestion and delays in the NAS are imposing

a tremendous cost on the US economy. Delays have resulted in additional operating

costs and a decrease in profitability for the airlines, a decrease in quality of service

to the passengers through passenger delays and disruptions, and a decrease in the

efficiency of resource utilization in the NAS.

In this thesis, we first evaluate the congestion impacts on the various stakehold-

ers in the NAS while explicitly accounting for the interactions between the different

decision-makers. Next, we propose congestion mitigation mechanisms that are bene-

ficial from the perspectives of these different stakeholders.

� Demand management strategies are expected to improve the system efficiency by

mitigating the congestion introduced by competitive airline scheduling practices.

We measure the extent to which the capacity of the US domestic air transportation

network is being inefficiently utilized. We formulate the problem as a large-scale,

network-based, mixed-integer linear programming problem and solve it using a

sequence of relaxations and greedy heuristics. The solution serves as a lower bound

on the minimum level of delays that can be achieved given the existing levels of

passenger demand and airport capacity. We show that at the current level of

passenger demand, delays are avoidable to a large extent if we control the negative

effects of competitive airline scheduling practices. These results provide critical

insights into the nature and causes of aviation delays, allowing better planning and

utilization of the aviation infrastructure.

� A lack of publicly available detailed data on passenger travel has thus far prevented

extensive analyses of passenger delays. We develop a detailed framework using data

fusion and discrete choice modeling for generating disaggregate passenger travel
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data. We use the resulting data to gain critical insights into passenger travel, de-

lays and disruption patterns in the US. Scheduling and operational policies and

decisions by the airlines significantly alter the passenger delays and disruptions,

which in turn affect the overall level-of-service experienced by the passengers. We

present a sequence of data mining and statistical modeling analyses that character-

ize the impacts of airline network structures, schedules and operational decisions

on passenger delays. Apart from the analyses and findings presented in this thesis,

we foresee a large variety of further applications of this passenger delays framework

for passenger-centric approaches in airline scheduling, air traffic flow management,

and aviation policy-making.

� An airline is expected to attract more passengers by increasing its frequency share

in a market. Frequency competition affects airlines’ capacity allocation decisions,

which in turn have a strong impact on airline profitability and on airport con-

gestion. We propose a parametric game-theoretic model consistent with the most

popular characterization of frequency competition. We prove the suitability of

Nash equilibrium for modeling airline frequency competition and mathematically

show the extent to which competition worsens the congestion problem. Our model

is general enough to accommodate somewhat differing beliefs about the market

share-frequency share relationship. We propose two alternative simple frequency

adjustment rules and prove that under mild conditions, either of them converges

to an equilibrium state, thus confirming the stability of the equilibrium state. We

prove that the level of congestion in a system of competing airlines is an increasing

function of the number of competing airlines, the ratio of average fare to operating

cost per seat and the frequency sensitivity of passenger demand.

� Administrative slot controls have been in place at some of the most congested US

airports for decades, even though large delays have often coexisted with such mea-

sures. We propose a game-theoretic model of airline frequency competition under

slot constraints and devise and assess new administrative strategies for congestion

mitigation. We develop a fast, dynamic programming-based algorithm to obtain
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a Nash equilibrium. The model predictions are validated against actual frequency

data, with the results indicating a close fit to reality. We use the model to evalu-

ate different strategic slot allocation schemes. The most significant result of this

research shows that, under the assumptions of our modeling framework, a small

reduction in the total number of allocated slots translates into a substantial reduc-

tion in flight and passenger delays, and also a considerable improvement in airlines’

operating profits. We also tested the sensitivity of our results to many of our as-

sumptions and approximations. We found that the major conclusions were robust

to individual assumptions and in many cases our original results were somewhat

conservative.

� Airport congestion pricing has often been advocated in literature as a means of

controlling demand for airport operations and for achieving social welfare maxi-

mization by making each airport user pay for the delay cost it imposes on the other

users. Competition between airlines affects the extent to which an airline would

be willing to pay for airport slots. We develop an equilibrium model of airline

frequency competition in the presence of delay costs and congestion prices. Our

work provides a computational framework for understanding the impacts of conges-

tion pricing under competitive effects. Our results based on a small hypothetical

network provide some critical insights. Most importantly, our results show that

variation in the number of passengers per flight plays a vital role in determining

the degree of attractiveness of congestion pricing to the airlines. A significant part

of the impact of congestion pricing could not be accounted for in the previous stud-

ies because of the assumptions of constant load factors and constant aircraft sizes.

The framework presented in this chapter captures some important characteristics

of the competitive equilibrium solution under congestion prices, which have not

been captured by the previous studies. We find that the effectiveness of a conges-

tion pricing scheme critically depends on three essential characteristics of frequency

competition in individual markets, the same ones that affect the level of conges-

tion as mentioned above. We also identify some critical differences between the
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flat pricing and marginal cost pricing of airport slots, and present some favorable

characteristics of marginal cost pricing.
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Chapter 1

Introduction

Congestion in the National Aviation System (NAS) is imposing a tremendous cost

on the US economy. In the recently concluded Total Delay Impact Study [7] commis-

sioned by the Federal Aviation Administration (FAA), researchers estimated the total

cost of domestic air traffic delays to be around $31.2 billion for calendar year 2007,

including $8.3 billion in additional aircraft operating costs, $16.7 billion in passen-

ger delay costs, and an estimated $6.2 billion in other indirect costs of delays to the

economy. The magnitude of these delay costs can be properly grasped by noting that

during the same period, the aggregate profits of US domestic airlines were $5.0 billion

[5]. Even though air travel demand and airport congestion has reduced over the last

2-3 years due to the recent economic recession, large delays are expected to return

once the economic crisis subsides [96]. Following is a look at the most important

causes of these delays.

1.1 Causes of Delay

For the year 2007, Bureau of Transportation Statistics [71] categorized delays to

around 50% of the delayed flights as delays caused by the National Aviation System

(NAS). Weather and volume were the top two causes of these NAS delays, together

responsible for 84.51% of the NAS delays. Delays due to volume are those caused by

scheduling more airport operations than the available capacity, while the delays due
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to weather are those caused by airport capacity reductions under adverse weather

conditions. Both these types of delays are due to airlines scheduling more operations

than realized capacity. Such mismatches between demand and capacity are a primary

cause of flight delays in the United States. From here onwards, we will refer to this

phenomenon as the demand-capacity mismatch.

Before proceeding further, let us differentiate between two different types of de-

mands. On the one hand is the demand for airport capacity in terms of the number

of flight operations scheduled at an airport. This needs to be contrasted with passen-

ger demand for air travel. It is the former that affects the airport congestion most

directly. Table 1.1 shows the values of total number of passengers, total number of

flights and total arrival delays to flights in the US. These values are obtained from the

Bureau of Transportation Statistics (BTS) website [77, 72]. The data on passengers

and flights corresponds to all the domestic operations of all the US carriers with an

annual revenue of at least $20 million as reported to the BTS [77]. The data on total

flight arrival delays corresponds to certified U.S. air carriers that account for at least

one percent of domestic scheduled passenger revenues as reported to the BTS [72].

All the values in Table 1.1 are normalized such that the values for the year 2000 are

all equal to 100. Passenger demand dipped in the first two years of the first decade

of this century, following the economic recession around the turn of century and the

events on September 11, 2001. The period from 2002 to 2007 saw a sustained growth

in passenger demand. By 2007, passenger demand was 13.28% higher compared to

that in 2000. Interestingly, the number of scheduled flight operations was 24.46%

higher and total arrival delays to flights were 38.58% higher.

The disproportionate rise in the number of flight operations compared to a rela-

tively moderate increase in the number of passengers implies that the average number

of passengers per flight reduced by around 9% from 2000 to 2007. This suggests that

there is more to the demand-capacity mismatch than simply the rate of passenger

growth outpacing the rate of airport capacity expansion. The disproportionate in-

crease in the number of flights is a result of scheduling decisions by the airlines,

reflecting, as will be detailed in this thesis, the effects of competition.
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Table 1.1: Trend in number of passengers, flights and delays

Number of Number of Total Arrival Delays
Year Passengers [77] Flights [77] to Flights (Minutes) [72]

2000 100 100 100
2001 93.34 96.47 78.15
2002 92.06 102.32 59.75
2003 97.29 119.65 75.18
2004 105.04 126.09 103.58
2005 109.62 126.98 107.80
2006 109.81 122.86 120.99
2007 113.28 124.46 138.58
2008 108.70 118.60 119.11
2009 103.07 110.73 91.82
2010 105.00 110.03 88.30

Scheduling decisions by the airlines under competition are considered to be par-

tially responsible for exacerbating the demand-capacity mismatch and therefore the

congestion problem. However, these decisions cannot be analyzed in isolation. The de-

cisions and actions of important stakeholders of the National Aviation System (NAS)

of the United States, such as airlines, passengers and system operators (including

airport authorities and the Federal Aviation Administration (FAA)) are highly inter-

dependent.

1.2 Decision-makers and Stakeholders in the Na-

tional Aviation System

Besides fares, a flight schedule is the most vital aspect of an airline’s ability to at-

tract passengers and market share [17]. By providing more frequent flights, an airline

attracts more passengers. Thus, airline scheduling decisions are directly affected by

passenger preference for availability of air service at desirable times. The relative

attractiveness of an airline to the passengers and hence, the market share of an air-

line, depends not only on the attractiveness of the airline’s own schedule but also

the attractiveness of its competitors’ schedules. Therefore, an airline needs to take
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into account the scheduling decisions of other competing airline(s) while making its

own scheduling decisions. System operators (such as the FAA and airport author-

ities) are responsible for the safety and efficiency of the air transportation system.

As a result, the system operators often impose rules and restrictions on the usage

of aviation infrastructure; rules necessitated by safety, capacity, weather, emissions,

noise, and other considerations. The airlines need to take these rules and restrictions

into account while making their scheduling and operational decisions. Airline deci-

sions about network structures, schedules and operations, in turn, have a significant

effect on the level-of-service to the passengers. Finally, airline network structures

and scheduling decisions under competition from other airlines affect the efficiency of

resource utilization and systemwide congestion levels, which are of direct concern to

the system operators.

Thus, airlines, passengers and system operators are the important decision-makers

in the NAS and their decisions, which are highly interdependent, determine the overall

system performance. Therefore, any congestion mitigation strategy needs to take into

account the interactions between these various decision-makers. Furthermore, the

impacts of congestion and any congestion mitigation strategies need to be assessed

from the perspectives of these different stakeholders. In this thesis, we model the

NAS as a multi-agent system of these interacting autonomous agents. First, we

evaluate the impacts of congestion and delays from the perspectives of the various

stakeholders. In Chapter 2, we look at the congestion problem from the perspective

of system operators. In Chapter 3, we focus on the passenger perspective and in

Chapter 4, we model the problem from the perspective of the airlines. Finally, in

Chapters 5 and 6, we propose mechanisms for congestion mitigation and assess the

impacts of these mechanisms on the NAS stakeholders.

1.3 Congestion Mitigation Strategies

Increasing capacity and decreasing demand are the two natural ways of bringing

the demand-capacity mismatch into balance. Capacity enhancement measures such
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as building new airports, construction of new runways, etc. are investment inten-

sive, require long-time horizons, and might not be feasible in many cases due to

geographic, environmental, socio-economic and political issues associated with such

large projects. On the other hand, demand management strategies such as admin-

istrative slot controls, market-based mechanisms, or any combinations thereof, have

the potential to restore the demand-capacity balance over a medium- to short-time

horizon with comparatively little investment. Demand management strategies refer

to any administrative or economic policies and regulations that restrict airport access

to users.

The capacity of an airport is often measured in terms of the available number of

slots for takeoffs and landings at that airport. According to the US code, a slot is

a reservation for an instrument flight rule takeoff or landing of an aircraft by an air

carrier in air transportation [36]. All the demand management strategies proposed in

the literature and practiced in reality can be broadly categorized as administrative

controls and market-based mechanisms, although various hybrid schemes have also

been proposed. The demand management problem involves two types of decisions,

namely, (1) slot determination, which involves deciding the total number of slots to

be allocated, and (2) slot allocation, which involves the decision on distribution of

these slots among the different users. These decisions can be taken either sequentially,

such as in an auction or administrative mechanism, or simultaneously, such as in a

congestion pricing mechanism.

1.3.1 Administrative Slot Controls

Currently, four major airports in the United States, namely, LaGuardia (LGA), John

F. Kennedy (JFK), and Newark (EWR) airports in the New York region, and Reagan

(DCA) airport at Washington D.C., have administrative controls limiting the number

of flight operations. Outside of the US, administrative controls are commonplace at

busy airports. Several major airports in Europe and Asia are schedule-coordinated,

where a central coordinator allocates the airport slots to airlines based on a set of

pre-determined rules. Under the current practices, both in and outside of the US,
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the criteria governing the slot allocation process are typically based on historical

precedents and use-it-or-lose-it rules. Under these rules, an airline is entitled to

retain a slot that was allocated to it in the previous year (sometimes called as the

grandfathering rights), contingent on the fact that the slot was utilized for at least a

certain minimum fraction of time over the previous year. An airline failing to utilize

a slot frequently enough, however, is in danger of losing it (sometimes called as the

use-it-or-lose-it rules).

1.3.2 Congestion Pricing

Researchers have shown that market-based mechanisms, if implemented properly,

result in efficient allocation of airport resources. Congestion pricing and slot auction

are two of the most popular market mechanisms proposed in the literature. Classical

studies such as those of Vickrey [97], Levine [62], and Carlin and Park [30] proposed

congestion pricing based on the marginal cost of delays. Such pricing schemes, in

theory, maximize social welfare through optimal allocation of public resources. Under

congestion pricing, the total cost to the airlines includes the delay cost as well as the

congestion price.

1.3.3 Slot Auctions

The idea of airport slot auctions was first proposed by Grether et al. [48]. Rassenti,

Smith, and Bulfin [82] showed how combinatorial auction design is suitable for air-

port slot auctions and highlighted the associated efficiency gains through experiments.

Since then, several researchers (Cramton et al. [39], Ball, Donohue and Hoffman [9],

Dot Econ Limited [63] and Harsha [51], to mention a few) have shown the advan-

tages of slot auctions. The reader is referred to Ball, Donohue, and Hoffman [9] and

Harsha [51] for detailed accounts of various commonly raised concerns regarding slot

auctions and ways of addressing them. In spite of the many attractive properties of

the auctioning mechanisms, an auction by itself does not alleviate airport congestion,

but rather allocates a fixed set of resources in a more efficient way. So, to that extent,
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auctions are similar to administrative controls, as they too pose an implicit need to

make a tradeoff between delays and resource utilization.

In this thesis, we focus on these demand management strategies with primary focus

on administrative slot controls (in Chapter 5) and congestion pricing (in Chapter 6).

1.4 Thesis Outline

In the following five sub-sections, we briefly outline the structure of this thesis.

1.4.1 Chapter 2: Minimization of System-wide Delays in the

Absence of Competition

Besides safety, efficiency in utilization of the NAS capacity is of utmost importance

from the system operators’ perspective. The administrative and market-based de-

mand management strategies, described in Section 1.3, are expected to bring demand

and supply into balance by removing inefficiencies in the NAS. However, the extent

to which the system-wide delays can be reduced by these mechanisms is still unclear.

On the one hand, restricting airport utilization to a very low level can practically

ensure the absence of congestion related delays, but this could mean that the airport

is highly underutilized and all passenger demand might not be satisfied. On the other

hand, scheduling a very large number of operations can satisfy all passenger demand

but the delays could reach unacceptable levels. An important question is what mini-

mum level of airport utilization and delays needs to be permitted in order to satisfy

all passenger demand.

In this research, we measure the extent to which airport capacity in the US do-

mestic air transportation network is being inefficiently utilized. The aim is to build a

schedule that minimizes delays in the absence of frequency competition. In order to

obviate the effects of competition, we assume a single airline that satisfies all passen-

ger demand without compromising the level-of-service for passengers. The problem is

modeled as a large-scale, network-based, mixed-integer programming (MIP) problem
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and solved using a sequence of linear programming relaxations and greedy heuristics.

A network delay simulator [70] is used to estimate the delays for the resulting net-

work. The delay values for the single airline network are compared with those for

the existing network under various realistic scenarios. These delay estimates serve

as theoretical lower bounds on system-wide delays when airport capacity is allocated

most efficiently.

All the analysis is based on extensive amounts of publicly available data on air-

line schedules, passenger flows and airport capacities. Detailed flight and passenger

flow information was obtained from the Bureau of Transportation Statistics website

[71, 73]. Actual realized airport capacity values for one entire year were used for

calculation of expected flight delays.

The value of the maximum possible delay reduction provides valuable information

to the system operators. It indicates the maximum potential impact of implementing

efficient demand management strategies. If insignificant, then passenger demand has

already reached a level where large delays are inevitable and capacity enhancement

is the only realistic means of delay reduction. On the other hand, if the results

suggest substantial delay reduction under the single airline case, then the existing

level of passenger demand can be efficiently served using the existing infrastructure

with much lower delays and there is ample opportunity for congestion mitigation

using demand management strategies.

Our results in Chapter 2 show that there is a significant room for improvement

in the level of congestion even with the existing airport infrastructure. Passenger

demand is currently at a level where delays are avoidable to a large extent. Given the

available capacity, efficient administrative controls and/or market-based mechanisms

can potentially lead to substantial reductions in airport congestion and delays. These

results provide critical insights into the nature and causes of aviation delays, allowing

better planning and utilization of aviation infrastructure. In particular, the results

help differentiate between the delays caused by insufficient capacity and delays caused

by inefficient utilization of capacity. The models and solution methods presented

here can also be used for analyzing the best-case delay levels under different future
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scenarios, with different levels of demand and capacity. These results also emphasize

the need to devise intelligent mechanisms and incentives that will result in airlines

gradually migrating their schedules from those in place today towards the delay-

minimizing schedules presented in this chapter, in the presence of market competition.

We tackle this problem of devising such intelligent mechanisms in Chapters 5 and 6.

1.4.2 Chapter 3: Quantification and Analysis of Passenger

Delays and Disruptions

Airline passengers are an important stakeholder group in the NAS. As discussed ear-

lier, over recent years, passengers too have suffered enormously from congestion effects

in the NAS. Therefore, a good understanding of the nature, causes and magnitude of

passenger delays is essential. Previous literature has shown that flight delays are not

a good proxy measure for passenger delays [23]. In particular, passengers suffer large

amounts of delay due to itinerary disruptions such as flight cancellations and missed

connections. Unfortunately, a lack of publicly available detailed data on passenger

travel has thus far prevented extensive analyses of passenger delays. In Chapter 3, we

develop a detailed framework for generating disaggregate passenger travel data and

use the resulting data to gain critical insights into passenger travel, and delay and

disruption patterns in the US.

In the first part of Chapter 3 (Section 3.2), we briefly present a methodological

framework based on a discrete-choice multinomial Logit model for generating disag-

gregate passenger itinerary flow data. The framework uses various data fusion and

statistical modeling techniques. Statistical estimation of the model is performed us-

ing passenger booking data from one large network carrier in the US for one quarter

in 2007. The resulting parameter estimates are used to estimate the number of pas-

sengers that traveled on each individual itinerary for the entire year 2007 for all the

major carriers in the US. Using this rich database on passenger travel, we are able to

perform a large variety of passenger-centric analyses.

Airlines’ strategic decisions regarding their network structures, hub locations, con-
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necting bank structures, flight frequencies and flight departure schedules impact an

airline’s attractiveness to the passengers. At the same time, these very factors also

affect various fixed and operating costs to the airlines. Therefore, in making such

strategic decisions, airlines need to balance schedule attractiveness and cost impli-

cations, while accounting for competitors’ decisions. Similarly, on the day of opera-

tions, airlines need to take various decisions such as flight cancellations, aircraft and

crew reassignments, passenger re-booking etc. to address various kinds of irregular-

ities and disruptions. While taking these operational decisions, an airline needs to

balance often-conflicting objectives of minimizing the passengers’ inconvenience and

minimizing the cost of disruption to the airline. Scheduling and operational policies

and decisions by the airlines significantly alter the passenger delays and disruptions,

which in turn affect the overall level-of-service experienced by the passengers. In the

subsequent Sections of Chapter 3 (Sections 3.3 through 3.6), we present a sequence

of analyses on the impacts of airline network structures, schedules and operational

decisions on passenger delays and travel disruptions.

1.4.3 Chapter 4: Implications of Airline Frequency Compe-

tition for Airline Profitability and Airport Congestion

Profitability is one of the most important, if not the most important, objectives of

US airlines, most of which are owned by private shareholders. Since deregulation of

the US domestic airline industry in 1978, airline profits have been highly volatile.

Several major US carriers have incurred substantial losses over the last decade with

some of them filing for Chapter 11 bankruptcy and some others narrowly escaping

bankruptcy. Provision of excess seating capacity is one of the reasons often cited

for the poor economic health of airlines [56, 69, 29]. Due to the so called S-curve

relationship [17] between market share and frequency share, an airline is expected

to attract disproportionately more passengers by increasing its frequency share in

a market. To increase their market share, airlines engage in frequency competition

by providing more flights per day on competitive routes. As a result, they prefer
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operating many flights with small aircraft rather than operating fewer flights with

larger aircraft. The average aircraft sizes in domestic US markets have been falling

continuously over the last couple of decades (until the recent economic crisis) in spite

of increasing passenger demand [20]. Similarly, the average load factors, i.e., the ratio

of the number of passengers to the number of seats, on some of the most competitive

and high demand markets have been found to be lower than the industry average.

Besides direct connections to airline profitability, airline frequency competition is

intricately connected to the worsening congestion and delays at the major US airports.

As shown in Table 1.1 earlier, increases in passenger demand coupled with decreases

in the average number of passengers per flight have led to a great increase in the

number of flights being operated, especially between the major airports, leading to

congestion. Thus, frequency competition affects airlines’ capacity allocation decisions,

which in turn have a strong impact on airline profitability and on airport congestion.

In Chapter 4, we propose a parametric game-theoretic model, which is consis-

tent with a popular characterization of frequency competition. Our model is general

enough to accommodate somewhat differing beliefs about the market share-frequency

share relationship. First, we characterize the curves representing the optimal fre-

quency of an airline as a function of its competitors’ frequencies, otherwise known as

the best-response curves. Focusing on a 2-airline competition case, we state and prove

the conditions for the existence and uniqueness of all the possible types of equilibrium

states (pure strategy Nash equilibria, to be precise).

As the first of the two major results in this chapter, we propose 2 alternative

simple frequency adjustment rules (otherwise known as myopic learning dynamics)

for the 2-airline case and prove that under mild conditions, either of them converges

to an equilibrium state. This means that the equilibrium is highly stable and that

even if each airline simply optimizes its own profit in response to the competitors’

actions, they iteratively converge to equilibrium frequencies. This also substantiates

the predictive power of the Nash equilibrium concept for modeling airline frequency

competition. The author is not aware of any previous study which proves these

stability properties of airline competition games. We found this result to be highly
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beneficial 1) for modeling airline response to congestion mitigation mechanisms, and

2) for the computation of a Nash equilibrium for an airline frequency competition

game, in Chapters 5 and 6.

Moving to an N-airline (for any integer N ≥ 2), symmetric case, we characterize

the entire set of possible equilibria and also identify the worst-case equilibrium, which

corresponds to the highest congestion and lowest profitability for the airlines as a

group. As the second major result of this chapter, we prove that the congestion level

and the degree of inefficiency in the system is an increasing function of the number

of competing airlines, the ratio of average fare to operating cost per seat and the

exponent in the S-curve relationship (reflecting the degree of competition). This is

the first study, to the best of the author’s knowledge, which actually proves that the S-

curve relationship between market share and frequency share has direct and negative

implications to airline profitability and airport congestion, as has been speculated in

multiple previous studies. Furthermore, these results provide the intuition behind our

analysis of effectiveness of congestion pricing mechanisms in Chapter 6. Our results

on the important factors affecting the effectiveness of congestion pricing are found to

be consistent with the results in this chapter.

1.4.4 Chapter 5: Administrative Mechanisms for Airport

Congestion Mitigation

As discussed in Chapters 2, 3, and 4, competitive airline scheduling and airport

congestion are intricately related and this relationship has adverse implications, 1) to

NAS operators through systemwide delays and inefficiency, 2) to passengers through

passenger delays and disruptions, and 3) to airlines through reduced profitability and

flight delays. In Chapters 5 and 6, we propose simple mechanisms for congestion

mitigation which address these issues.

We focus on LaGuardia Airport (LGA) at New York, where administrative mech-

anisms are currently used to control the slot allocation and thus to manage demand.

However, it is one of the most congested and delay-prone airports in the United States.
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We propose modifications to the existing slot controls at this airport for congestion

mitigation. If such modifications are implemented, then the airlines in turn need to

modify their scheduling decisions while ensuring that their schedules remain suffi-

ciently attractive from the passengers’ perspectives. We model the airline response

to changes in slot controls through models of airline frequency competition. Models

of airline competition used in Chapters 5 and 6 are extensions of the model presented

in Chapter 4.

To the best of the author’s knowledge, no previous study has incorporated slot

controls into airline competition models. We provide a solution algorithm with strong

computational performance for obtaining the equilibrium outcome under our proposed

slot allocation. We provide further justification of the credibility of the Nash equi-

librium solution concept in two different ways, 1) through empirical validation of the

model outcome, and 2) through a computational demonstration of the convergence

properties of the myopic learning dynamics for non-equilibrium situations. Finally,

under our proposed slot allocation mechanisms, we evaluate system performance from

the perspectives of the various stakeholders.

1.4.5 Chapter 6: Pricing Mechanisms for Airport Congestion

Mitigation

Congestion pricing and slot auctions are the two most prevalent market-based mech-

anisms mentioned in the micro-economic literature. These mechanisms have often

been claimed to alleviate the demand-capacity mismatch by placing monetary prices

on airport slots, which reflect the true economic cost of using the slots. These market-

based mechanisms rely on the ability of the airlines to assess the value of airport slots,

while bidding for slots in the case of auctions and for determining the demand for slots

at a given level of prices in the case of congestion pricing. However, while ascertaining

its own valuation of an airport slot, an airline needs to account for competition from

other airlines operating at that airport. In this chapter, we model the airline fre-

quency decisions under congestion pricing mechanisms through explicit modeling of
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competition and assess the dependence of the effectiveness, or lack thereof, of airport

congestion pricing mechanisms on the characteristics of the competition in airline

markets.

The incremental profitability of having an extra flight in a particular market

largely depends on the number of additional passengers that the airline will be able to

carry because of the additional flight, which in turn depends on the schedule of flights

offered by the competitor airlines in the same market. So total demand for airport

slots under congestion pricing should reflect these competitive interactions. Many

prior studies have accounted for airline competition under pricing using conventional

micro-economic models of firm competition [25, 26, 80, 81]. By assuming constant

load factors and constant aircraft seating capacities, they fail to recognize the im-

portant distinguishing features of the airline industry where the quantity produced is

captured by three different entities: number of flights, number of seats and number of

passengers carried. By not capturing the variation in number of passengers per flight,

earlier studies tend to underestimate benefits of congestion pricing to the airlines. In

this chapter, we model airline frequency competition under congestion pricing using

a popular market-share model of frequency competition, which accounts for these

peculiar characteristics of the airline industry and generate insights that were not

possible with the previous models.

Our model is similar to the models of frequency competition presented in Chap-

ters 4 and 5, but it additionally accounts for the impacts of flight delays costs and

the congestion prices to the airlines’ profitability. We model average flight delay as

a function of airport utilization ratio (the ratio of the number of scheduled opera-

tions to capacity) and estimate the model parameters using data on actual airport

capacities, demands and delays. We develop an iterative algorithm with good com-

putational properties to solve the congestion pricing problem to an equilibrium. Our

experimental setup consists of a small hypothetical network of three airports, with

one of the three airports being subjected to congestion pricing. We run computa-

tional experiments under flat- as well as marginal cost-pricing scenarios. We vary

important characteristics of our markets and test their impacts on the effectiveness

40



of the congestion pricing mechanism.

We find that the effectiveness of a congestion pricing scheme critically depends

on three essential characteristics of frequency competition in individual markets: 1)

the number of competing airlines, 2) a measure of the gross profit margin for airlines

(defined as the ratio of average fare to operating cost per seat), and 3) frequency sen-

sitivity of passengers, which is nothing but the exponent in the S-curve relationship.

These are the same three parameters that affect the level of congestion introduced by

competition as described in Chapter 4. Moreover, our results indicate the important

differences between flat pricing and marginal cost pricing mechanisms. We show that

a marginal cost pricing mechanism is able to deter the airlines from scheduling very

frequent flights without penalizing them with very high congestion toll payments.

Most importantly we prove that, in addition to delay reduction benefits, a signifi-

cant part of congestion pricing benefits to the airlines are in the form of reduction

in operating costs due to increased number of passengers per flight. Our models of

competition are able to capture this important effects which could not be captured

by previous studies.

We conclude the thesis in Chapter 7.

1.5 Thesis Contributions

In the following, we briefly describe the major contributions of this thesis to the

existing body of research. We detail the contributions of each chapter sequentially.

1.5.1 Chapter 2: Minimization of System-wide Delays in the

Absence of Competition

The main contributions of the research presented in this chapter are threefold. First,

we propose a novel, optimization-based approach for attributing the congestion-

related delays in the NAS to two different causes, namely, delays due to insufficient

airport capacity and delays due to inefficient utilization of available capacity due to
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airline competition. Second, we develop an aggregated, integrated airline schedul-

ing model with a proxy objective function for delay minimization and an elaborate

heuristic-based approach for an approximate solution of this large-scale (non-binary)

MIP. Finally, and most importantly, this is the first study which proves that there is

a significant room for reducing the level of congestion even with the existing airport

infrastructure without compromising the passenger level-of-service, if we can control

the negative impacts of airline competition through efficient demand management

strategies. Thus, in this chapter, we make a strong case for the need for the subse-

quent research (presented in the Chapters 5 and 6) on demand management-based

mechanisms for congestion mitigation.

1.5.2 Chapter 3: Quantification and Analysis of Passenger

Delays and Disruptions

The major contributions of the research in this chapter fall into three broad cate-

gories. First, we develop a detailed approach for disaggregating publicly available

aggregate passenger flow data which, among other applications, facilitates the usage

of a pre-existing passenger delay calculation heuristic to a much wider dataset (viz.

to aggregate data corresponding to any major US airline for any of the last 18 years).

Second, we analyze the spatio-temporal patterns in passenger delays using these es-

timated disaggregate passenger flows and present numerous insights into the factors

affecting passenger delays. Such insights could not be generated in any of the prior

studies due to the lack of comprehensive passenger itinerary flow data. Third, we

investigate the causes of passenger travel disruptions by applying data analysis and

statistical modeling to historical flight and passenger data. Apart from the analyses

and findings presented in Chapter 3, our methodology and the resulting passenger

itinerary flow data has already been used to estimate the overall costs of passenger de-

lays as one component of the Total Delay Impact Study commissioned by the FAA [7].

We foresee a large variety of further applications of this passenger delays framework

for passenger-centric approaches in airline scheduling, air traffic flow management,
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and aviation policy-making.

1.5.3 Chapter 4: Implications of Airline Frequency Compe-

tition for Airline Profitability and Airport Congestion

The major contributions of the research in this chapter are threefold. First of all, ours

is the first study that models the S-curve-based airline frequency competition using

game-theoretic tools. The S-curve has been mentioned in many empirical studies and

has also been an important part of the airline industry lore. Second, we provide cred-

ibility to the idea of using Nash equilibrium as a means of modeling airline frequency

competition by proving the convergence of two alternative simple frequency adjust-

ment rules (otherwise known as myopic learning dynamics) to a Nash equilibrium.

Finally, using the idea of Nash equilibrium, we prove that the S-curve relationship

between market share and frequency share has direct and negative implications to

airline profitability and airport congestion, as has been speculated in multiple pre-

vious studies. These results make a strong case for careful incorporation of airline

frequency competition into any assessment of the impacts of demand management

mechanisms (as presented in Chapters 5 and 6).

1.5.4 Chapter 5: Administrative Mechanisms for Airport

Congestion Mitigation

The results presented in this chapter are the most significant practical contributions

of this thesis. The main contributions of this chapter fall into four categories. First,

we propose a game-theoretic model of frequency competition under slot constraints as

an evaluation methodology for slot allocation schemes. Second, we provide a solution

algorithm with good computational performance for solving the problem to a Nash

equilibrium. Third, we provide justification of the credibility of the Nash equilibrium

solution concept in two different ways, through empirical validation of the model

outcome and through a computational proof of the convergence properties of the

learning dynamics for non-equilibrium situations. Finally, under simple slot allocation
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schemes, we evaluate system performance from the perspectives of the passengers and

the competing airlines, and provide insights to guide the demand management policy

decisions. The most significant result of the research in this chapter shows that a small

reduction in the total number of allocated slots translates into a substantial reduction

in airport congestion and passenger delays, as well as a considerable improvement in

airlines’ profits, under the assumptions of our modeling framework. We also tested

the sensitivity of these results to many of our underlying assumptions and found

that our conclusions are robust against small changes in underlying assumptions and

in many cases our original estimates of the benefits of slot reduction were, in fact,

somewhat conservative. Thus our administrative slot allocation-based strategies are

shown to be beneficial to all the major NAS stakeholders at the same time.

1.5.5 Chapter 6: Pricing Mechanisms for Airport Congestion

Mitigation

As mentioned earlier, Chapter 5 presents the most significant practical contributions

of this thesis. In Chapter 6, we extend the game-theoretic model of frequency compe-

tition, presented in Chapter 5, to incorporate slot prices and provide computational

results using a small hypothetical network. These results serve as a proof-of-concept

for assessing the effectiveness of congestion pricing mechanisms under frequency com-

petition.

The major contributions of the research in this chapter are threefold. First, we

develop a model of airline frequency competition that explicitly accounts for the re-

lationship between the number of flights operated, number of seats flown and the

number of passengers carried by an airline under slot pricing. To the best of author’s

knowledge, this is the first computational study on congestion pricing that accounts

for this relationship. Second, using a small hypothetical network, we evaluate the im-

pacts of congestion prices on the various stakeholders and investigate the dependence

of effectiveness of congestion pricing mechanisms on the different characteristics of

frequency competition in individual markets. Third, we provide computational re-
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sults under flat prices, as well as under a marginal cost pricing equilibrium. Our

results show that variation in the number of passengers per flight plays a vital role

in determining the degree of attractiveness of congestion pricing to the airlines. A

significant part of the impact of congestion pricing could not be accounted for using

the earlier models which were based on the assumptions of constant load factors and

constant aircraft sizes. The framework presented in this chapter captures some impor-

tant characteristics of the competitive equilibrium solution under congestion prices,

which have not been captured by the previous studies. The congestion pricing results

in this chapter serve as a proof-of-concept and provide several interesting insights,

which need more detailed verification through computational experiments with larger

data sets.

Our results in Chapters 2 through 5 are based on year 2007-2008 when congestion

and delays were rampant in the United States NAS. In Chapter 7 we conclude the

thesis and discuss the applicability of our conclusions in the context of some recent

changes in the NAS. This section provides a nice further validation of some of our

results based on the real-world events in NAS over the last three years or so.
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Chapter 2

Minimization of System-wide

Delays in the Absence of

Competition

2.1 Introduction

Efficiency in utilization of the National Aviation System’s capacity is of utmost impor-

tance from the system operators’ perspective. The administrative and market-based

demand management strategies are expected to bring demand and supply into balance

by removing inefficiencies in the NAS. However, the extent to which the system-wide

delays can be reduced by these mechanisms is still unclear. On the one hand, re-

stricting airport utilization to a very low level can practically ensure the absence of

congestion related delays, but this could mean that the airport is highly underuti-

lized and all passenger demand might not be satisfied. On the other hand, scheduling

a very large number of operations can satisfy all passenger demand but the delays

could reach unacceptable levels. An important question is what minimum level of

airport utilization and delays needs to be permitted in order to satisfy all passenger

demand. In this chapter, we assess the maximum possible impact of these demand

management strategies.
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Before proceeding further, let us define some terminology that will be used fre-

quently in this chapter. In all our models, a market is defined as a passenger origin

and destination pair. A segment is defined as an origin and destination pair for non-

stop flights. A path is defined as a sequence of segments along which a passenger

is transported from origin to destination. A flight leg is defined as a combination of

origin, destination, departure time and arrival time of a non-stop flight. An itinerary

is a sequence of flight legs along which a passenger is transported from origin to des-

tination. We will refer to the actual network of flights operated by multiple airlines

in the US domestic markets in 2007 as the existing network. Also we will refer to our

delay minimizing network as the single airline (or SA) network.

The rest of this chapter is organized as follows. Section 2.2 explains the motivation

behind solving the single airline scheduling problem. Section 2.3 briefly reviews the

literature on airline scheduling and highlights the important differences between the

previous research and the problem at hand. Section 2.4 provides a detailed problem

statement for this study. Section 2.5 describes the modeling framework. Section 2.6

outlines the set of algorithms used to solve the problem. Section 2.7 provides details

of data sources and implementation. A summary of results is provided in section 2.8.

Finally, we conclude with a discussion of the main contributions and the directions

for future research in section 2.9.

2.2 Motivation for Single Airline Scheduling

As described in Chapter 1, demand management strategies refer to any administrative

or economic regulation that restricts airport access to users. It should be noted that

these strategies refer to managing the demand for flight arrival and departure slots at

an airport to meet a given level of passenger demand, and not to managing passenger

demand itself. Few of the most congested US airports, such as Kennedy (JFK),

Newark (EWR) and Laguardia (LGA) Airports in New York City area, O’Hare (ORD)

Airport at Chicago and Reagan (DCA) Airport at Washington DC, have been slot

controlled in one way or the other for a long time. Current slot allocation strategies,
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based on administrative controls, are inefficient because of large barriers to market

entry [63] and use-it-or-lose-it rules that encourage over-scheduling practices [51].

In response to these shortcomings, market-based mechanisms such as slot auctions

and congestion pricing have been proposed as efficient means of reducing congestion.

There is extensive literature [39, 9, 40, 63, 45, 48, 47] suggesting that market-based

approaches, if designed properly, allocate scarce resources efficiently and promote

fair competition. Harsha shows that market-based mechanisms can lead to airline

schedule changes that reduce the demand for runway capacity, without reducing the

number of passengers being transported [51]. This is achieved by better utilization

of capacity in off-peak hours and by greater usage of larger aircraft.

In theory, these pricing and auction mechanisms should bring the demand and

supply into balance by removing the inefficiencies in the system. However, the extent

to which the system-wide delays can be reduced by these mechanisms is still unclear.

On the one hand, restricting airport utilization to a very low level can practically

ensure the absence of congestion related delays, but this could mean that the airport

is highly underutilized and all the passenger demand might not be satisfied. On the

other hand, scheduling a very large number of operations can satisfy all the passenger

demand but the delays could reach unacceptable levels. An important question is

what minimum level of airport utilization and delays needs to be permitted in order

to satisfy all the passenger demand.

In this research, we measure the extent to which airport capacity in the US do-

mestic air transportation network is being inefficiently utilized. The aim is to build

a schedule that minimizes delays in the absence of frequency competition. In order

to obviate the effects of competition, we assume a single airline that satisfies all pas-

senger demand without compromising the level-of-service for passengers. A network

delay simulator is used to estimate the delays for the resulting network [70]. The

delay values for the single airline network are compared with those for the existing

network under various realistic scenarios. All the days in an entire year are divided

into 5 categories based on the total duration of capacity reduction on that day across

all the busy airports. One representative day from each category is chosen for delay
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calculations. These delay estimates serve as theoretical lower bounds on system-wide

delays when airport capacity is allocated most efficiently. The value of maximum

possible delay reduction will indicate the maximum potential impact of implement-

ing efficient demand management techniques. If insignificant, then passenger demand

has already reached a level where large delays are inevitable and capacity enhance-

ment is the only realistic means of delay reduction. On the other hand, if the results

suggest substantial delay reduction under the single airline case, then the existing

level of passenger demand can be efficiently served using the existing infrastructure

with much lower delays and there is ample opportunity for congestion mitigation

using demand management strategies.

2.3 Airline Schedule Development

The airline schedule development process includes decisions regarding daily frequency,

departure times, aircraft sizes and crew schedules. Due to the enormous size and com-

plexity of the airline schedule development process, the problem is typically broken

down into four stages: 1) timetable development; 2) fleet assignment; 3) maintenance

routing; and 4) crew scheduling [10]. The task of deciding the set of flight legs to

be operated along with the corresponding origin, destination and departure time for

each leg is called timetable development. Although the entire timetable development

problem can be modeled as an optimization problem, practitioners typically focus on

incremental changes to existing schedules. The fleet assignment problem involves a

profit maximizing assignment of fleet types to flight legs. Hane et al. [49] proposed a

leg-based fleet assignment model which assumes independent leg demand and aver-

age fares. Jacobs, Johnson, and Smith [54] and Barnhart, Knicker, and Lohatepanont

[14] proposed itinerary-based fleet assignment models that produce significant profit

improvement over the leg-based models. Maintenance routing is the assignment of

specific aircraft to individual flight legs while satisfying the periodic aircraft main-

tenance requirements. The maintenance routing problem is typically solved as a

feasibility problem or as a through-revenue maximization problem [10]. The problem
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of assigning a cost minimizing combination of pilot and cabin crews to each flight leg

is called crew scheduling. Because of the complicated duty rules and pay structure

for airline crews, crew pairing has long been regarded as a challenging problem. Crew

pairing is modeled as a set partitioning problem and solved using techniques such as

column generation and branch-and-price [13, 42, 57].

The aforementioned sequential solution process may result in suboptimal solu-

tions. Many researchers have tried to integrate some of the stages into simultaneous

optimization problems. Rexing et al. [83] proposed joint models for flight re-timing

within time windows and fleet assignment. Lohatepanont and Barnhart [64] present

an integrated model for incremental schedule development and itinerary-based fleet

assignment. Clarke et al. [31] and Barnhart et al. [11] have proposed models to

incorporate the effect of maintenance routing while making the fleet assignment de-

cisions. There is a large body of literature on the integration of maintenance routing

and crew scheduling problems including Cohn and Barnhart [33], Cordeau et al. [37]

and Klabjan et al. [58].

All the models mentioned above aim to produce precise schedules that maximize

planned profit. Models developed for the purpose of this study are different in several

important ways. Rather than producing an operable schedule, the main purpose is

to obtain a bound on delays. Because of the complex and stochastic relationship

between schedule and delays, any such bound will have to be approximate. Therefore

there is no point in developing a very precise schedule. Moreover, the problem of sin-

gle airline schedule development is even larger in size than the schedule development

problem for any existing airline, which itself is solved sequentially due to tractability

issues. Therefore in this study, we use aggregate models that are sufficient for our

purposes while maintaining tractability. Instead of profit maximization, the objective

is delay minimization subject to satisfaction of demand and level-of-service require-

ments. Therefore, only the relevant decisions such as timetable development and fleet

assignment are included in the problem. The output of our models is a flight schedule

with departure times and fleet types corresponding to each flight. We do not solve

the maintenance routing and crew scheduling problems in this research. Harsha [51]
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has proposed an aggregated, integrated airline scheduling and fleet assignment model

(AIASFAM) to help airlines place a bid in a slot auction. The itinerary-based ver-

sion of this model is an extension of the Barnhart, Knicker, and Lohatepanont [14]

model, with more aggregate time-line discretization for computational tractability.

The models presented in this study share some characteristics with the AIASFAM

model.

2.4 Problem Statement

In order to obtain a lower bound on airport congestion, we assume the existence of

a single monopolistic airline. The problem at hand is to design a schedule for this

single airline with the objective of minimizing airport congestion, while satisfying

the entire passenger demand and maintaining a comparable level-of-service. An im-

portant modeling consideration is how to capture the passenger demand satisfaction

requirements for every market and every time period of the day. The single carrier

must be able to transport all passengers who are currently transported by existing

airlines, from their respective origins to their respective destinations. To model this,

we divide the day into four time intervals and ensure that all the passengers who are

currently transported during a particular interval continue to be transported during

the same interval in the new schedule. We define the level-of-service (as perceived by

air passengers) as the number of stops in an itinerary. Almost 97.6% of all US do-

mestic passengers traveled on non-stop and one-stop itineraries in 2007 [73]. Hence,

in the single airline scheduling model, we assume that all the passengers must be

transported on itineraries with at most one stop.

Service frequency is another important criterion of level-of-service in the current

competitive environment. Therefore, in our model, we require that the single airline

provide at least the same daily frequency on each non-stop segment as the effective

frequency provided by the existing carriers. Cohas, Belobaba, and Simpson [32] pro-

pose a model of effective frequency available to air passengers faced with a choice

between multiple competing carriers. When more than one airline operates in a mar-
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ket, the effective frequency depends on how closely the schedules are matched. For

example, consider two competing carriers, each offering n flights per day. If one airline

schedules flights at a time when the other airline does not offer service, then the ef-

fective frequency increases. However, if one airline schedules all its flights close to the

departure times of flights by the other airlines, then the number of different options to

the passengers does not increase above n. Thus, the important criterion in deciding

the effective frequency is the closeness of competing airline schedules. We calculate

the effective non-stop frequency for a segment as the total number of non-stop flights

offered by all carriers as long as the flight departure times are not within less than

one hour of each other. If the departure times of two flights are separated by less than

one hour, then we assume the two flights to be equivalent to a single flight. The mini-

mum frequency to be provided on each non-stop segment by the single airline must be

greater than or equal to the effective frequency currently provided by all the existing

carriers on that segment. This constraint ensures that the passengers experience the

same or higher effective frequency in each market. This constraint combined with the

time-of-the-day demand satisfaction criteria also ensures that there is negligible shift

in the passengers’ arrival and departure times in comparison to the desired values of

the same.

Before designing a schedule, decisions must be taken regarding the network struc-

ture. Network design involves decisions about network type i.e. hub-and-spoke or

point-to-point, choice of hubs, choice of non-stop segments, choice of allowable air-

ports for passenger connections. One possible approach would be to include all these

decisions into our single-airline optimization problem. For the problem size under

consideration, that would lead to an integer optimization problem involving over one-

hundred million variables. Instead, we solve the problem sequentially in three stages.

2.5 Modeling Framework

Figure 2-1 provides a schematic description of the overall modeling framework. The

first stage is the Network Design (ND) stage, which involves decisions about the
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number and location of hubs, candidates for non-stop routes and allowable airports

for passenger connections. The network structures of existing airlines were used as a

guideline for our network design stage. Many of the major airlines in US domestic

market today have a set of 4 or 5 major hubs. The direct flights are allowed to bypass

the hub for a few important markets with large demand. Our selection of hubs was

made based on qualitative criteria including the number of operations in the existing

network, available capacity, geographic location and weather. Atlanta (ATL), Denver

(DEN), Dallas/Fort Worth (DFW) and Chicago O’Hare (ORD) were chosen because

they are in the top five US airports in terms of both existing capacity as well as

the number of operations in the existing network. None of the airports in the New

York area were chosen because of their low capacities. Los Angeles (LAX) was not

chosen because of its geographically extreme location in the continental US. Phoenix

(PHX) was chosen because of large number of operations in the existing network

and the maximum capacity being available for a large fraction of the time due to

good weather conditions. Our choices of non-stop segments bypassing the hub were

made based on the market demand corresponding to the non-stop segments. Any

market with a daily demand of at least 250 passengers was included as a candidate

for non-stop flights. We allow passengers to connect only at the hubs.

The second stage involves the daily Frequency Planning and Fleet Assignment

(FPFA) problem. A delay minimizing schedule should have fewer flights per day and

better distribution of flight timings to avoid clustering of demand near peak hours.

Obtaining a good feasible solution is the main aim of our FPFA stage. A good solution

will keep the number of flights to a minimum, so that airport usage is minimized. We

tried using a variety of formulations with different objective functions for this stage.

Our initial modeling efforts for this stage showed that there are multiple optimal

solutions that minimize the total number of flights but differ in terms of the amount

of slack in the seating capacity. In order to produce an efficient schedule it is important

to choose the most appropriate aircraft size for each segment so as to avoid excessive

seating capacity. We achieved this by choosing cost coefficients (denoted by cs,k for

segment s and fleet k) such that the overall cost increases with increasing seating
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Figure 2-1: Modeling framework

capacity and cost per seat decreases with increasing seating capacity. These costs are

consistent with those that the airlines report through Form 41 financial reports [74].

Satisfaction of the daily demand and the minimum daily frequency requirement are

the two main constraints. Output of this second stage includes the daily frequency

of service on each segment and fleet types assigned to each segment. Constraints 2.1

through 2.5 provide integer programming formulation for the FPFA problem.

FPFA Formulation

Notation:

� K = Set of fleet types

� S = Set of segments

� P = Set of paths

� M = Set of markets

� cs,k = Operating cost of fleet type k on segment s, s ∈ S and k ∈ K
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� Ck = Seating capacity of fleet type k, k ∈ K

� Dm = Daily demand in market m,m ∈M

� fs = Minimum daily frequency to be provided on segment s, s ∈ S

� P (m) = Set of paths associated with market m,m ∈M

� δps =

 1 if path p contains segment s

0 otherwise
p ∈ P and s ∈ S

Decision variables:

� xs,k = Number of flights of fleet type k on segment s per day, s ∈ S and k ∈

K

� yp = Number of passengers on path p per day, p ∈ P

Formulation:

Minimize
∑
s∈S

∑
k∈K

cs,kxs,k

Subject to:
∑

p∈P (m)

yp = Dm ∀m ∈M (2.1)

∑
k∈K

xc,kCk ≥
∑
p∈P

δpsyp s ∈ S (2.2)

∑
k∈K

xc,k ≥ fs ∀s ∈ S (2.3)

xs,k ∈ Z+ ∀s ∈ S and k ∈ K (2.4)

yp ∈ Z+ p ∈ P (2.5)

Constraint 2.1 ensures that the total daily demand for each market is satisfied.

Constraint 2.2 ensures that the total number of seats on each segment is sufficient for

carrying all the passengers whose paths contain that segment. Constraint 2.3 enforces

that the daily frequency of service in each market is at least equal to the effective

frequency currently provided by the existing carriers in that market. Constraints

2.4 and 2.5 restrict the allowable values for the number of passengers and number
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of flights to non-negative integers. Alternatively, the number of passengers could be

modeled as continuous variables without significant impact on solution quality. The

integrality of variables corresponding to the number of flights, however, is critical to

obtaining meaningful solutions.

The third stage involves actual Timetable Development (TD). Similar to the ap-

proach adopted by Harsha [51], the departure and arrival times are aggregated to the

nearest hour to keep the number of decision variables low. Given the daily frequencies

and fleet assignment for each segment, output of this stage produces the scheduled

set of flight legs. Constraints 2.6 through 2.11 provide an integer programming for-

mulation of the TD model.

The utilization ratio is defined as the ratio of demand to capacity of a server,

which in this case is an airport. Queuing theory suggests that the average flight delay

is an increasing and convex function of the utilization ratio [60]. Considering the

tremendous size of the problem at hand, using a non-linear objective function would

make the problem intractable. Total delay is a nonlinear and stochastic function

of the number of scheduled flights. Therefore, we aim to minimize the maximum

utilization ratio as a surrogate objective function for the scheduling problem. Due

to the convex relationship between the utilization ratio and delays, the effect of the

maximum utilization ratio on total delay in a queuing network is disproportionately

high. The objective function in the TD formulation is to minimize the maximum uti-

lization ratio across all busy airports across all airport-time period (ATP) pairs. The

duration of each ATP is 1 hour in this case. The hourly utilization ratio is the ratio of

the sum of all flight frequencies corresponding to that ATP to the hourly capacity of

the airport. Thus, the maximum utilization ratio is a deterministic and linear func-

tion of the flight frequencies. Constraint 2.6 enforces the satisfaction of demand for

each market-time period (MTP) pair. Constraint 2.7 ensures that the total number

of seats for each flight leg is at least equal to the total number of passengers whose

itineraries contain that flight leg. Constraint 2.8 ensures that the minimum daily

frequency requirement is satisfied. Constraint 2.9 relates the maximum utilization

ratio to the operations in each ATP. Constraints 2.10 and 2.11 restrict the possible
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values for the number of passengers and the frequencies to non-negative integers.

TD Formulation

Notation:

� A = Set of airports

� I = Set of itineraries

� F = Set of flight legs

� L (m) = Set of MTPs associated with market m,m ∈M

� Dl = Demand in MTP l, l ∈ L (m) and m ∈M

� Cf = Seating capacity for fleet type assigned to flight leg f, f ∈ F

� fs = Minimum daily frequency to be provided for segment s, s ∈ S

� HCt = Hourly capacity (i.e. maximum total number of operations) for ATP t, t ∈

T (a) and a ∈ A

� T (a) = Set of ATPs associated with airport a, a ∈ A

� I (l) = Set of itineraries associated with MTP l, l ∈ L (m) and m ∈M

� F (s) = Set of flight legs associated with segment s, s ∈ S

� δif =

 1 if itinerary i contains flight leg f

0 otherwise
i ∈ I and f ∈ F.

� γtf =

 1 if ATP t is utilized by flight leg f

0 otherwise
t ∈ T and f ∈ F.

Decision variables:

� xf = Frequency of flight leg f, f ∈ F

� yi = Number of passengers on itinerary i, i ∈ I

� rmax = Maximum utilization ratio for airport hourly capacities
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Formulation:

Minimize rmax

Subject to:
∑
i∈I(l)

yi = Dl ∀l ∈ L (m) ,m ∈M (2.6)

xfcf ≥
∑
i∈I

δifyi f ∈ F (2.7)

∑
f∈F (s)

xf ≥ fs ∀s ∈ S (2.8)

∑
f∈F

γtfxf ≤ rmaxHCt ∀t ∈ T (a) , a ∈ A (2.9)

xf ∈ Z+ ∀f ∈ F (2.10)

yi ∈ Z+ ∀i ∈ I (2.11)

2.6 Solution Algorithm

As mentioned earlier, due to large problem size, obtaining an exact solution is difficult.

Additionally, because of the aggregate nature of our analysis, approximate solution

methods are sufficient. We solve the FPFA linear programming (LP) relaxation and

round up the resulting solution to the nearest integer values greater than or equal to

the LP optimal solution. Due to the nature of the constraints in FPFA formulation,

none of the constraints is violated if segment frequencies are increased.

Solution to the FPFA problem involves determining daily frequency values, which

are relatively large integers. The impact of rounding up is comparatively small. But

for the TD problem, the solutions are highly fractional because the hourly frequencies

are much smaller than daily frequency values. Therefore, the rounding up procedure

worsens the objective function dramatically. Much of the solution’s non-integrality

stems from the markets in which demand is extremely low per day. Therefore, the LP

solution has very small fractions of flight legs serving small markets, and the solution

is not of sufficient quality for our purposes. Therefore, we solved the TD problem in

two steps. The TD solution procedure is described schematically in Figure 2-2. In the
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first step, the TD LP relaxation was solved for a smaller sub-problem involving all the

markets with a daily demand of at least 250 passengers. These constituted over 60%

of the total demand. These markets include all the candidates for non-stop service

bypassing the hub. This LP solution was rounded upward to the nearest integers.

Due to the nature of constraints in the TD formulation, an increase in value of any

x variable in a feasible solution does not affect feasibility. Moreover, most of flights

in these important markets serve as connecting flights for smaller markets. Therefore

the additional seating capacity made available due to flight rounding is very likely to

be utilized to carry passengers in remaining smaller markets. The remaining problem

was solved using a greedy heuristic, as depicted in Figures 2-3 and 2-4.

In the first step of the heuristic, as described in Figure 2-3, additional non-stop

flights are scheduled to satisfy the demand in markets with a daily demand of less

than 250 passengers and with at least one endpoint at a hub (the Hub Markets). The

markets are processed one after the other in decreasing order of demand. Additional

flights are scheduled such that the maximum utilization ratio across all the affected

ATPs is minimized at each step. Scheduling an additional non-stop flight increases

the utilization ratio for the origin airport during the departure hour and also increases

the utilization ratio of the destination airport during the arrival hour. Among all the

departure time choices for a MTP, the one which minimizes this maximum utilization

ratio is chosen.

In the second step of the heuristic, as described in Figure 2-4, additional flight

legs are scheduled to satisfy the demand for markets with a daily demand of less

than 250 passengers, where neither endpoint is a hub (the Non-hub Markets). The

demand for these small, non-hub markets has to be satisfied by one-stop itineraries.

The algorithm processes the markets in decreasing order of demand and schedules

additional flights on first or second or both legs of an itinerary so as to minimize the

maximum utilization ratio among all the affected ATPs.

The optimization algorithm ignores the aircraft flow balance constraints, which

is an important component of the airline scheduling procedure. The purpose of this

study is not to come up with a schedule that can be operated using actual aircraft
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Figure 2-2: Timetable development algorithm
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Figure 2-3: Greedy heuristic for hub markets with small demand
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Figure 2-4: Greedy heuristic for non-hub markets with small demand
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fleets- our goal is not to design a monopolistic airline schedule for the US- but rather

to find a lower bound on the levels of delays. However, to assess the potential impact

of aircraft balance requirements, after completing the optimization process, we per-

formed a post-processing step wherein additional flights were added to the optimal

unbalanced schedule in order to balance it. Fortunately, because the passenger de-

mands typically are balanced in both directions of a market, the resulting schedule is

not too far from a balanced schedule. In our algorithm, we add one flight at a time

from an airport with a surplus of a particular aircraft type to an airport with a deficit

of the same aircraft type. The departure time of each additional flight is chosen to

greedily minimize the maximum utilization ratio of the affected ATPs at each step.

The results presented in the next section provide the statistics on both the balanced

and unbalanced single airline (SA) networks, and compare these statistics with the

existing network.

Flight delays are estimated using the Approximate Network Delay (AND) model,

described by Odoni, Pyrgiotis and Malone [70] as follows: AND is a stochastic and

dynamic queuing model. It has two main components, a queuing engine (QE) and

a delay propagation algorithm (DPA). AND treats a network of airports as a set of

interconnected queuing systems where each airport is modeled as an M (t) |Ek (t) |1

queuing system. The queuing system is characterized by a non-stationary Poisson

arrival process, time-dependent kth-order Erlang service-time distribution and a single

server with infinite queuing capacity. AND iterates between QE and DPA by tracking

each flight in the network and updating the airport demand profiles based on revised

flight arrival and departure times.

2.7 Data Sources and Implementation Details

Schedules of major US domestic airlines were obtained from the Airline On-Time

Performance Database provided by the Bureau of Transportation Statistics [71]. A

10% sample of the passengers carried by each airline per quarter is provided in the

Airline Origin and Destination Survey (DB1B) available on the same website. An
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estimate of the total passenger demand per OD market is obtained by multiplying

the DB1B passenger number by 10. The top 20 airlines in the US, which constitute

over 95% of the total traffic, are considered for the analysis. Demand for each market

per day is divided into 4 time periods that roughly correspond to morning peak

period, off-peak period, evening peak period and another off-peak period. Given the

daily demands, the Decision Window Model by the Boeing Airplane Company [6] is

used to calculate the demand in each MTP. Apart from these 20 airlines, there are

several other flights such as cargo, general aviation and international flights which

are not included in our analysis. We assume that these remaining flights continue

to be operated as they currently are. We simply add those operations to the total

operations at each airport for calculating the utilization ratios.

The Federal Aviation Administration has published benchmark capacity values

for the 35 most congested US airports [44]. For each one of those airports, the

report provides 3 values of capacity along with the corresponding probabilities of their

realization, based on weather, wind and other conditions. The capacity is measured

as the maximum number of operations (takeoffs and landings) possible at an airport

per hour. Based on the capacity distributions for these airports, we use capacity

values for each airport that correspond to the maximum capacity that is available for

at least 95% of the time at that airport. We use these capacities only for calculating

the utilization ratios. The delay calculation is based on the actual realized capacity

values under each weather scenario.

The analysis is carried out for Tuesday, 16th October 2007. Because this analysis

is aggregate in nature, we use only three generic fleet types. We call them Wide

Body (WB), Narrow Body (NB) and Regional Jets (RJ). The seating capacity values

for these three fleet types are chosen to be the average seating capacities of the

corresponding aircraft in the 2007 fleet of the seven largest US airlines.

Realized hourly capacity data for the 35 busiest US airports was compiled for

the entire year from April 2007 to March 2008 in order to generate realistic capacity

reduction scenarios. Based on the total duration of capacity reduction across the 35

airports, we divided the 366 days in the year into 5 categories, namely, very good,
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good, normal, bad and very bad, each containing approximately the same number of

days. A typical (median) day belonging to each category was chosen and delays were

computed using the corresponding realized capacity values.

2.8 Results

For our single airline network, the maximum utilization ratio over all airports over

all ATPs was found to be 90.77%. In comparison, the maximum utilization ratio in

the existing network was 160%. Table 2.1 provides the cumulative distribution of

utilization ratios across the 35 busiest airports, across 24 hours of the day. The first

column contains the percent utilization ratios and the next three columns show the

number of times that value was exceeded in the existing network, unbalanced single

airline (SA) network and balanced single airline (SA) network respectively. Each

combination of airport and hour is counted as one observation. In case of the single

airline networks, compared to the existing network, there is a substantial reduction

in the hourly utilization ratios at the busy airports, which means that there would

be substantially lower delays when bad weather reduces airport capacity.

Table 2.1: Comparison of airport utilization ratios

Utilization Existing Unbalanced Single Balanced Single
Ratio Network Airline Network Airline Network

> 150% 1 0 0
> 140% 3 0 0
> 130% 8 0 0
> 120% 19 0 0
> 110% 28 0 0
> 100% 55 0 0
> 90% 76 1 1
> 80% 133 60 83
> 70% 196 131 151
> 60% 275 196 210
> 50% 350 268 292

Table 2.2 compares some important metrics for the unbalanced and balanced single
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airline networks to those for the existing network. US domestic flights in October 2007

had an average load factor of 78.45% [75]. The load factor for the single airline network

is lower, reflecting that the single airline network design problem had less flexibility

in selecting the most appropriate aircraft for each flight leg due to aggregation of

aircraft sizes into 3 broad categories. We define block hours as the difference between

the scheduled arrival time and scheduled departure time of a flight. The unbalanced

single airline network requires 26% fewer flights and 8% lower total block hours than

the existing network. For the year 2007, the DB1B Market database [73] shows

that approximately 31.98% of the passengers traveling on major US airlines were

connecting passengers, which is very close to that for the single airline network.

Table 2.2: Network performance metrics

Metric
Existing Unbalanced Single Balanced Single
Network Airline Network Airline Network

Number of Flights 20,539 15,231 16,872
Connecting Passenger Percentage 31.98% 33.77% 33.77%
Load Factor 78.45% 71.77% 64.51%
Total Block Hours 44,103 40,756 45,739

In the single airline network, operations are more evenly spread over the day at

the congested airports. We compared the means and standard deviations of hourly

utilization ratios from 6:00 am to midnight at the 35 busiest airports in the US. For the

existing network, the average values of the mean and the coefficient of variation (i.e.,

the ratio of standard deviation to mean) are 36.7% and 56.4% respectively, while

for the balanced single airline network they equal 31.5% and 47.8% respectively.

So the single airline schedule has not only lower average utilization but also lower

variation in the number of operations scheduled. This effect is especially strong for the

more congested airports. There are 9 airports, Atlanta (ATL), Washington Reagan

(DCA), Newark (EWR), New York Kennedy (JFK), Los Angeles (LAX), New York

Laguardia (LGA), Chicago O’Hare (ORD), Seattle-Tacoma (SEA) and San Francisco

(SFO), which have a mean utilization of at least 70% between 6 am and midnight in

the existing network. For these most congested airports, the mean utilization ratio
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Figure 2-5: Distribution of utilization ratio over a day at JFK airport

decreases from 86.5% for the existing network to 68.7% for the balanced single airline

network and the coefficient of variation averaged across these airports decreases from

29.6% for the existing network to 16.5% for the balanced single airline network. To

illustrate, Figure 2-5 shows the distribution of the utilization ratio over a day at John

F. Kennedy International Airport, New York (JFK), one of the busiest airports in US.

This efficient utilization of off-peak hour capacity is one of the factors that contribute

to lowering the congestion levels in the single airline network.

The other important factor that contributes to lower congestion is an increase

in average aircraft size. Table 2.3 illustrates the number of flights being operated

by each fleet type. The numbers in the parentheses indicate the percentage of all

flights corresponding to that particular fleet type. The strong shift towards wide

body aircraft can be observed in both the unbalanced and balanced networks. Most

of the increase in the number of wide bodies comes from a decrease in usage of narrow

bodies.
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Table 2.3: Aircraft size distributions

Fleet Type Wide Body Narrow Body Regional Jets

Existing Network 363 (1.77%) 12788 (62.26%) 7388 (35.97%)
Unbalanced Single Airline Network 3285 (21.57%) 6058 (39.77%) 5888 (38.66%)
Balanced Single Airline Network 3561 (21.11%) 6775 (40.16%) 6536 (38.74%)

Table 2.4 compares the total aircraft delay under 5 different capacity scenarios.

The delay values are computed excluding any propagated delay due to late arriving

aircraft. In each capacity scenario, the single airline network produces substantially

lower delays, with the delay reduction ranging from 53% to 88%. As the congestion

worsens, the absolute, as well as percentage, delay reduction increases. Given the way

the scenarios are chosen, each chosen scenario can be considered equally likely. Thus,

across different scenarios an average delay reduction of 81.72% can be achieved in

the absence of competition. This provides an estimate of the inefficiencies due to the

competitive scheduling practices of carriers using the existing airport infrastructure.

The results suggest that congestion related delays could be reduced to less than one

fifth of the existing level if there was no competition. In other words, competition is

responsible for more than a 400% worsening of congestion related delays. Most of the

improvement is due to efficient utilization of airport capacity during off-peak hours

and a strong shift towards larger aircraft.

Table 2.4: Total flight delay under various weather scenarios

Scenario Existing Network Balanced Single Airline Percentage
Delay (aircraft-min) Network Delay (aircraft-min) Reduction

Very Good 7495.05 3552.97 52.60%
Good 14682.3 4090.06 72.14%
Normal 27998.76 5940.4 78.78%
Bad 35081.44 6289.88 82.07%
Very Bad 64026.52 7421.76 88.41%

Average 29856.82 5459.02 81.72%

In Figure 2-6, we show the total number of operations at the 35 busiest airports

under the existing network and under the balanced single airline (SA) network. The
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airports are arranged from left to right in decreasing order of daily utilization ratios

in the existing network. The number of operations in the SA network is lower than

in the existing network in all but 7 out of these 35 airports, with the total number

of operations being 13.9% lower. This effect is especially strong in the cases of the

leftmost four airports, ORD, EWR, JFK and LGA, which are the top four airports

in terms of the daily utilization ratio, as well as average flight delays. The total

number of operations at these 4 airports is 29.6% lower in the SA network than in

the existing network. The DFW, DEN and PHX airports, which have comparatively

lower utilization ratios and a lot of excess capacity in the existing network, are the

only airports with significant increases in the number of operations. These were also

chosen as 3 of the 5 hubs in the single airline network because of these characteristics.

The overall increase in operations at these three airports is 62.9%. Finally, operations

are substantially reduced at airports such as Salt Lake City (SLC), Cleveland (CLE),

Cincinnati (CVG) and Memphis (MEM), which already have low utilization ratios in

the existing network. This apparent anomaly stems from the fact that these are the

hub airports for at least one major existing network carrier, but none of them has a

strong local market with high passenger demand. These existing hubs tend to rely

on connecting passenger flow, in the absence of which the number of operations is

expected to be lower.

2.9 Summary

In this chapter, we calculated a lower bound on system-wide delays that can be

achieved in the absence of competition while satisfying all passenger demand and

maintaining a comparable level-of-service to that achieved with the existing networks

of multiple competing airline. Aggregate integrated integer programming models

of timetable development and fleet assignment were developed and solved using a

heuristic-based approach. Obviously, getting rid of (or even reducing the extent

of) competition between airlines is a highly unrealistic strategy in the real world.

It is also not the point of the research presented in this chapter. However, what
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Figure 2-6: Number of operations by airport

our results show is that there is significant room for improvement in the level of

congestion with the existing airport infrastructure. Passenger demand is currently

at a level where delays are avoidable to a large extent. Given the available capacity,

efficient administrative controls and/or market-based mechanisms can potentially lead

to substantial reductions in airport congestion and delays.

These results provide critical insights into the nature and causes of aviation delays,

allowing better planning and utilization of aviation infrastructure. In particular,

the results help differentiate between the delays caused by insufficient capacity and

delays caused by inefficient utilization of capacity. The models and solution methods

presented here can also be used for analyzing the best-case delay levels under different

future scenarios, with different levels of demand and capacity.

The critical next step is to devise intelligent mechanisms and incentives that will

result in airlines gradually migrating their schedules from those in place today towards

the delay-minimizing schedules presented in this chapter, in the presence of market

competition. In Chapter 5 of this thesis we demonstrate that, under frequency com-
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petition between carriers, simple changes to existing administrative slot controls at

a congested airport can lead to improved schedule reliability and delay reduction

while maintaining a comparable level-of-service through the provision of adequate

frequency and seating capacity. Moreover, they also result in a considerable increase

in airline profits. This is achieved through reductions in total allocated airport ca-

pacity and aircraft upgauges. Market-based slot pricing and auctioning mechanisms,

mentioned earlier, are expected to achieve similar improvements in schedule reliability

and delays. However, due to the associated monetary payments, the overall impact

on airline profits needs to be evaluated carefully while accounting for the effects of

airline schedule competition. We provide detailed analysis of the impacts of conges-

tion pricing mechanisms under airline competition in Chapter 6, while the analysis

of slot auctions is left as future work.
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Chapter 3

Quantification and Analysis of

Passenger Delays and Disruptions

3.1 Introduction

Passenger delays and disruptions significantly degrade the travel experience of passen-

gers. Accurate estimation of passenger delays is necessary to evaluate the performance

of the National Aviation System (NAS) adequately from the passengers’ perspectives.

Furthermore, a detailed analysis of the spatio-temporal patterns in passenger delays

is important also for enabling passenger-centric decision making on part of the airlines

as well as the policy-makers. With 2007 being one of the worst years in terms of de-

lays in the NAS, several studies have tried to quantify the total costs of delays to the

passengers in that year. As per the U.S. Congress Joint Economic Committee report,

the total cost of passenger delays was estimated at $12 billion for the year 2007 [87].

For the same year, the analysis by Air Transport Association estimated the passen-

ger delay costs to be approximately $5 billion [5]. The Center for Air Transportation

Systems Research (CATSR) at the George Mason University estimated the value to

be $8.5 billion [88]. Such large differences in these estimates point to a need for a

more transparent and rigorous approach to passenger delays estimation problem.

An important issue with each of these three passenger delay estimation studies is

that they do not account properly for the passenger delays arising from flight cancel-
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lations and/or missed connections. In particular, the Congress Economic Committee

report ignores flight cancellations as well as missed connections [87]. The CATSR

report takes flight cancellations into account, but ignores all passenger connections

resulting in double counting of passengers on connecting flights [88]. Therefore, the

CATSR methodology cannot account for missed connections. The Air Transport As-

sociation’s report does not account for flight cancellations and missed connections

either [5].

Flight cancellations and missed connections are known to be the reasons behind

a significant part of the delays to passengers [23]. Bratu and Barnhart used one

month of proprietary passenger booking data from one large legacy carrier to per-

form an analysis of passenger delays, which showed that the delays due to itinerary

disruptions such as cancellations and missed connections represent a significant com-

ponent of the overall passenger delays [23]. The difficulty in extending this analysis

system-wide is that the publicly available data sources do not contain passenger flows

disaggregated by individual itineraries. For example, the public data sources do not

provide information on how many passengers planned to take the 7:05am Delta Air-

lines flight from Boston Logan (BOS) to Atlanta (ATL) on a given day followed by

the 12:25pm flight from Atlanta (ATL) to Miami (MIA), or even the number of non-

stop passengers on either of these flights. The publicly available data sources contain

either monthly or quarterly aggregates of passenger flows, reported based only on

the origin, connection, and destination airports. In this research, we have developed

methodologies to address these very limitations. We estimate passenger itinerary

flows using a novel discrete choice-based approach. We use the resulting disaggregate

data for accurate estimation of passenger delays and provide valuable insights into

the important factors affecting passenger delays and disruptions.

A comprehensive estimation of passenger delays using the Bratu and Barnhart

approach requires passenger booking data across different carriers for the entire pe-

riod under consideration. Such data is not available publicly and is usually very

difficult to acquire from the individual airlines. Zhu tried to address the problem

of estimating passenger itinerary flows using an allocation approach based on linear
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programming [101]. This approach does not allow for incorporating secondary fac-

tors, such as connection time, which play an important role in passenger itinerary

choice. Also due to the extreme point optimal solution to the linear programming

model, a large number of flights end up with 0% or 100% load factors as per the

estimated passenger flows. The discrete choice-based methodology presented in this

chapter allows us to overcome both these difficulties. Coldren, Koppelman and others

have applied discrete choice models to estimate airline itinerary shares from passen-

ger booking data [35, 34]. They use this approach to forecast the share of passenger

demand for a market (i.e., all air travel from an origin to destination) that will use

each of the available itineraries. Thus, theirs is a more general problem where all

the routes between the origin and destination are considered simultaneously for the

estimation process. In our problem, due to the manner in which publicly available

passenger flow data is aggregated, we already have information at a somewhat more

disaggregate level compared to these two studies. We know the number of passengers

on each combination of carrier and route. Our problem is to estimate the share of

passenger demand for a carrier-route combination that used each of the individual

itineraries corresponding to that carrier-route combination. Our discrete choice-based

methodology is similar to that employed by Coldren and Koppelman [35, 34].

Most existing studies analyzing passenger delays make a number of assumptions

in order to use aggregate data because of the unavailability of disaggregate data. In

order to circumvent the problem of unavailability of passenger itinerary flow data,

the CATSR study ignores all passenger connections, thus treating each connecting

passenger as equivalent of multiple non-stop passengers, one for each flight in the

itinerary [88]. This study also assumes that the load factors for all flights on an

origin-destination segment remain constant at the average monthly value. Tien, Ball

and Subramanian develop a structural model of passenger delays but, due to a lack of

disaggregate data, have to rely on various assumptions for the values of key parameters

which are difficult to verify [95]. A measure drawback of these studies is that the

results cannot be validated due to unavailability of passenger itinerary flows data. The

extensive database of passenger itinerary flows and delays generated as a result of our
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research will be highly beneficial for detailed validation of these earlier approaches.

The major contributions of our research fall into three broad categories: 1) an

approach for disaggregating publicly available aggregate passenger flows data, 2) an

analysis of the spatio-temporal patterns in passenger delays using these estimated

disaggregate passenger flows, and 3) an investigation of the causes and costs of pas-

senger travel disruptions by applying data analysis and statistical modeling to histor-

ical flight and passenger data. Section 3.2 provides a brief overview of our passenger

delay estimation methodology. The reader is referred to Barnhart, Fearing and Vaze

[12] for a much more detailed discussion of the methodology and the discrete choice

model estimation results. Section 3.3 summarizes the passenger delay results and

discusses several key findings. These findings enhance our understanding of the com-

plex performance characteristics of the National Aviation System and demonstrate

the breadth of analytical possibilities based on the methodologies that we have devel-

oped. Section 3.4 presents a simplified, linear regression-based approach for passenger

delay estimation, bypassing the passenger allocation and re-accommodation process.

Sections 3.5 and 3.6 develop insights into the disruption performance of the U.S.

National Aviation System through data analysis and statistical modeling to analyze

flight cancellations and missed connections, respectively. Section 3.7 concludes the

chapter with a summary of our findings.

Several parts of this chapter make extensive use of the 2-letter carrier abbreviation

codes and the 3-letter airport abbreviation codes. For ease of reference, each of the

carrier and airport abbreviations used is listed in the Appendix A at the end of this

thesis.

3.2 Passenger Delay Estimation Methodology

In this section, we describe the methodology used for estimating passenger delays.

The passenger delay estimation process can be divided into two sequential steps: 1)

Passenger Itinerary Flow Estimation, and 2) Delay Calculation, which are described

in Sub-sections 3.2.1 and 3.2.2 respectively.
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3.2.1 Passenger Itinerary Flow Estimation

In this sub-section, we describe the passenger itinerary flow estimation problem, data

sources, pre-processing of data, and the discrete choice model for flow estimation.

Problem Statement: The problem can be stated in terms of itineraries, carrier-

segments, and carrier-routes. We defined these three terms as follows. An itinerary is

defined to be a sequence of connecting flights that represents a one-way trip, including

scheduled times and airports for departure, connection (if any), and arrival. For an

operating carrier providing non-stop flight service between the origin and destination

airports, a carrier-segment is the combination of an operating carrier, origin, and

destination. Finally, a carrier-route is a sequence of carrier-segments that represents

the flight path a passenger could travel from the origin of the first carrier-segment

to the destination of the last carrier-segment. Then a passenger itinerary flow esti-

mation problem is that of combining the monthly aggregated passenger flow data by

carrier-segments with the quarterly aggregated passenger flow data by carrier-route

to allocate passengers to plausible itineraries.

Data Sources: The monthly aggregates of numbers of passengers and seats

flown on each carrier-segment and aircraft type are obtained from the T-100 Domestic

Segment (T-100) database [75]. A 10% sample of the quarterly aggregates of domestic

passenger flows is obtained from the Airline Origin and Destination Survey (DB1B)

[73]. Proprietary passenger booking data from one large carrier in the United States

for the 4th quarter of 2007 is used for estimating the parameters of the discrete choice

model.

Preprocessing of Data: Data pre-processing step involves, 1) generation of the

set of potential itineraries, and 2) estimation of the number of passengers traveling on

each carrier-route for each month. We generate one non-stop itinerary corresponding

to each flight. For each one-stop carrier-route in DB1B ticket data, we create po-

tential itineraries that have reasonable connection times (between 30 minutes and 5

hrs). Estimation of the number of passengers traveling on each carrier-route for each

month is performed by scaling the quarterly carrier-route-wise DB1B 10% ticket sam-
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ple flows using the monthly carrier-segment-wise T-100 flows for each carrier-segment

associated with that carrier-route. Different scaling factors are used for each combi-

nation of carrier-segment and month. Such differential scaling is necessitated because

of the absence of information on domestic component of international itineraries and

non-uniformity of the sampling of domestic itineraries in DB1B ticket sample. Please

refer to Barnhart, Fearing and Vaze [12] for more details on these issues and the

differential scaling procedure.

Discrete Choice Model for Flow Estimation: Given the total passenger flow

and a set of potential itineraries for each carrier-route for each month, the passenger

itineraries flows are obtained by allocating portion of the passenger flow to each indi-

vidual itinerary in the choice set. For each passenger, this is performed by randomly

selecting an itinerary from the set of potential itineraries for each carrier-route for

each month. The selection probability for each itinerary is given by the multinomial

Logit function given by,

P (i) =
eu(xi)∑
eu(xj)

∀ itineraries i (3.1)

The utility u (xi) of itinerary i is a function of various characteristics of the

itinerary. It is well known that passengers prefer certain times of a day over oth-

ers and certain days of the week over others. Therefore, we use dummy variables

corresponding to combinations of time-of-the-day and day-of-the-week characteristics

of each itinerary, in it’s utility function. Various studies on air transportation pas-

senger choice have helped us determine additional characteristics to be included in

the utility function, including connection times, aircraft size and cancellation dummy.

Theis, Adler, Clarke, and Ben-Akiva demonstrate that passengers traveling on one-

stop itineraries are sensitive to connection times, specifically exhibiting a disutility

associated with both short and long connection times [93]. The study by Coldren and

Koppelman suggests that passengers prefer traveling on larger aircraft [34]. Finally,

recent work has shown that flight cancellation decisions are affected by flight load
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factors - the fraction of seats filled on each flight [94]. This suggests flight cancella-

tions are an important factor to consider, because we would expect fewer passengers

to have been booked on canceled flights.

The model is estimated using proprietary booking data from one large network

carrier in the United States for the 4th quarter of 2007. The model was found to be

statistically significant and all the parameter estimates were found to be intuitively

reasonable. For more details on the statistical estimation and validation results,

please refer to Barnhart, Fearing and Vaze [12].

3.2.2 Delay Calculation

The passenger delay calculator developed by Bratu and Barnhart [23] calculates the

passenger delays through re-accommodation of passengers using information on a

single carrier. In reality, the passengers booked on one carrier are sometimes re-

accommodated on other carriers. For the purpose of our study involving 20 major

domestic carriers, we extend the algorithm to estimate the delays for passengers re-

booked on a carrier different than planned. In this sub-section we describe important

steps in the extended passenger delay calculator.

Identification of Disrupted Passengers: We assume that a non-stop passenger

is disrupted if the corresponding flight is cancelled or diverted, while a one-stop

passenger is disrupted if one or both of the flights in the planned itinerary are cancelled

or if the passenger is unable to make his/her connection. We assume that a passenger

misses a connection if the available connection time is less than 15 minutes. For a non-

disrupted passenger, the delay equals the delay to the final flight in his/her itinerary,

while for a disrupted passenger, the delay depends on the re-accommodation process.

Identification of the Disruption Time and Airport: For passengers on

cancelled or diverted flights, we use the planned departure time and the origin airport

of the first cancelled/diverted flight in their itinerary as the disruption time and

airport respectively. For the passengers missing their connections, we use the actual

arrival time of the first flight as the disruption time and the planned connection

airport as the disruption airport.
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Identification of Potential Re-accommodation Itineraries: In order to be

conservative in our estimates, we put a limit on the re-accommodation delay for

each disrupted passenger based on the time of disruption. For passengers disrupted

during daytime hours, between 5:00am and 5:00pm, we limit the re-accommodation

delay to 8 hours. For passenger disrupted during evening or pre-dawn hours, between

5:00pm and 5:00am, we set the limit to 16 hours to allow for re-accommodation

the following day. A potential itinerary for re-accommodation has to be scheduled to

depart from the passenger’s disruption airport at least 45 minutes after the disruption

time, scheduled to end at the passenger’s planned destination airport no later than

the passenger’s re-accommodation delay limit. We allow for the possibility that the

recovery itinerary to which a passenger is assigned may in turn get disrupted and

the passenger may be required to be re-booked again. However, the total delay to a

passenger cannot exceed the re-accommodation delay limit.

Re-accommodation Heuristic: Disrupted passengers are re-accommodated,

from disruption airport to their final destination, in the order of their disruption times.

Similar to the assumption by Bratu and Barnhart each passenger is re-accommodated

on an itinerary that is scheduled to arrive the earliest at the passenger’s destination

[23]. The passenger delay for these passengers is the time they reach their final

destination minus the planned arrival time, ignoring negative values. We first search

for potential itineraries that use airlines matching the original itinerary (e.g., the two

carriers on a multi-carrier one-stop itinerary), along with any sub-contracted or parent

airlines. If such itinerary is found, then the passenger is re-booked on a potential re-

accommodation itinerary that is scheduled to reach the passenger’s destination at

the earliest time. If no such potential re-accommodation itinerary is found, then

we attempt to re-accommodate the passengers using any potential re-accommodation

itinerary across all carriers. If such itinerary is found, then the passenger is re-booked

on a potential re-accommodation itinerary that is scheduled to reach the passenger’s

destination at the earliest time. If no such itinerary is found, then the passenger’s

delay is set to be equal to the re-accommodation delay limit.
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3.3 Passenger Delay Results

Using the approach described in Section 3.2 above, we estimated passenger itinerary

flows and passenger delays for US domestic passengers across the entire 2007 calendar

year. Table 3.1 summarizes the number of passengers and total passenger delays for

the 2007 US domestic air passengers by cause of delay. As shown in the Table 3.1,

only around 52% of the delays to passengers are directly caused by flight delays.

Approximately 30% of the passenger delays are caused by flight cancellations and

approximately 18% are caused by missed connections.

Table 3.1: Passenger delay estimates for 2008

Cause Number of Passengers Delay (Hours)

Flight Delays 470,601,247 125,348,408
Flight Cancellations 10,190,837 74,229,945
Missed Connections 5,740,563 44,890,612

Total 486,532,647 244,468,965

Using the aggregated results in Table 3.1 combined with the disaggregated results

derived from our approach, we highlight nine key findings regarding the breakdown

and causes of passenger delays. In each case, we begin by stating the finding, and

then providing further details, including any definitions or assumptions, as well as

further discussion of the result.

Finding 1. The ratio of average passenger delay to average flight delay is maxi-

mum for regional carriers and minimum for low-cost carriers, owing primarily to the

cancellation rates and the connecting passenger percentages.

As above, a passenger is identified based on the carrier operating the first flight

in the itinerary. We categorize American Airlines (AA), Continental Airlines (CO),

Delta Airlines (DL), Northwest Airlines (NW), United Airlines (UA), and US Airways

(US) as the legacy network carriers ; JetBlue Airways (B6), Frontier Airlines (F9),

AirTran Airways (FL), and Southwest Airlines (WN) as the low cost carriers ; and

Pinnacle Airlines (9E), Atlantic Southeast Airlines (EV), American Eagle Airlines
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(MQ), Comair (OH), Skywest Airlines (OO), Expressjet Airlines (XE), and Mesa

Airlines (YV) as the regional carriers.

Across all carriers in 2007, the ratio of average passenger delay to average flight

delay is 1.97. For individual carriers, it ranges between 1.49 for Southwest Airlines

(WN) and 2.99 for Pinnacle Airlines (9E). For the legacy network carriers, this ratio

ranges from 1.65 to 2.23, with an average value of 2.03. For regional carriers, it ranges

from 2.27 to 2.99 with an average value of 2.61. Last, for low cost carriers, it ranges

from 1.49 to 1.89 with an average value of 1.61.

The reasons for such disparity become clear when we look at the cancellation per-

centages and the percentages of connecting passengers. In the year 2007, the overall

percentage of canceled flights was 2.4% and the percentage of connecting passengers

was 27.2%. The regional carriers had both the greatest percentage of cancellations

(3.4%) as well as the greatest percentage of connecting passengers (39.6%). Low-cost

carriers had the lowest percentage of cancellations (1.2%) and the lowest fraction of

connecting passengers (17.0%). Legacy network carriers fell between these two ex-

tremes, both for the percentage of cancellations (2.2%) and the percentage of connect-

ing passengers (31.0%). As we show later in Section 3.4, the percentage of canceled

flights and the percentage of connecting passengers are highly correlated with the

ratio of average passenger delay to average flight delay.

Finding 2. Passengers scheduled to transfer in one of 6 airports: Newark (EWR),

Chicago O’Hare (ORD), New York La Guardia (LGA), Washington Dulles (IAD),

New York Kennedy (JFK) or Philadelphia (PHL), were exposed to the longest average

connecting passenger delays. For each of these airports, over 10% of scheduled con-

necting passengers had their itineraries disrupted. These 6 airports were also among

the worst airports with respect to both average delays for departing flights and depar-

ture cancellations.

We restrict this analysis to only the connecting passengers and consider data from

the top 50 transfer airports in the U.S. These airports account for nearly 98.7% of

all domestic connecting passengers in the U.S. On average, 12.2% of the passengers
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scheduled to connect through the 6 airports listed had their itineraries disrupted

compared to just 6.9% at the remaining 44 airports. These airports were the worst

transfer airports in terms of average connecting passenger delay. Across these 6

airports, the average delay per connecting passenger of 78.5 minutes was 32.9 minutes

more than that at the remaining 44 airports (45.6 minutes). These 6 airports are

among the 9 worst transfer airports in terms of departure cancellation rates and the

7 worst transfer airports in terms of average delays for departing flights. The worst

transfer airports based on departure cancellation rates also includes Reagan (DCA),

Boston (BOS), and Dallas / Fort Worth (DFW). DFW is also on the list of transfer

airports with the worst average delays for departing flights, rounding out that list.

Finding 3. Domestic passenger connections are highly concentrated at the top three

transfer airports: Atlanta (ATL), Chicago O’Hare (ORD), and Dallas / Fort Worth

(DFW), representing approximately 43.2% of planned passenger connections. As

such, ATL, ORD, and DFW are responsible for more than 40% of domestic missed

connections, and contribute to more than 43% of all delays to connecting passengers.

As above, we restrict this analysis to only connecting passengers and consider data

from the top 50 transfer airports in the U.S. Approximately 43.2% of these connecting

passengers connect either at ATL, ORD, or DFW. Consequently, the largest numbers

of connecting passengers either miss their connections or are alternatively disrupted

at one of these three airports, representing 44.5% of all disrupted connecting pas-

sengers and 40.5% of all misconnecting passengers. In comparison, only 15.3% of

all connecting passengers connect at the next three largest transfer airports: Denver

(DEN), Phoenix (PHX) and Houston (IAH), which contribute to 16.8% of the missed

connections and 15.3% of the delays to connecting passengers. Among all transfer

airports, ATL contributes the most to total connecting passenger delays (15.8%),

because it has the highest number of connecting passengers (17.9% of all connect-

ing passengers), even though its average connecting passenger delay is below average

(43.9 minutes vs. 49.9 minutes on average). DFW contributes 13.0% of the total

connecting passenger delays while servicing just 11.0% of scheduled connecting pas-
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sengers due to a higher than average connecting passenger delay (59.07 minutes). For

ORD, the discrepancy is even more extreme, as it services just 9.1% of all connecting

passengers, but corresponds to 14.4% of the total connecting passenger delays. This

substantial discrepancy is due to ORD having the second highest average connecting

passenger delays (78.4 minutes behind EWR at 93.1 minutes).

Finding 4. Average evening passenger delay is 86.8% greater than the average morn-

ing passenger delay. One important reason for this difference is the 89.4% greater

average evening flight delay compared to the average morning flight delay. The other

important reason is the greater ease of re-booking for the passengers disrupted in the

morning compared to those disrupted in the evening, as reflected by 66.3% higher aver-

age disrupted passenger delay to evening passengers compared to that for the morning

passengers.

For this analysis, all passengers and flights are categorized as morning or evening

depending on the planned departure time from their origin airport. Any passenger

(or flight) with planned local departure time between midnight and 11:59 am is de-

noted as a morning passenger (or morning flight) while any passenger (or flight) with

planned local departure time between noon and 11:59 pm is categorized as an evening

passenger (or evening flight). Note that one-stop passengers are categorized depend-

ing on the planned departure time of the first flight in the itinerary. According to

this definition, 41.0% of the flights were classified as morning flights and 43.8% of the

passengers were classified as morning passengers.

The contribution of non-disrupted passenger delay to the total passenger delay

depends mainly on the flight delays, while the contribution from the disrupted pas-

sengers depends on the percentage of disrupted passengers and average delay to dis-

rupted passengers. For calendar year 2007, average delay for morning passengers

was 20.3 minutes compared to 37.8 minutes for evening passengers. A large part of

this difference can be attributed to the higher average delay to evening flights (18.5

minutes), compared to morning flights (9.8 minutes). In fact, 73.2% of overall flight

delays are due to delays to evening flights.
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The greater ease of re-booking is suggested by the fact that the average disrupted

passenger delay to morning passengers is 320.3 minutes while that for the evening

passengers is 532.6 minutes. This difference is, in part, due to the different maximum

delay values used for morning and evening disruptions, though it is also heavily in-

fluenced by the near-term availability of re-booking alternatives. Evening passengers

are much more likely to be disrupted at times where the next available re-booking

alternative requires an overnight stay-over. Though the delay to disrupted passen-

gers differs dramatically, the percentage of disrupted passengers does not differ much

between morning (2.96%) and evening passengers (3.52%), which is due in part to

the smaller difference between the percentage of canceled (or diverted) flights in the

morning (2.1%) and evening (2.6%). As a result, the relative disparity between de-

lays to morning and evening flights is greater than the disparity between delays to

the morning and evening passengers. In other words, the ratio of average passenger

delay to average flight delay in the morning (2.07) is slightly higher than that in the

evening (2.04).

Finding 5. The average passenger delay for the three months of summer and the

three months of winter was 56% higher than for the remaining six months, with June

being the worst month for air travel in terms of both total as well as average passenger

delays.

For this analysis we consider June, July, and August as the summer months;

and December, January, and February as the winter months. Average passenger

delay in the summer months was 37.4 minutes while that in winter months was 36.0

minutes. In the remaining 6 months, however, the average passenger delay was only

23.5 minutes. June and February were the only two months with average passenger

delays greater than 40 minutes. On the other end of the spectrum, September and

November were the only two months with average passenger delays of less than 20

minutes. In terms of total passengers, the summer and winter months fall on opposite

extremes, with average passengers per month being 9.9% above the annual average

in the summer and 10.3% below the annual average in the winter. The end result is
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that total monthly passenger delays are 36.5% higher during the summer as compared

to an average month, whereas total monthly passenger delays are only 7.0% higher

during the winter. If load factors were to increase during the winter, it is possible

that the winter months would become the worst months for travel based on passenger

delays.

Finding 6. Delay to the non-stop disrupted passengers depends on the ease of re-

booking and therefore is lower for origin-destination pairs with higher daily frequency.

Average delay to disrupted non-stop passengers on routes with at least 10 daily flights

per carrier is 31.4% lower than the overall average for disrupted passengers, and on

routes with at most 3 daily flights per carrier, it is 15.3% higher than the overall

average.

Disruptions to non-stop passenger itineraries occur due only to flight cancellations.

The average delays for these disrupted passengers are dependent on the ease of re-

booking which, in part, depends on the number of direct flights offered by the carrier

for the corresponding origin-destination pair. The overall average delay to disrupted

non-stop passengers is 443.6 minutes. When the carrier has a daily frequency of at

least 10 flights for the origin-destination pair, this average decreases to 304.1 minutes.

On the other hand, when the carrier has at most 3 flights per day, it is more difficult to

obtain a suitable recovery itinerary, increasing the average delay of disrupted non-stop

passengers to 511.5 minutes.

Finding 7. The relative benefits of flight frequency in terms of the ease of re-booking

depend significantly on load factors. On carrier-segments that have less than a 75%

average load factor, average delays to disrupted non-stop passengers are 385.9 minutes

as compared to 216.5 minutes when considering only those carrier-segments with 10

or more flights per day, representing a 43.9% improvement due to increased frequency.

On carrier-segments with at least a 75% average load factor, a frequency of 10 or more

flights per day leads to a relative reduction in disrupted non-stop passenger delays of

only 16.9% (455.5 minutes vs. 378.5 minutes).

For this analysis, we consider only those combinations of carriers and segments

86



which have at least 2 flights per day. Average delays to disrupted nonstop passengers

on carrier-segments with at least 75% average load factor (455.5 minutes) is 18%

higher than on carrier-segments with less than 75% average load factor (385.9 min-

utes). On average, nonstop passengers disrupted on low load factor (less than 75%

full), high frequency (10+ flights per day) carrier-segments experience 55.0% less de-

lay than their low load factor, low frequency (2 - 6 flights per day) counterparts,

whereas for high load factor (at least 75% full) carrier-segments, the increasing flight

frequency only reduces average delays by 23.6%. That is, though increasing flight fre-

quency is beneficial for all disrupted nonstop passengers, the impact is largest when

there are ample seats available for re-booking.

Finding 8. Monday and Saturday have, by far, the lowest ratio of average passenger

delay to average flight delay and these are the only two days when the ratio is lower

than the overall average value for the week. One part of the reason is the lower

percentage of canceled flights and another is the significantly higher percentage of

morning passengers on these two days.

The ratio of average passenger delay to average flight delay on Monday is 1.75

and on Saturday it is 1.88. For the remaining five days of the week, this ratio ranges

between 2.00 and 2.03 compared to an overall average of 1.97 for the week. One reason

for this difference is the lower percentage of canceled (and diverted) flights on these

two days; 2.2% for Mondays and 1.9% for Saturday, compared to the average of 2.5%

for the remaining 5 days of the week. Another important reason for this difference

is the higher percentage of morning travelers on these two days. On Monday and

Saturday, 47.6% and 48.3% of passengers respectively are morning passengers while

only 42.3% are morning passengers for the remaining 5 days. As discussed in Finding

4, average delays for morning passengers are significantly lower than for evening

passengers, due to shorter flight delays and easier re-booking earlier in the day. It is

interesting to note that on Monday, average flight delays (10.3 minutes) are almost

equivalent to the average flight delays throughout the week (10.2 minutes), which

implies that the difference in ratio is entirely due to reduced passenger delays.
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Finding 9. Southwest Airlines has the lowest average passenger delay, nearly 55%

lower than its competitors, even though its average flight delay is only 36.3% lower

than other airlines. The primary reason for the smaller magnitude of passenger delays

is the relative infrequency of disruptions to passenger itineraries; both in terms of

a much lower number of flight cancellations and much lower percentage of missed

connections.

Over the last 5 calendar years (2005 - 2009), Southwest Airline has been ranked as

the airline with highest overall on-time flight arrival performance (BTS, 2010), among

all the airlines that predominantly serve the continental United States. This excludes

Aloha Airlines (AQ) and Hawaiian Airlines (HA), among all the ASQP reporting

carriers. Southwest has also had the overall best on-time arrival performance for 4

out of these 5 years, including 2007, which is the year of our analysis. The following

analysis is performed for all the ASQP reporting carriers, excluding Aloha Airline

and Hawaiian Airlines.

Southwest Airlines has an average passenger delay of 15.6 minutes, less than half

of the 33.7 minute average value for the other airlines. The primary driver of this

difference is not the difference between the average flight delays of Southwest Airlines

(10.5 minutes) and that of the other airlines (16.2 minutes), nor the difference in

average delay to non-disrupted passengers for Southwest (11.1 minutes) and that of

other airlines (17.2 minutes). The major driver of Southwest Airline’s passenger on-

time performance is the relative infrequency of itinerary disruptions. For instance,

only 1.0% of Southwest flights are canceled as compared to 2.8% of flights for other

carriers. Consequently, the percentage of passengers on canceled flights for Southwest

(0.9%) is nearly a third of that for other airlines (2.4%). In addition, the percentage

of passengers missing a connection (out of all passengers) on Southwest (0.4%) is

nearly one fourth of that for the other carriers (1.4%). This is due to the smaller

percentage of one-stop passengers (15.5% for Southwest compared to 30.0% for the

other carriers) and to the propensity for longer connection times (41.9% of passenger

connections are longer than 1.5 hours for Southwest, compared to 36.1% for the other

carriers). Thus, for Southwest airlines, only 29.6% of all passenger delay is due to
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Figure 3-1: Linear regression model to bypass the passenger allocation and re-
accommodation process

itinerary disruptions, while for other airlines, delays due to itinerary disruptions are

responsible for 50.9% of all passenger delays.

3.4 Regression Model for Passenger Delay Estima-

tion

In this section, we develop a linear regression model to 1) identify critical character-

istics of airline networks, schedules, and passenger itineraries that affect passenger

delays; and 2) estimate passenger delays directly given public data, thus bypassing

the process of passenger allocation and re-accommodation. This simplified process is

schematically depicted along the right path in Figure 3-1.

Flight delays influence passenger delays in the most direct way. In the absence of

cancellations and missed connections, and assuming equal numbers of passengers per

flight, average passenger delay will equal average flight delay. Other factors such as
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cancellations and missed connections tend to increase average passenger delays beyond

the average flight delay. In our regression models, we use the average passenger delay

as the dependent variable, yi.

We restrict the independent variables in our models to those which are available

in public data sets such as ASQP, DB1B, etc. The purpose of this model is to see

how well we can predict passenger delays based on the publicly available data with-

out utilizing the complex itinerary flow estimation and delay calculation processes

described in Section 3.2. For model estimation, we use the results of our passenger

delay calculations. Each observation corresponds to a single day and airline combi-

nation. Thus, the 20 airlines in our data and the 365 days in 2007 correspond to the

availability of 7300 observations for estimating the model. To describe the model, we

utilize the following notation, where each observation i corresponds to a carrier-day

combination:

� dpi = average passenger delay corresponding to observation i

� dfi = average flight delay corresponding to observation i

� LFi = load factor for the carrier and month corresponding to observation i

� f canci = fraction of canceled flights corresponding to observation i

� f conni = fraction of connecting passengers for the carrier and quarter correspond-

ing to observation i

� f 60
i = fraction of flights with at least 60 minutes of delay corresponding to

observation i

� I (.) = the indicator function for the expression argument

� β0 = intercept; and

� βj = coefficient of independent variable xj.

Average daily flight delays, the daily fraction of canceled flights, and the daily

fraction of flights with at least 60 minutes of delay can be obtained from the Airline
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Service Quality Performance (ASQP) data for each carrier for each day. Average

monthly load factors can be obtained from T-100 segment data for each carrier for

each month. Average connecting passenger percentages can be obtained from DB1B

data for each carrier for each quarter. Various model specifications were tested and

we present here the model specification that was found to be the most suitable. The

independent variables for this model are calculated as shown in Equations 3.2 through

3.6.

xi1 = dfi ∀i (3.2)

xi2 = f canci ∀i (3.3)

xi3 = f canci xI (LFi > 0.8) ∀i (3.4)

xi4 = f conni ∀i (3.5)

xi5 = f 60
i xf

conn
i ∀i (3.6)

Using these definitions, the linear regression model is given by Equation 3.7.

yi = β0 +
5∑
j=1

βjxij ∀i (3.7)

Table 3.2: Regression parameter estimates

Parameter Description Parameter Estimate Std. Error p-value

Intercept β0 -1.34 0.24 0.00
Average flight delay β1 1.00 0.01 0.00
Fraction of canceled flights β2 458.77 2.92 0.00
Fraction of canceled flights * High
load factor dummy

β3 96.79 4.62 0.00

Fraction of connecting passengers β4 10.14 0.50 0.00
Fraction of connecting passengers
* Fraction of flights with at least
60 minutes of delay

β5 139.14 4.53 0.00
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The estimate of β1 is 1.00, suggesting that all else being equal, change in average

flight delay results in equal change in average passenger delays. The magnitude of

the estimate for β2 demonstrates that the fraction of canceled flights has a very

strong impact on passenger delays. The greater the fraction of canceled flights, the

greater the average passenger delay, because passengers on canceled flights must be

re-accommodated on later itineraries. Once a passenger is disrupted, re-booking

requires seat availability on alternate itineraries, which means that higher average load

factors reduce the probability that the passengers will be quickly re-accommodated.

Thus, we would expect cancellations to have a greater impact on passenger delays

when load factors are high. This effect is demonstrated in our model results through

the significant positive estimated value of β3, which parameterizes the interaction of

cancellations and load factors. In the publicly available data, there is no information

on connection times, thus the best proxy for missed connections it the percentage of

passengers with connections. In this context, the positive estimated value of β4 is

reasonable because the higher the ratio of connecting passengers to total passengers,

the higher the proportion of missed connections, and hence the higher the average

passenger delay. Out of all the connecting passengers, the fraction missing their

connection depends on the fraction of flights that have large delay. We would expect

the fraction of connecting passengers to have a greater impact on passenger delays

when the fraction of flights with large delays is high. This effect is demonstrated

through the significant positive value of estimate for β5.

Next, we assess the error in passenger delay estimates obtained from this simple

regression model using publicly available data. Using the estimated parameter values

reported in Table 3.2, we calculate the average passenger delay for each carrier-day

combination. Average passenger delays for each carrier for each month are then

calculated using simple averaging of the daily values. T-100 segments database pro-

vides the total segment passengers for each month for each carrier, while the DB1B

database provides the fraction of connecting passengers for each carrier for each quar-

ter. Combining the two, we estimate the number of monthly passengers for each car-

rier. Multiplying the average passenger delays by the number of passengers for each
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carrier-month combination provides an estimate of the total passenger delay for each

carrier-month. Aggregating across all carriers for the entire year, the estimate comes

out to be 247,602,145 hours compared to the 244,468,965 hours estimated through

the passenger allocation and delay calculation processes. That is, using our simplified

regression approach, we are able to estimate annual delays within 1.28% of the totals

listed in Table 3.1.

Table 3.3: Summary of error in passenger delay estimates at different aggregation
levels

Aggregation Passenger Allocation Regression-based
Level and Delay Calculation Delay Estimation

By Carrier-Day 11.1% 15.1%
Daily 10.3% 12.4%
Monthly 3.3% 8.0%
Quarterly 2.7% 8.0%

To further validate our regression approach, we compare the passenger delays

obtained by the regression analysis with those obtained by applying the passenger

delay calculator directly to the proprietary booking data. The percentage errors in

estimates at different levels of aggregation are presented in Table 3.3. The second

column lists the error in passenger delay estimates obtained by applying passenger

allocation followed by delay calculation using our estimated passenger itinerary flows.

The third column lists the error in passenger delays obtained from our simplified

regression-based delay estimation approach. In both cases, the error is with respect

to delay estimates based on the proprietary booking data. Table 3.3 demonstrates

that the error decreases with increased level of aggregation for both approaches.

At all aggregation levels, the errors are higher for the regression-based approach as

compared to the passenger allocation and delay calculation approach. For the entire

quarter, the regression model estimates are within 8.0% of the estimates based on

the proprietary booking data. This suggests that the simplified regression approach

provides a good alternative for estimating total delays or the total cost of delays if a

more thorough analysis is not required.
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As an example of the potential applications of this simplified approach to pas-

senger delay estimation, we applied the model to estimate the passenger delays for

the year 2008. The model inputs such as flight delays, flight cancellations rates, con-

necting passenger percentages and load factors were obtained from public data for

2008. Passenger delays for the entire 2008 year were estimated using the regression

parameter estimates listed in Table 3.2. Table 3.4 compares aggregate statistics on

flight schedules and passenger itineraries for the years 2007 and 2008 and summa-

rizes total passenger delays. For 2008, the estimated average passenger delays were

6.7% less than those for 2007, mainly due to 8.8% lower average flight delays and a

7.6% lower cancellation rate. However, because of a 6.0% reduction in the number of

passengers, the total passenger delay for 2008 was estimated to be 12.2% lower than

that for 2007.

Table 3.4: Delay estimates using the regression-based approach for 2007 and 2008

2007 2008 Difference

Number of Flights 7,455,458 7,009,726 -6.0%
Avg. Flight Delay (min) 15.3 14.0 -8.8%
% of Flights Cancelled 2.4% 2.2% -7.6%
Avg. Load Factor 76.6% 76.1% -0.6%
% of Connecting Passengers 31.7% 32.5% 2.4%
% of Flights with ≥ 60 Minute Delay 7.2% 6.6% -8.7%
Passengers 474,003,389 445,704,815 -6.0%
Total Passenger Delay (hours) 247,602,145 217,310,671 -12.2%
Avg. Passenger Delay (min) 31.3 29.3 -6.7%
Avg. Passenger Delay/Avg. Flight Delay 2.05 2.09 2.3%

3.5 Analysis of Flight Cancellations

Flight cancellations are the second largest source of passenger delays. For calendar

year 2007, only 2.1% of passengers were disrupted due to flight cancellations, and

yet, these passengers accumulated 30.4% of the total passenger delays experienced

for the year. Thus, it is important to understand the factors that influence flight

cancellations. In this section, we attempt to identify these factors and present models
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to distinguish their impacts. The majority of our analysis of flight cancellations is

based on flight performance information provided in the ASQP database. In our

discussion, we will often use the term flight cancellation rate (or simply, cancellation

rate), defined as the ratio of the number of canceled flights to the number of scheduled

flights, which we express as a percentage.

3.5.1 Airports and Carriers

Flight cancellation rates vary dramatically across airports and carriers. However,

these effects are strongly related, because each airport has a different distribution of

operations (arrivals and departures) across carriers. In this section, we demonstrate

the dependence of flight cancellation rates on airports and carriers. In Sub-section

3.5.3, we will present models to separate these effects.

For the analysis of cancellation rates across airports, we consider the top 50 busiest

airports in the U.S. in terms of number of flight operations per day. These airports

constitute 77.9% of all flight operations, with 99.2% of ASQP flights departing from

and/or arriving at one of these 50 airports. In our analysis, we categorize flights

based on their departure airport.

For 2007, the overall cancellation rate was 2.2%, and across the top 50 airports,

the cancellation rate was 2.1%. Figure 3-2 shows the cancellation rates by airport

arranged in decreasing order of cancellation rate. Only 15 out of the top 50 airports

have a cancellation rate greater than the overall average and 16 greater than aver-

age across the top 50. Among the top 50 airports, there is a substantial variation

in cancellation rates, with the average cancellation rate across the worst 8 airports

(3.8%) being more than 2.5 times the average cancellation rate across the remaining

42 airports (1.5%). These 8 airports, corresponding to only 18.6% of flight depar-

tures, contribute 31.4% of all flight cancellations. LGA (5.2%) and ORD (4.4%) are

the airports with highest cancellation rates, the only two airports with cancellation

rates more than twice the overall average. Each of the next six airports, EWR, DCA,

BOS, JFK, IAD and DFW, has a cancellation rate between 3.2% and 3.8%. After

DFW, there is a significant drop-off, with no other airport in the top 50 having a
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Figure 3-2: Cancellation rates for the top 50 busiest airports

cancellation rate of more than 2.4%.

In terms of the number of canceled flights, ATL, DFW and ORD top the list among

U.S. airports, which is hardly surprising given that they are also the three busiest

airports in terms of number of scheduled departures. These three airports correspond

to 14.6% of flight departures and 19.7% of flight cancellations. The cancellation

rate at ATL is well below the overall average, but the total number of cancellations

is high because ATL is the busiest domestic airport, responsible for 5.6% of flight

departures. ORD is the second busiest domestic airport with 5.0% of departures,

but has the largest number of flight cancellations. It is interesting that the next

three busiest airports in terms of total number of departures (DEN, LAX and PHX)

correspond to 15.3% of all departures and yet only 9.6% of all cancellations. This

result is due to the fact that the average cancellation rate for ATL, DFW and ORD

(3.0%) is more than twice of that of DEN, LAX and PHX (1.3%).

For carrier-specific analysis, we classify carriers that have less than 80% of their

operations in the continental U.S. as non-continental carriers. We further categorize

the remaining 17 continental carriers as legacy network carriers, low-cost carriers and

regional carriers. We categorize American Airlines (AA), Continental Airlines (CO),
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Delta Airlines (DL), Northwest Airlines (NW), United Airlines (UA), and US Air-

ways (US) as legacy network carriers. JetBlue Airways (B6), Frontier Airlines (F9),

AirTran Airways (FL), and Southwest Airlines (WN) are classified as low-cost car-

riers ; and Pinnacle Airlines (9E), Atlantic Southeast Airlines (EV), American Eagle

Airlines (MQ), Comair (OH), Skywest Airlines (OO), Expressjet Airlines (XE), and

Mesa Airlines (YV) as regional carriers. Aloha Airlines (AQ), Hawaiian Airlines (HA)

and Alaska Airlines (AS) are the three non-continental carriers. For this analysis, a

passenger scheduled to travel on a one-stop itinerary which includes flights operated

by two different carriers is categorized based on the carrier for the first flight in the

itinerary.

Among the four categories of carriers, cancellation rates are highest for the regional

carriers, and lowest for the low-cost carriers, followed closely by the non-continental

carriers. Legacy network carriers fall between these two extremes. The average

cancellation rate for regional carriers (3.2%) is more than three times the average

cancellation rate for low-cost carriers (1.0%). As a result, 39.0% of the passenger

delays for regional carriers are caused by flight cancellations, as compared to 23.2%

for low-cost carriers. The average cancellation rate for legacy network carriers is

2.0% and for non-continental carriers it is 1.2%. Figure 3-3 plots the cancellation

rate for each airline arranged in decreasing order. In the plot, regional carriers are

highlighted in blue, legacy network carriers in green, regional carriers in orange, and

non-continental carriers in grey. The worst 5 carriers in terms of cancellation rates are

all regional carriers, and no regional carrier has a cancellation rate below the overall

average. On the other hand, every one of the low-cost and non-continental carriers

has a cancellation rate below this average.

It can be difficult to separate out carrier performance from the impacts of air-

ports. Among the legacy carriers, AA (2.8%) and UA (2.4%) have the two highest

cancellation rates and are the only two legacy carriers with a cancellation rates higher

than the overall average. Similarly, the cancellation rate of MQ (4.2%) is higher than

all other regional carriers. In Figure 3-4, we chart the distribution of flight departures

for the two worst airports in terms of flight cancellation rates (LGA and ORD). MQ,
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Figure 3-3: Cancellation rates by carrier and carrier type

UA and AA are the top three carriers in terms of number of departures at LGA

and ORD. Of the flights departing from either LGA or ORD, 22.3% are operated by

MQ, 20.5% by UA and 19.4% by AA. In addition, approximately 18.7% of the flights

operated by MQ, UA, or AA depart from either LGA or ORD. This interdependence

between the carrier-specific and airport-specific factors is explored in further detail

in Sub-section 3.5.3.

3.5.2 Flight Frequency and Load Factors

Flight frequency and load factors play an important role in airline decisions about

whether or not to cancel a flight [85, 94]. Higher frequency and lower load factors

decrease the delays to disrupted passengers. In this section, we focus on how these

factors impact the cancellation decision as opposed to the re-accommodation process.

For our analysis, we compute average daily flight frequencies, average cancellation

rates and average load factors for each carrier-segment (as defined in Section 3.2)

over the course of the year. To perform these calculations, we combine the flight

performance data in ASQP with the aggregate passenger demand data in T-100.

All else being equal, our results suggest that airlines prefer canceling flights on
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Figure 3-4: Distribution of flight departures at the two airports with the highest
cancellation rates (LGA and ORD)

segments with higher daily frequency, most likely because higher frequency facilitates

an easier recovery of passenger itineraries. In the ASQP database, there is a positive

correlation of +7.3% between average daily frequency and cancellation rate, which

is statistically significant at more than the 99% confidence level. The correlation

between flight frequency and cancellation rates is especially strong for non-regional

carriers in the continental U.S. For legacy network carriers, the correlation coefficient

is +32.0%, and for low-cost carriers, it is +34.5%. The correlation is weaker for re-

gional (+6.5%) and non-continental (+3.9%) carriers. Table 3.5 shows the correlation

coefficient along with its statistical significance for each of the 10 carriers in conti-

nental United States, excluding the regional carriers. The correlation coefficient is

positive for all 10 carriers and is statistically significant with at least a 98% confidence

level for all carriers except F9.

The correlation between flight frequency and cancellation rate is highest for South-

west Airline (WN), so we conduct further analysis of Southwest’s cancellation rates.

For Table 3.6, we categorize segments based on average daily flight frequency, and

display the average cancellation rates for each group. The table shows dramatic vari-

ation in cancellation rates across the three categories: at least 10 flights per day,

between 4 and 9 flights per day, and at most 3 flights per day. The 1.7% cancellation
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Table 3.5: Correlation between average flight frequency and flight cancellation rates
across carrier-segments

Carrier Correlation p-value

AA +51.6% 0.00
B6 +33.6% 0.00
CO +16.0% 0.02
DL +22.8% 0.00
F9 +3.3% 0.78
FL +20.5% 0.00
NW +21.3% 0.00
UA +40.3% 0.00
US +33.5% 0.00
WN +71.0% 0.00

rate for segments with at least 10 flights per day is more than double the cancellation

rate for segments with 4 to 9 flights per day. The segments with the highest frequency

correspond to 43.0% of Southwest’s cancellations but only 22.2% of its flights. On

the other extreme, for Southwest segments with 3 or fewer flights per day, the average

cancellation rate is only 0.4%, representing 12.3% of Southwest cancellations.

Table 3.6: Variation in Southwest (WN) Airlines’ flight cancellation rates based on
daily flight frequency

Daily Frequency % of WN Cancellations % of WN Flights Cancellation Rate

At least 10 43.0% 22.2% 1.7%
4 to 9 44.7% 51.7% 0.7%
At most 3 12.3% 26.1% 0.4%

Load factors represent another important consideration in flight cancellation de-

cisions, because they directly impact the ease of passenger recovery. In this regard,

high load factors are a problem for two reasons; they indicate that more passengers

will need to be re-accommodated and that there will be fewer seats available on later

flights. Therefore, all else being equal, airlines should prefer canceling flights on seg-

ments with lower load factors rather than higher load factors. To test this hypothesis,

we divided all carrier-segment combinations into two categories by comparing the load

factor with the median load factor value. High load factor category consists of all
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carrier-segment combinations with load factors greater than the median load factor

and low load factor category consists of all the carrier-segment combinations with load

factors less than or equal to the median load factor. Note that there was less than a

2% difference between the average daily frequencies for the high load factor category

(4.83) and the low load factor category (4.89). Nonetheless, the average cancellation

rate for the low load factor category of carrier-segments (2.4%) was found to be ap-

proximately 25% greater than that for high load factor category (1.9%), confirming

that load factors are a critical part of the cancellation decision.

3.5.3 Carrier Effect

Scheduling, operational, and philosophical differences between different carriers clearly

impact cancellation rates. At the same time, congestion and weather patterns at an

airport impact the cancellation rates for all flights at the airport, across carriers.

Because the distribution of airport operations varies significantly across carriers, we

would expect some carriers to have worse cancellation rates than others. For example,

DL which has a primary hub in ATL is likely not forced to cancel as many flights as

AA, which has a primary hub in ORD (due to persistent weather/capacity issues).

Therefore, it is not clear how much of the difference between DL’s 1.4% cancellation

rate and AA’s 2.8% cancellation rate is due to network differences (i.e., where the

airlines operate their flights). In an effort to separate the carrier-specific impacts from

the airport-specific ones, we develop a metric called carrier effect. The goal of carrier

effect is to measure the relative impact of each carrier’s cancellation decision-making.

First, for each airport, a , we set the baseline cancellation rate, ρ̂a, equal to the

historical cancellation rate for scheduled departures by non-hub carriers at the airport.

We say that a carrier is a non-hub carrier if its operations at the airport constitute

less than 10% of its total operations. We choose to eliminate hub carriers from the

baseline because of the additional flexibility these carriers have based on the large

number of gates, aircraft, and crews at their disposal. In Equation 3.8, we define ρ̂a,

letting Na
c and Ca

c represent the number of departures and cancellations respectively

for carrier c at airport a, and H−a represent the set of non-hub carriers at airport a.
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ρ̂a =

∑
c∈H−a

Ca
c∑

c∈H−a
Na
c

(3.8)

Next, we calculate the carrier effect, Ec, for carrier c as the historical number of

cancellations divided by the baseline number of cancellations. The baseline number of

cancellations for each carrier, c, and airport, a, is calculated by multiplying the num-

ber of scheduled departures, Na
c , by the baseline cancellation rate, ρ̂a. In Equation

2, we formally define the carrier effect, Ec.

Ec =

∑
aC

a
c∑

aN
a
c ρ̂a

(3.9)

A smaller value of carrier effect is more desirable, because it indicates fewer can-

cellations than the baseline based on the distribution of flight departure airports.

Table 3.7 lists the historical and baseline cancellation rates, the carrier effect, and

the rank based on historical cancellation rate and carrier effect for each carrier. The

rows in the table are sorted in increasing order based on carrier effect.

Many of the differences between the rankings according to historical cancellation

rate and carrier effect are small. Out of the 20 carriers, 11 have a difference in rank of

2 or less (4 zeros, 2 ones, and 5 twos). The largest rank improvement is with B6, which

has a rank of 11 based on historical cancellation rates and 7 based on carrier effect.

At its two busiest departure airports, JFK and BOS, the B6 cancellation counts are

well below the baseline totals. CO is ranked 5th in terms of historical cancellation

rates. It is the legacy carrier with the lowest cancellation rate in spite of the fact that

it has one of its hubs at EWR, where other carriers have much higher cancellation

rates. When this effect is accounted for, CO becomes the second best carrier in terms

of the carrier effect. Excluding the non-continental carriers, WN has the 2nd lowest

historical cancellation rate, because it operates predominantly at airports with low

cancellation rates such as LAS, PHX and MDW. In terms of carrier effect, WN stays in

4th place overall, but moves below both CO and FL. HA has lowest cancellation rates,
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Table 3.7: Carrier effects

Carrier Historical Baseline Carrier Historical Carrier
Cancellation Cancellation Effect Cancellation Effect

Rate Rate Rate Rank Rank

F9 0.41% 1.81% 22% 1 1
CO 0.91% 2.39% 38% 5 2
FL 0.99% 2.20% 45% 6 3
WN 0.85% 1.44% 59% 4 4
DL 1.37% 2.23% 61% 7 5
HA 0.42% 0.68% 62% 2 6
B6 1.94% 2.69% 72% 11 7
NW 1.89% 2.44% 77% 10 8
US 1.84% 2.05% 90% 9 9
UA 2.43% 2.49% 98% 13 10
XE 2.48% 2.46% 101% 14 11
AS 1.60% 1.50% 107% 8 12
9E 3.07% 2.87% 107% 16 13
OO 2.37% 2.09% 114% 12 14
EV 3.12% 2.72% 114% 17 15
AQ 0.84% 0.71% 117% 3 16
AA 2.83% 2.36% 120% 15 17
OH 3.78% 3.12% 121% 18 18
MQ 4.22% 3.18% 133% 20 19
YV 3.83% 2.51% 153% 19 20
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and nearly 90% of its operations are at airports in the Hawaii region. These airports

have very low cancellation rates in general. Therefore, in terms of carrier effect HA

drops a few slots into 6th, although it still performs quite well historically canceling

only 62% of the baseline. The other Hawaii based carrier, AQ, which also has about

89% of its operations in the airports in the Hawaii region, has the largest absolute

change in rank, dropping from 3rd place to 16th place, when the carrier effect, rather

than absolute cancellation rate, is considered. Though the differences are in most

cases minor, in context, each of the changes is easy to understand. Thus, we believe

carrier effect represents a better metric for evaluating the cancellation-performance

of domestic air carriers as compared to the historical cancellation rate.

Many major U.S. carriers operate hub-and-spoke networks and many others have

focus airports where the bulk of their activity is concentrated. Large proportions

of the one-stop passengers traveling on these carriers usually connect at these hubs

or focus airports. Such concentration of activity has important implications for the

flight cancellation rates. More operational flexibility at the hub airport enables bet-

ter recovery processes, which should be reflected in lower cancellation rates for the

hubbing carrier as compared to other carriers at the airport. To measure the impact

of this effect, we extend the carrier effect developed above to measure the hub-carrier

effect, Ehub
c . The hub-carrier effect for a given carrier is defined in Equation 3.10 as

the ratio of its cancellation rate at its primary airport of operations, ”hub” , to the

cancellation rate of non-hub carriers at that airport.

Ehub
c =

Chub
c

Nhub
c ρ̂hub

(3.10)

In Equation 3.11, we define the carrier’s Coefficient of Hubbing αhubc , as the ratio

of hub-carrier effect to carrier effect. We use the carrier’s coefficient of hubbing

to determine how much additional flexibility each carrier has at its primary hub of

operations.
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αhubc =
Ehub
c

Ec
(3.11)

In Table 3.8, for each of the legacy network and low-cost carriers, we list the

values of Ehub
c and αhubc , along with the carrier effect, Ec. With the exceptions of AA

and WN, the coefficient of hub effect is lower than 1 for each of these carriers. WN

has, by far, the most distributed operations across different airports. Only 7.1% of

the WN operations are concentrated at LAS, which contains the largest number of

WN operations. No other airline in Table 3.8 has less than 15% of its operations at

its main airport. Therefore, any operational flexibility afforded by having a hub is

likely not as high for WN as all the other carriers, resulting in WN losing out on any

incremental advantage. AA is the other carrier with a coefficient of hubbing effect

greater than 1.0. AA operates at a disadvantage relative to other carriers at DFW,

because flight delays and cancellations are often propagated from its secondary hub

at ORD. If we were to instead treat ORD as AA’s primary hub, the hub-carrier effect

would be 0.81 and the coefficient of hubbing would be 0.67, which is in line with the

coefficient of hubbing for other carriers.

Table 3.8: Effects of primary hub on cancellation rates

Carrier Main % of Operations Carrier Effect Hub-Carrier Coefficient
Hub at Main Hub (Ec) Effect (Ehub

c ) of Hubbing (Eh)

AA DFW 26.00% 1.22 1.39 1.14
B6 JFK 30.60% 0.77 0.62 0.79
CO IAH 28.50% 0.47 0.26 0.54
DL ATL 32.10% 0.64 0.41 0.64
F9 DEN 48.70% 0.26 0.24 0.91
FL ATL 33.30% 0.51 0.42 0.82
NW MSP 22.50% 0.78 0.57 0.74
UA ORD 19.30% 0.97 0.68 0.7
US CLT 15.30% 0.88 0.5 0.57
WN LAS 7.10% 0.61 0.71 1.15

These results suggest that there is a substantial operational advantage for flights
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departing from a carrier’s primary hub. This makes sense, because at a primary hub,

carriers typically have numerous aircraft and crew available, providing operational

flexibility that can be exploited if there are any issues with aircraft availability or crew

work requirements. To further confirm this intuition, we can compare flights arriving

into the primary hub with those departing from it. The operational advantages

associated with the primary hub should not be afforded to flights departing from

other airports, even those arriving at the primary hub. On the other hand, the

impact of the airport-specific issues such as bad weather, congestion, etc. on arriving

and departing flights should be comparable. Thus, the difference in cancellation

rates between flights entering and exiting each carrier’s primary hub provides another

measure of the operational flexibility afforded by the hub.

Across the 20 carriers, the average cancellation rate for flights arriving at their

respective primary hub airports (1.7%) is 9.2% higher than the cancellation rate for

flights departing from their respective primary hub airports (1.6%). Table 3.9 shows

the cancellation rates for flights entering and exiting the primary hub for each carrier

in the continental U.S. excluding the regional carriers. It can be observed from Table

3.9 that the cancellation rate for flights entering the primary hub is higher than that

for the flights exiting the primary hub in the case of all carriers except WN. The

cancellation rates are calculated for all of 2007, suggesting that this effect is both

significant and persistent. For WN, the cancellation rate for flights entering and

exiting the main hub is almost equivalent. Thus, WN’s distributed operation appears

to once again deprive it of the operational flexibility afforded to other carriers at their

respective primary hub airports.

Table 3.9 also lists the percentage of flights entering and exiting the main hub that

suffer large delays, where large is defined as any delay greater than or equal to 30

minutes. The overall percentage of flights with large delays arriving into a primary

hub (13.2%) is 19.9% lower than that for the flights departing from the primary

hub. The same effect that is observed in aggregate is also observed at the individual

carrier level for all carriers except B6. The flight delay results are consistent with

the cancellation rates in that they suggest that carriers are able to absorb more delay
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Table 3.9: Cancellation rates and large delays for flights entering and exiting the
primary hub

Cancellation Rate % with ≥ 30 Minute Delay

Carrier Primary Exiting Entering % Exiting Entering %
Hub Main Hub Main Hub Increase Main Hub Main Hub Increase

AA DFW 3.00% 3.10% 2.50% 19.30% 15.10% -21.50%
B6 JFK 2.40% 2.40% 2.30% 20.40% 21.10% 3.50%
CO IAH 0.40% 0.50% 22.80% 13.90% 10.70% -23.40%
DL ATL 0.90% 1.10% 21.00% 12.70% 10.50% -17.20%
F9 DEN 0.40% 0.50% 27.80% 12.60% 9.30% -26.30%
FL ATL 0.80% 1.00% 19.60% 14.30% 11.80% -17.50%
NW MSP 1.50% 1.60% 12.20% 18.10% 13.50% -25.50%
UA ORD 3.20% 3.50% 8.50% 22.00% 17.20% -21.50%
US CLT 1.20% 1.50% 25.30% 18.80% 13.80% -27.00%
WN LAS 0.70% 0.70% -0.90% 11.90% 9.40% -20.70%

Total 1.60% 1.70% 9.20% 16.40% 13.20% -19.90%

and still operate the departing flight out of a primary hub.

3.6 Analysis of Missed Connections

Missed connections are the most significant cause of travel disruptions for one-stop

passengers. For these passengers, missed connections are responsible for 57.2% of

all disruptions and 40.9% of all the delays. In this section, we analyze the most

important factors affecting missed connections. In our discussion, we will often use

the term, misconnection rate which is defined as the ratio between the number of one-

stop passengers who missed their connections (due to delays on the first flight in their

itinerary) and the total number of one-stop passengers, which, as with cancellation

rate, we will express as a percentage. Note that one-stop passengers who have at least

one canceled flight in their planned itineraries are excluded from both the numerator

and the denominator of the expression for misconnection rates. The analysis in this

section incorporates both the flight performance data in ASQP and the estimated

passenger travel and delay data described in Section 3.2.
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Figure 3-5: Misconnection rates for the top 50 busiest airports

3.6.1 Airports and Carriers

Just as we did for the case of the cancellation rates, for the airport-specific analysis of

misconnection rates, we consider the top 50 airports in the U.S. in terms of number

of flight operations per day. These top 50 airports correspond to 99.1% of planned

one-stop passenger connections and 99.4% of missed passenger connections. For the

following analysis, all passengers are categorized based on their connection airports.

For 2007, the average misconnection rate in the U.S. was 4.5%. For the top

50 airports, the misconnection rate ranges from 8.6% at EWR to 1.9% at TPA. In

Figure 3-5, we plot misconnection rates at these airports arranged in decreasing order

of misconnection rate. EWR and LGA (7.8%) are the two airports with, by far, the

highest misconnection rates. At each of the next seven airports: IAD, ORD, PHL,

JFK, CLE, SFO and MIA, the misconnection rate is in the range of 6.0% to 6.6%.

After MIA, there is another significant drop-off, with the 41 remaining airports having

misconnection rates of at most 5.4%. The average misconnection rate at the 9 worst

connecting airports (6.4%) is greater than 1.5 times the misconnection rate (4.1%) at

the remaining 41.

Obviously large delays to the first flight in an itinerary are primarily responsible for

misconnections. Therefore, it is not a surprise that out of the 9 worst airports in terms

of cancellation rates, EWR, JFK, LGA, ORD, PHL and SFO are the 6 worst airports
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in terms of average arrival delays. But, clearly average arrival delays do not explain

the whole story. For example, IAD, has a much lower average arrival delay than

either ORD, PHL or JFK, but lies above these three in terms of misconnection rate.

Another example is CLE, which is the 7th worst airport in terms of misconnection

rates. CLE has a lower average arrival delay (15.0 minutes) than the overall US

average (15.3 minutes), but ranks in this list above several other airports with much

higher flight delays. We will address this apparent anomaly in Section 3.6.2 when we

discuss schedule banking.

Much like our analysis of cancellation rates by carrier, here we categorize one-

stop passengers based on the carrier of the first flight in the itinerary. Among the

three categories of carriers in the continental United States, regional carriers are

most severely impacted by missed connections. For regional carriers, 23.8% of all

passenger delays (including both non-stop and one-stop passengers) are caused by

missed connections. Low-cost carriers, on the other hand, are the least impacted

by missed connections, with only 11.6% of all delays caused by misconnections. For

legacy network carriers, 19.1% of all passenger delays are due to missed connections.

The two drivers of this disparity are the percentage of connecting passengers and the

misconnection rate, both of which are highest for regional carriers (39.6% and 6%

respectively), intermediate for legacy network carriers (31.0% and 4.5%), and lowest

for the low-cost carriers (17.0% and 2.8%). Average misconnection rate for the non-

continental carriers is 3.5%, while the percentage of connecting passengers (11.3%) is

even lower than that of the low-cost carriers. In Figure 3-6, we plot the misconnection

rate by carrier in decreasing order of misconnection rates. As in Figure 3-3, regional

carriers are highlighted in blue, legacy network carriers in green, regional carriers in

orange, and non-continental carriers in grey.

The 5 worst carriers in terms on misconnection rates are regional carriers, and all 7

regional carriers have misconnection rates worse than the overall average (4.5%). AA

and UA are the two worst legacy network carriers in terms of misconnection rates.

In addition to these two, US and NW also have misconnection rates higher than

the overall average. Some of these patterns in misconnection rates can be explained
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Figure 3-6: Misconnection rates by carrier and carrier type

based on average flight delays. For instance, EV is the worst carrier in terms of

misconnection rates, and also in terms of average flight delays. B6 has the second

highest average flight delays, and therefore performs much worse than other low-cost

carriers in terms of missed connections. On the other end of the spectrum, both of the

Hawaiian carriers perform exceptionally well in terms of misconnection rates because

the Hawaiian airports experience very few delays, especially when compared to the

continental U.S. We model the relationship between misconnection rates and various

explanatory variables, including average flight delays, in Section 3.6.3.

3.6.2 Schedule Banking

Prior to the turn of century, most major hub-and-spoke carriers in the US operated

one or more banked hubs. A banked hub for a carrier is a hub airport where a wave of

flight arrivals (called an arrival bank) is followed soon by a wave of departing flights

(called a departure bank), allowing passengers to connect between a flight in an arrival

bank and a flight in the subsequent departure bank. The schedule of the hub operator

carrier at a typical banked hub airport contains several such banks often separated

by periods of limited activity. An example of a banked hub is provided in Figure 3-7,

which shows the number of flight arrivals and departures for each hour of the day
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Figure 3-7: Example of banked hub operations (NW at MEM)

(from 7:00am to 10:00pm) for NW at MEM for the year 2007. Visually, it is easy to

identify the three distinct banks operated by NW at MEM.

In the early 2000s, several major U.S. carriers as well as some European carriers

started de-banking their schedules. De-banking allows carriers to balance resource

utilization over the course of the day, reducing costs and increasing operational effi-

ciency. An important effect of hub de-banking was an increase in average passenger

connection times [55]. The trend was led by AA, who de-banked its hubs at ORD,

DFW and MIA. Subsequently, UA de-banked its hubs at ORD and LAX, DL de-

banked ATL and CO de-banked EWR. An example of a de-banked hub is provided in

3-8, which shows the flight arrivals and departures per hour of the day for AA at the

ORD airport for the year 2007. It can be observed that the distribution of arrivals

(as well as departures) per hour is much flatter than that shown in Figure 3-7. To

measure the extent of banked operations by a carrier at an airport, we develop a

metric called the schedule banking coefficient. The schedule banking coefficient for a

carrier at an airport is defined as the coefficient of variation (i.e., the ratio of stan-

dard deviation to mean) of the number of arrivals per hour for that carrier at that

airport, which we express as a percentage. Note that if the number of departures per

hour were constant, the schedule banking coefficient would equal 0%. Larger schedule
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Figure 3-8: Example of de-banked hub operations (AA at ORD)

banking coefficients represent a greater extent of banked operations. For example, the

schedule banking coefficient for NW at MEM is 120.9% while that for AA at ORD is

25.2%. This difference is also reflected in average connection times, with the average

connection time at MEM for NW (78.9 minutes) being 21.1% lower than that for AA

at ORD (100.0 minutes).

Using the schedule banking coefficient, we will now investigate how the extent

of banking affects the misconnection rates at different airports. In Table 3.10, we

provide another look at the list of the worst 9 airports in terms of misconnection

rates, along with the corresponding average flight arrival delays.

As noted previously, the misconnection rate at IAD is higher than at ORD despite

ORD having significantly higher average flight delays, which seems counterintuitive.

Similarly, the misconnection rates at JFK and CLE are almost equal despite the

former being significantly worse in terms of average flight delays. In Table 3.11, we add

a column listing the average connection time for each of the airports included in Table

3.10, which helps to explain these apparent anomalies. For example, although the

average flight delay at IAD is 6.0 minutes lower than at ORD, the average connection

time at IAD is 12.8 minutes lower on average, resulting in a higher misconnection

rate at IAD than at ORD. Similarly, although the average flight delay at CLE is

112



Table 3.10: Worst 9 airports in terms of misconnection rate

Airport Misconnection Average Arrival
Rate Delay (min.)

EWR 8.60% 29
LGA 7.80% 23.8
IAD 6.60% 16.6
ORD 6.30% 22.6
PHL 6.20% 20.1
JFK 6.10% 23.8
CLE 6.10% 15
SFO 6.00% 17.7
MIA 6.00% 17.2

8.8 minutes less than at JFK, the average connection time is 22.1 minutes lower on

average, resulting in nearly identical misconnection rates at JFK and CLE.

Table 3.11: Worst 9 airports in terms of misconnection rates with average connection
times

Airport Misconnection Average Arrival Average Connection
Rate Delay (min.) Time (min)

EWR 8.60% 29 100.2
LGA 7.80% 23.8 90.1
IAD 6.60% 16.6 86.1
ORD 6.30% 22.6 98.9
PHL 6.20% 20.1 96.3
JFK 6.10% 23.8 103.9
CLE 6.10% 15 81.8
SFO 6.00% 17.7 102
MIA 6.00% 17.2 112.7

Given that the results presented in this research are based on the passenger

itinerary flows obtained from discrete choice model estimation, we need to address

the question of whether the differences in connection times are simply a construct of

the passenger itinerary flow estimates or if they indicate something more fundamen-

tal about the schedule structure at these airports. In order to answer this question,

we look at the schedule banking coefficients for the major carriers IAD, ORD, JFK

and CLE. For each of these airports and each carrier that serves at least 10% of the
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airport’s connecting passengers, Table 3.12 lists the schedule banking coefficients and

the average connection times. The schedule banking coefficient for each major carrier

at IAD is at least 3 times that for each major carrier at ORD, which results in much

shorter average connection times at IAD than at ORD. Similarly, the schedule bank-

ing coefficient for each major carrier at CLE is at least 3 times that of B6 (the only

major carrier at JFK) resulting in much shorter average connection times at CLE

than at JFK. These results suggest that the lower average connection time values at

IAD and CLE (and the resulting high misconnection rates) are due to the banked

nature of the carrier operations at the airport rather than due to any artifacts of the

passenger itinerary flow estimation procedure.

Table 3.12: Schedule banking coefficients for primary carriers at IAD, ORD, JFK,
and CLE

Airport Carrier % of Airport’s Schedule Banking Average Connection
Connecting Passengers Coefficient Time (min)

IAD UA 54.60% 98.70% 88.7
IAD YV 39.50% 99.30% 80.7
ORD UA 36.50% 23.70% 99.6
ORD AA 27.50% 25.20% 100
ORD MQ 19.20% 25.30% 96.9
JFK B6 81.20% 28.70% 105.1
CLE XE 57.00% 64.20% 78.4
CLE CO 40.60% 73.60% 85.6

3.6.3 Modeling Missed Connections

In this section, we present regression models to explain the variability in misconnec-

tion rates based on the insights gleaned above. As above, we categorize one-stop

passengers based on the carrier that operates the first flight in the itinerary. In order

to predict the misconnection rate using a linear regression approach, we aggregate

individual passenger itineraries. For our model, each combination of carrier, connec-

tion airport and day corresponds to a single observation. In order to eliminate issues

relating to sample size, we consider only those carrier-airport-day combinations which
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include at least 100 connecting passengers. This approach results in 41,491 observa-

tions that cover approximately 98% of all one-stop passengers.

The dependent variable for our models is the average misconnection rate across

the passengers corresponding to each observation. In our results, we present three

regression models, each one building on the last. The incremental nature of these

models allows us to determine the relative impact of each of the explanatory vari-

ables. As with the dependent variable, each of the explanatory variables is calculated

by averaging the appropriate value across the passengers corresponding to the ob-

servation. Each of the regressions models is estimated by weighting the observations

based on the number of connecting passengers corresponding to each carrier-airport-

day combination.

As discussed at the end of Section 3.2, there is strong relationship between average

flight delays at an airport and the corresponding misconnection rate. Thus, our

first regression model attempts to predict the misconnection rate using average flight

delays as the only explanatory variable, along with an intercept. Table 3.13 provides

the estimation results for this first model.

Table 3.13: Estimation results for misconnection rate model 1 (with flight delays)

Parameter Description Estimate Std Error p-value

Intercept 4.11E-03 2.49E-04 0
Average Flight Delay (min) 2.83E-03 1.16E-05 0

As expected, the coefficient of average flight delay is positive, meaning that the

greater the average flight delay, the higher the misconnection rate. Also, both coeffi-

cient estimates are statistically highly significant with at least 99% confidence level.

The adjusted R2 value is 0.5915, suggesting that average flight delays explain 59% of

the variation in misconnection rates across our observations.

As mentioned in 3.6.2, in addition to flight delays, schedule banking and connec-

tion times impact the misconnection rates, because longer connections imply reduced

risks of missing a connection. Therefore, in model 2, we add average connection time

as another explanatory variable to the model. Table 3.14 shows the estimation results
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for this second model.

Table 3.14: Estimation results for misconnection rate model 2 (with flight delays and
connection times)

Parameter Description Estimate Std Error p-value

Intercept 6.69E-02 1.57E-03 0
Average Flight Delay (min) 2.80E-03 1.14E-05 0
Average Connection Time (min) -6.17E-04 1.53E-05 0

The coefficient estimate for average connection times is negative, implying that the

higher the average connection time, the lower the misconnection rate. Also, all three

coefficient estimates are statistically highly significant with at least a 99% confidence

level. The adjusted R2 value is 0.6070, suggesting that average connection times help

explain another 1% of the variation in misconnection rates.

As seen in Figure 3-6 and discussed in Sub-section 3.6.1, among different carrier

types, low-cost carriers have the lowest misconnection rates while regional carriers

have the highest misconnection rates. To understand the magnitude of this effect, we

add a 0-1 dummy variable each for the low-cost carriers and for the regional carriers.

That is, any observation corresponding to the first flight being operated by a low-cost

carrier will have value 1 for the low-cost carrier dummy and all other observations

will have a value 0. Similarly, any observation corresponding to the first flight being

operated by a regional carrier will have value 1 for the regional carrier dummy and

all other observations will have a value 0. Table 3.15 shows the estimation results for

this third and final model.

Table 3.15: Estimation results for misconnection rate model 3 (with flight delays,
connection times and regional and low-cost dummies)

Parameter Description Estimate Std Error p-value

Intercept 4.15E-02 1.78E-03 0
Average Flight Delay (min) 2.76E-03 1.14E-05 0
Average Connection Time (min) -3.60E-04 1.75E-05 0
Low-cost Carrier Dummy -7.61E-03 4.46E-04 0
Regional Carrier Dummy 8.26E-03 4.44E-04 0
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In the third model, the coefficients for average flight delay and average connec-

tion time retained the appropriate signs (positive and negative, respectively). As

anticipated, the coefficient estimate for the low-cost carrier dummy is negative and

that for the regional carrier dummy is positive. Also, all the coefficient estimates are

statistically highly significant with at least 99% confidence level. The adjusted R2

value is 0.6149, suggesting that including carrier type helps to explain another 1% of

the variation in misconnection rates.

3.7 Summary

Passengers are an important stakeholder group of the NAS. Quantification of passen-

ger delays and understanding the causes of passenger delays is critical for evaluating

the system performance and for motivating NAS policy and investment decisions.

Flight delays are a poor proxy for passenger delays because a large proportion of the

passenger delays are caused not directly by flight delays but due to passenger itinerary

disruptions such as flight cancellations and missed connections. We developed a dis-

crete choice framework for estimating disaggregate passenger flows and extended a

pre-existing single-carrier passenger delay calculator to a multi-carrier setting. We

found that on average each passenger suffered twice the delay suffered on average by

each flight in the year 2007. Consequently, nearly half of the passenger delays in 2007

were attributed to passenger itinerary disruptions.

Airlines’ strategic and operational decisions regarding network structures, hub

locations, connecting bank structures, flight frequencies, flight departure schedules,

flight cancellations and disrupted passenger re-accommodation significantly affect the

passenger delays and disruptions. We analyzed these effects using a sequence of

data analyses and statistical modeling tools and presented various insights into the

variations and trends in passenger delays.

Apart from the analyses and findings presented in this chapter, our methodology

and the resulting passenger itinerary flow data has already been used to estimate the

overall costs of passenger delays as one component of the Total Delay Impact Study
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commissioned by the FAA [7]. We foresee a large variety of further applications of

this passenger delays framework for passenger-centric approaches in airline scheduling,

air traffic flow management, and aviation policy-making. We hope that our research

presented in this chapter serves as the beginning of several future passenger centric

research studies that exploit the disaggregate passenger data generated through this

research.
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Chapter 4

Implications of Airline Frequency

Competition for Airline

Profitability and Airport

Congestion

4.1 Introduction

Since deregulation of the US domestic airline business in 1978, airlines have used fare

and service frequency as the two most important instruments of competition. Passen-

gers have greatly benefited from fare competition, which has resulted in a substantial

decrease in real (inflation adjusted) airfares over the years. On the other hand, fre-

quency competition has resulted in the availability of more options for air travel.

The benefits of increased competition to the airlines themselves are not as obvious.

Throughout the post-deregulation period, airline profits have been highly volatile.

Several major US carriers have incurred substantial losses over the last decade with

some of them filing for Chapter 11 bankruptcy and some others narrowly escaping

bankruptcy. Provision of excess seating capacity is one of the reasons often cited for

the poor economic health of airlines. Due to the so called S-curve relationship between
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market share and frequency share, an airline is expected to attract disproportionately

more passengers by increasing its frequency share in a market [17]. To increase their

market shares, airlines engage in frequency competition by providing more flights per

day on competitive routes. As a result, they prefer operating many flights with small

aircraft rather than operating fewer flights with larger aircraft. The average aircraft

sizes in domestic US markets have been falling continuously over the last couple of

decades (until the recent economic crisis) in spite of increasing passenger demand

[20]. Similarly, the average load factors, i.e., the ratio of the number of passengers

to the number of seats, on some of the most competitive and high demand markets

have been found to be lower than the industry average.

Apart from the chronic worries about the industry’s financial health, worsening

congestion and delays at the major US airports have become another cause of serious

concern. Increases in passenger demand, coupled with decreases in average aircraft

size have led to a great increase in the number of flights being operated, especially

between the major airports, leading to congestion. The US Congress Joint Economic

Committee has estimated that in calendar year 2007, delays cost around $18 billion

to the airlines and another $12 billion to passengers [87].

Thus, frequency competition affects airlines’ capacity allocation decisions, which

in turn have a strong impact on airline profitability, as well as on airport congestion.

In this chapter, we propose a game-theoretic framework, which is consistent with the

most prevalent model of frequency competition. Section 4.2 provides background on

airline schedule planning and reviews the literature on frequency competition. Section

4.3 presents the N-player game model. Best response curves are characterized in

section 4.4. In section 4.5, we focus on the 2-player game. We provide the conditions

for existence and uniqueness of a Nash equilibrium and discuss realistic parameter

ranges. We then provide two different myopic learning models for the 2-player game

and provide proof of their convergence to the Nash equilibrium. In section 4.6, we

identify all possible equilibria in a N-player game with identical players and find the

worst-case equilibrium. In section 4.7, we evaluate the price of anarchy and establish

the dependence of airline profitability and airport congestion on airline frequency
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competition. We conclude with a summary of main results in section 4.8.

4.2 Frequency Planning under Competition

The airline planning process involves decisions ranging from long-term strategic de-

cisions such as fleet planning and route planning, to medium-term decisions about

schedule development [16]. Fleet planning is the process of determining the compo-

sition of a fleet of aircraft, and involves decisions about acquiring new aircraft and

retiring existing aircraft in the fleet. Given a fleet, the second step in the airline

planning process involves the choice of routes to be flown, and is known as the route

planning process. A route is a combination of origin and destination airports (oc-

casionally with intermediate stops) between which flights are to be operated. Route

planning decisions take into account the expected profitability of a route based on de-

mand and revenue projections as well as the overall structure of the airline’s network.

Given a set of selected routes, the next step in the planning process is airline schedule

development, which in itself is a combination of decisions about frequency, departure

times and aircraft sizes for each route, and aircraft rotations over the network.

Frequency planning is the part of the airline schedule development process that

involves decisions about the number of flights to be operated on each route. By

providing more frequency on a route, an airline can attract more passengers. Given

an estimate of total demand on a route, the market share of each airline depends

on its own frequency as well as on competitor frequency. The S-curve or sigmoidal

relationship between the market share and frequency share is a widely accepted notion

in the airline industry [69, 17]. However, it is difficult to trace the origins and evolution

of this S-shaped relationship in the airline literature [29]. Empirical evidence of the

relationship was documented in some early studies and regression analysis was used

to estimate the model parameters [92, 91, 89]. Over the years, there have been several

references to the S-curve including Kahn [56] and Baseler [15]. In this chapter, we

use a more general model that is compatible with the linear, as well as the S-curve

assumptions. The mathematical expression for the S-curve relationship [89, 17] is
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given by:

MSi =
FSαi∑n
j=1 FS

α
j

(4.1)

for parameter α such that α ≥ 1, where MSi = market share of airline i, FSi =

frequency share of airline i, and n = number of competing airlines.

Some of the more recent empirical and econometric literature has focused on

investigating the validity of the S-curve as the structure of airline business has evolved

over the last few decades. The conclusions are mostly mixed. Wei and Hansen have

provided statistical support for the S-curve, based on a nested Logit model for non-

stop duopoly markets [98]. They conclude that by increasing the service frequency,

an airline can get a disproportionately high share of the market and hence there is an

incentive for operating more frequent flights with smaller aircraft. In another recent

study, Button and Drexler observed limited evidence of the S-curve phenomenon in

the 1990s [29]. But in the early 2000s, they found that the relationship between

market share and frequency share is not S-shaped but rather is along a 45o straight

line. This can be characterized by setting α = 1 in equation 4.1. They, however,

caution that the absence of empirical evidence for the S-curve does not necessarily

mean that it does not affect airline behavior in a significant way. In an industry study,

Binggeli and Pompeo concluded that the S-curve still very much exists in markets

dominated by legacy carriers [19]. However, there is very little measurable evidence

of the S-curve in markets where low cost carriers (LCCs) compete with each other

and a straight line relationship is a better approximation for such markets. They call

for a rethinking of the S-Curve principle that has been ”hard-wired” in the heads of

many network planners over the years.

In summary, recent evidence confirms that the market share is an increasing func-

tion of the frequency share and hence competition considerations affect the frequency

decisions in an important way. However, the evidence is mixed about the exact shape

of the relationships, in particular the exact value of the parameter α for different
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types of markets.

Many of these studies go on to discuss the financial implications of the S-curve.

Button and Drexler [29] associate it with provision of ”excess capacity” and an ”ever-

expanding number of flights”, while O’Connor [69] associates it with ”an inherent

tendency to overschedule”. Kahn goes even further and raises the question of whether

it is possible at all to have a financially strong and yet highly competitive airline

industry at the same time [69].

Despite continuing interest in frequency competition based on the S-curve phe-

nomenon, literature on game theoretic aspects of such competition is limited. Hansen

[50] analyzed frequency competition in a hub-dominated environment using a strategic

form game model. Dobson and Lederer [43] modeled schedule and fare competition

as a strategic form game. Adler [1] used an extensive form game model to analyze

airlines competing on fare, frequency and aircraft sizes. Each of these three studies

adopted a successive optimizations approach to solve for a Nash equilibrium. Only

Hansen [50] mentions some of the issues regarding convergence through discussion of

different possible cases. But none of these three studies provides any conditions for

convergence properties of the algorithm. Wei and Hansen [99] analyze three different

models of airline competition and solve for equilibrium through explicit enumeration

of the entire strategy space. Brander and Zhang [22] and Aguirregabiria and Ho [4]

model airline competition as a dynamic game and estimate the model parameters

using empirical data. Norman and Strandenes [67] also calibrate model parameters

using empirical data but for a strategic form game. None of the studies mentioned so

far provides any guarantee or conditions for existence or uniqueness of a pure strategy

equilibrium. Brueckner and Flores-Fillol [28] and Brueckner [27] obtain closed form

expressions for equilibrium decisions analytically. They focus on symmetric equilib-

ria while ignoring the possibility of any asymmetric equilibria. Most of the previous

studies involving game theoretic analysis of frequency competition, such as Adler [1],

Pels et. al [79], Hansen [50], Wei and Hansen [99], Aguirregabiria and Ho [4], Dobson

and Lederer [43], Hong and Harker [53], model market share using Logit or nested

Logit type models, with utility typically being an affine function of the inverse of
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frequency. Such relationships can be substantially different from the S-shaped rela-

tionship between market share and frequency share, depending on the exact values

of utility parameters.

All of these studies involve finding a Nash equilibrium or some refinement of

it. But there isn’t sufficient justification of the predictive power of the equilibrium

concept. Hansen [50] provides some discussion of the shapes of best response curves

and stability of equilibrium points. But none of the studies has focused on any

learning dynamics through which less than perfectly rational players may eventually

reach the equilibrium state.

In this chapter, we use the most popular characterization of the S-curve model, as

given by equation 4.1. The α = 1 case is well suited for modeling markets dominated

by low cost carriers, whereas markets dominated by legacy carriers can be suitably

modeled using higher values of α. Thus, despite the mixed recent evidence about the

exact shape of the market share-frequency share relationship, the model specified by

equation 4.1 captures airline scheduling decisions well. We analyze a strategic form

game among airlines with frequency of service being the only decision variable. We

will only consider pure strategies of the players, i.e. we will assume that the fre-

quency decisions made by the airlines are deterministic. We use the Nash equilibrium

solution concept under pure strategy assumption. The research contributions of this

chapter are threefold. First, we make use of the S-curve relationship between market

share and frequency share and analyze its impact on the existence and uniqueness of

pure strategy Nash equilibria. Second, we provide reasonable learning dynamics and

provide theoretical proof for their convergence to the unique Nash equilibrium for

the 2-player game. Third, we provide a measure of inefficiency, similar to the price

of anarchy, of a system of competing profit-maximizing airlines in comparison to a

system with centralized control. This measure can be used as a proxy to understand

the effects of frequency competition on airline profitability and airport congestion.
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4.3 Model

Let M be the total market size i.e. the number of passengers wishing to travel from a

particular origin to a particular destination on a non-stop flight. In general, an airline

passenger may have more than one flight in his itinerary. Conversely, two passengers

on the same flight may have different origins and/or destinations. But for our analysis,

we will ignore these network effects and assume the origin and destination pair of

airports to be isolated from the rest of the network. Let I = {1, 2, ..., n} be the set

of airlines competing in a particular non-stop market. Although most of the major

airlines today follow the practices of differential pricing and revenue management,

we will assume that the airfare charged by each airline remains constant across all

passengers. Let pi be the fare charged by each airline i. Further, we will assume that

the type and seating capacity of aircraft to be operated on this non-stop route are

known. Let Si be the seating capacities for airline i and Ci be the operating cost

per flight for airline i. Let α be the parameter in the S-curve relationship. A typical

value suggested by literature is around 1.5. To keep our analysis general, we assume

that 1 < α < 2. Our results are applicable even in the case of a linear relationship

between market share and frequency share by taking the limit as α→ 1+.

Assumption 1. 1 < α < 2

Let xi be the frequency of airline i. As per the S-curve relationship between

market share and frequency share, the ith airline’s share of the market (MSi) is given

by:

MSi =
xαi
n∑
j=1

xαj

.

This is obtained by multiplying the numerator and denominator of the right hand

side of equation (4.1) by
(∑n

j=1 xj

)α
. The number of passengers (PAXi) traveling
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on airline i is given by:

PAXi = min

M xαi
n∑
j=1

xαj

, Sixi

 .

Airline i’s profit (Πi) is given by:

Πi = pi ∗min

M xαi
n∑
j=1

xαj

, Sixi

− Cixi.

We will assume that for every i, Ci < piSi. In other words, the total operating

cost of a flight is lower than the total revenue generated when the flight is completely

filled. This assumption is reasonable because if it is violated for some airline i, then

there is a trivial optimal solution xi = 0 for that airline.

Assumption 2. Ci < piSi ∀i ∈ I

From here onwards, our game-theoretic analysis proceeds as follows. In the next

section (Section 4.4), we characterize the shapes of best response correspondences,

that is, sets of optimal responses of a player as a function of the frequencies of the

other player(s). This analysis, which focuses on the general frequency competition

game model as described in this section, facilitates the subsequent analysis of Nash

equilibria in Sections 4.5 through 4.7. In our Nash equilibrium analysis, we first focus

on the two-player case (in Section 4.5) and later extend the analysis to symmetric

N-player case (in Sections 4.6 and 4.7). We restrict our N-player game analysis to

only the symmetric player case primarily for tractability reasons. As shown in our

analysis in Section 4.5, even in 2-player case, the number of Nash equilibria can be

as high as six depending on the combination of parameter values. The number of

equilibria in frequency competition games with more players can be very high. In

real-life airline markets, the parameters of airline frequency competition, such as,
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fares, seating capacities, and operating costs of competing airlines are often not too

far from each other. Therefore focusing on the symmetric player case is not that

unrealistic. Furthermore, as shown in Sections 4.6 and 4.7, a thorough analysis of the

symmetric player case presents several valuable insights. In Sections 4.6 and 4.7, we

analyze both symmetric and asymmetric equilibria for the symmetric N-player case.

4.4 Best Response Curves

Let us define the effective competitor frequency, yi =
(∑

j∈I,j 6=i x
α
j

)1/α

, and

Πi = min(Π′i,Π
′′
i )

where, Π′i = Mpi
xαi

xαi + yαi
− Cixi and Π′′i = piSixi − Cixi.

Π′i is a twice continuously differentiable function of xi.

∂Π′i
∂xi

=
Mpiαx

α−1
i yαi

(xαi + yαi )2 − Ci

and
∂2Π′i
∂x2

i

=
Mpiαx

α−2
i yαi

(xαi + yαi )3 ((α− 1) yαi − (α + 1)xαi ) .

Π′i has a single point of contraflexure at xi = yi
(
α−1
α+1

)1/α
such that the function is

strictly convex for all lower values of xi and strictly concave for all higher values of xi.

Π′i can have at most two points of zero slope (stationary points). If two such points

exist, then the one with lower xi will be a local minima in the convex region and the

one with higher xi will be a local maxima in the concave region. Therefore, Π′i has

at most one local maximum and exactly one boundary point at xi = 0. Therefore,

global maxima of Π′i will be at either of these two points. Π′′i is a linear function of

xi with a positive slope. For a given combination of parameters α, M , pi, Ci, Si and

a given effective competitor frequency yi, the global maximum of Πi can satisfy any

one of the following three cases. These three cases are also illustrated in figures 4-1,
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4-2 and 4-3 respectively.

Case A: Π′i ≤ 0 for all xi > 0. Under this case, either a local maximum does not

exist for Π′i or it exists but value of the function Π′i at that point is negative. In this

case, a global maximum of Πi (xi) is at xi = 0. This describes a situation where the

effective competitor frequency is so large that airline i cannot earn a positive profit

at any frequency. Therefore, the best response of airline i is to have a zero frequency,

i.e. not to operate any flights in that market.

Case B: Local maximum of Π′i exists and the value of the function Π′i at that local

maximum is positive and less than or equal to Π′′i (xi). In this case, the unique global

maximum of Πi (xi) exists at the local maximum of Π′i (xi). In this case, the optimum

frequency is positive and at this frequency, airline i earns the maximum profit that

it could have earned had the aircraft seating capacity been infinite.

Case C: A local maximum of Π′i exists in the concave part and the value of the

function Π′i (xi) at this local maximum is greater than Π′′i (xi). In this case, Π′i (xi)

and Π′′i (xi) intersect at two distinct points (apart from xi = 0). The unique global

maximum of Πi (xi) exists at the point of intersection with highest xi value. This

describes the case where optimum frequency is positive and greater than the optimum

frequency under the assumption of infinite aircraft seating capacity. At this frequency,

airline i earns lower profit than the maximum profit it could have earned had the

aircraft seating capacity been infinite.

Π′i (0) = 0 and for very low positive values of xi,
∂Π′i
∂xi

is negative. Therefore, at

the first stationary point (the one with lower xi value), the Π′i function value will

be negative. Moreover, as yi tends to infinity, Π′i is negative for any finite value of

xi. Therefore, Π′i (xi) > 0 for some xi if and only if Π′i (x
′
i) > 0 for some stationary

point x′i. For a given combination of parameters α, M , pi, Ci and Si, there exists a

threshold value of effective competitor frequency yi such that, for any yi value above

this threshold, Π′i (xi) ≤ 0 for all xi > 0 and therefore the best response of airline i

is xi = 0. Let us denote this threshold by yth and the corresponding xi value as xth.

At xi = xth and yi = yth,
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Figure 4-1: A typical shape of profit function (Case A)

Figure 4-2: A typical shape of profit function (Case B)
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Figure 4-3: A typical shape of profit function (Case C)

Π′i = 0,
∂Π′i
∂xi

= 0,
∂2Π′i
∂x2

i

≤ 0

⇒ xth = (α− 1)
Mpi
αCi

and yth = (α− 1)
α−1
α
Mpi
αCi

.

Of course, at yi = yth, xi = 0 is also optimal. It turns out that it is the only

yi value at which there is more than one best response possible. This situation is

unlikely to be observed in real world examples, because the parameters of the model

are all real numbers with continuous distributions. So the probability of observing

this exact idiosyncratic case is zero. If we arbitrarily assume that in the event of

two optimal frequencies, an airline chooses the greater of the two values, then the

best response correspondence reduces to a function which we will refer to as the best

response function. The existence of two different maximum values at yi = yth means

that the best response correspondence is not always convex valued. Therefore, in

general, a pure strategy Nash equilibrium may or may not exist for this game.
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For yi values slightly below yth, the global maximum of Πi corresponds to the

stationary point of Π′i in the concave part as described in case B above. Therefore,

for yi values slightly below yth, at the stationary point of Π′i in the concave part,

Π′i < Π′′i . However, as yi → 0, argmax(Π′i (xi)) → 0. Therefore, the argmax(Πi (xi))

exists at the point of intersection of Π′i and Π′′i curves, as explained in case C above.

For yi values slightly above 0, at the stationary point of Π′i in the concave part,

Π′i > Π′′i . Therefore by continuity, for some yi such that 0 ≤ yi ≤ yth, there exists xi

such that, Π′i = Π′′i ,
∂Π′i
∂xi

= 0 and
∂2Π′i
∂x2
i
≤ 0. It turns out that there is only one such yi

value that satisfies these conditions. Let us denote this yi value by ycr, since this is

critical value of effective competitor frequency such that case B prevails for higher yi

values (as long as yi ≤ yth) and case C prevails for all lower yi values. The value of

ycr and the corresponding xi value, xcr, is given by,

xcr =
M

Si

(
1− Ci

αpiSi

)
and ycr =

M
Si

(
1− Ci

αpiSi

)
(
αpiSi
Ci
− 1
) 1
α

.

For yi = 0, as xi → 0+, Π′i keeps increasing and Π′′i keeps decreasing. However,

Π′′i < Π′i for sufficiently low values of xi. Therefore, Πi is maximized when Π′i = Π′′i .

Let us denote this xi value as x0. It is easy to see that x0 = M
Si

. We will denote the

range of yi values with yi ≥ yth as region A, ycr ≤ yi < yth as region B and yi < ycr

as range C.

In region C, Πi is maximized for a unique xi value such that Π′i = Π′′i and
∂Π′i
∂xi
≤ 0.

The equality condition translates into,

M

Si
xα−1
i − xαi = yαi . (4.2)

The left hand side (LHS) of equation (4.2) is strictly concave because 1 < α < 2.

Further, the LHS is maximized at xi = α−1
α

M
Si

. The maximum value of LHS is at

yi = (α− 1)
α−1
α M

αSi
. So for every yi value, there are two corresponding xi values

satisfying equation (4.2) that correspond to the two points of intersection of the Π′i
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and Π′′i curves. The one corresponding to the higher xi value is of interest to us.

That always corresponds to xi values greater than α−1
α

M
Si

. Differentiating both sides

of equation (4.2) with respect to yi,

∂xi
∂yi

= α
yα−1
i

xα−2
i

1

(α− 1) M
Si
− αxi

< 0.

So the best response of airline i in region C is strictly decreasing. Let us again

differentiate with respect to yi to obtain the second derivative of best response xi,

∂2xi
∂y2

i

=

(
∂xi
∂yi

)2

(α− 1)xα−3
i

(
αxi + (2− α) M

Si

)
+ α (α− 1) yα−2

i(
(α− 1) M

Si
− αxi

)
xα−2
i

< 0. (4.3)

Therefore, the best response curve is a strictly decreasing and concave function for

all 0 ≤ yi < ycr.

In region B, Πi is maximized for a unique xi value such that
∂Π′i
∂xi

= 0 and
∂2Π′i
∂x2
i
< 0.

The first order equality condition translates into,

Mpiα
xα−1
i yαi

(xαi + yαi )2 = Ci. (4.4)

Differentiating both sides of equation (4.4) with respect to yi and again substitut-

ing equation (4.4) we get,

∂xi
∂yi

=
xi
yi

xαi − yαi(
1 + 1

α

)
xαi −

(
1− 1

α

)
yαi
. (4.5)
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Figure 4-4: A typical best response curve
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The second order inequality condition translates into,

Mpiαx
α−2
i yαi

(xαi + yαi )3 ((α− 1) yαi − (α + 1)xαi ) < 0

⇒
(

1 +
1

α

)
xαi −

(
1− 1

α

)
yαi > 0. (4.6)

So the denominator of the right hand side of equation (4.5) is positive. Therefore,

∂xi
∂yi

= 0 if and only if xi = yi,
∂xi
∂yi

> 0 if and only if xi > yi and ∂xi
∂yi

< 0 if and

only if xi < yi. Therefore, the best response curve xi (yi) in region B has zero slope

at xi = yi, is strictly increasing for xi > yi and strictly decreasing for xi < yi.

Substituting xi = yi in equation (4.4) we get, xi = yi = αMpi
4Ci

.

Figure 4-4 describes a typical best response curve as a function of effective com-

petitor frequency. In region A, the effective competitor frequency is so small that

airline i attracts a large market share even with a small frequency. Therefore, the

optimal frequency ignoring seating capacity constraints is so low that, the number of

seats is exceeded by the number of passengers wishing to travel with airline i. As a

result, the optimal frequency and the maximum profit that can be earned by airline

i are decided by the aircraft seating capacity constraint. In this region, the optimal

number of flights scheduled by airline i is just sufficient to carry all the passengers

that wish to travel on airline i. In this region, airline i has 100% load factor at the

optimal frequency. With increasing effective competitor frequency, the market share

attracted by airline i reduces and hence fewer flights are required to carry those pas-

sengers. Therefore, the best response curve is strictly decreasing in this region. Once

the effective competitor frequency exceeds a critical value ycr, the seating capacity

constraint ceases to affect the optimal frequency decision.

In region B, the effective competitor frequency is sufficiently large due to which

the number of passengers attracted by airline i does not exceed the seating capacity.

Therefore, the aircraft seating capacity constraint becomes redundant in this region.

The optimal frequency is equal to the frequency at which the marginal revenue equals

marginal cost, which is a constant Ci. As the effective competitor frequency increases,

the market share of airline i at the optimal frequency decreases and the load factor
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of airline i at optimal frequency also decreases. At a large value, yth, of effective

competitor frequency, the load factor of airline i at its optimal frequency reduces to

a value Ci
piSi

and the optimal profit drops to zero.

For all values of effective competitor frequency above yth, i.e. in region C, there

is no positive frequency for which the airline i can make positive profit. Therefore,

the optimal frequency of airline i in region C is zero.

4.5 2-Player Game

Let x and y be the frequency of carrier 1 and 2 respectively. The effective competitor

frequency for carrier 1 is y and that for carrier 2 is x. For any pure strategy Nash

equilibrium (PSNE), the competitor frequency for each carrier can belong to any one

of the three regions, A, B and C. So potentially there are 9 different combinations

possible. We define the type of a PSNE as the combination of regions to which the

competitor frequency belongs at equilibrium. We will denote each type by a pair of

capital letters denoting the regions. For example, if carrier 1’s effective competitor

frequency, i.e. y, belongs to region B and carrier 2’s effective competitor frequency,

i.e. x, belongs to region C, then that PSNE is said to be of type BC. Accordingly,

there are 9 different types of PSNE possible for this game, namely AA, AB, AC, BA,

BB, BC, CA, CB and CC.

Frequency competition among carriers is the primary focus of this research. How-

ever, it is important to realize that frequency planning is just one part of the entire

airline planning process. Frequency planning decisions are not taken in isolation, the

route planning phase precedes the frequency planning phase. Once the set of routes

to be operated is decided, the airline proceeds to the decision of the operating fre-

quency on that route. This implicitly means that once a route is deemed profitable in

the route planning phase, frequency planning is the phase that decides the number of

flights per day, which is supposed to be a positive number. However, in AA, AB, BA,

AC or CA type equilibria, the equilibrium frequency of at least one of the carriers

is zero, which is inconsistent with the actual airline planning process. Moreover, for
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ease of modeling, we have made a simplifying assumption that the seating capacity is

constant. In reality, seating capacities are chosen considering the estimated demand

in a market. If the demand for an airline in a market exceeds available seats on a

regular basis, the airline would be inclined to use larger aircraft. Sustained presence

of close to 100% load factors is a rarity. However type AC, BC, CA, CB and CC

type equilibria involve one or both carriers having 100% load factors. Zero frequency

and 100% load factors make all types of equilibria, apart from type BB equilibrium,

suspect in terms of their portrayal of reality.

We will now investigate each of these possible types of pure strategy equilibria of

this game and obtain the existence and uniqueness conditions for each of them.

4.5.1 Existence and Uniqueness

Proposition 1. A type AA equilibrium cannot exist.

Proof. If x∗ = 0 then, Π2 = p2 ∗min (M,S2y) − C2y, which is maximized at y = M
S2

because C2 < S2p2. So y∗ > 0 whenever x∗ = 0. So this type of equilibrium cannot

exist.

Proposition 2. A type AB (and type BA) equilibrium cannot exist.

Proof. Type AB equilibrium exists if and only if x∗ = 0, y∗ > 0 and PAX2 < S2y
∗.

As shown before, if x∗ = 0 then, Π2 is maximized at y = M
S2

as long as C2 < S2p2. So

PAX2 = M = S2y
∗ whenever x∗ = 0. So this type of equilibrium cannot exist. By

symmetry, type BA equilibrium cannot exist either.

Proposition 3. A type AC equilibrium exists if and only if C1

S1p1
≥ S2

S1

1
α

(α− 1)
α−1
α

and if it exists, then it is a unique type AC equilibrium.

Proof. This type of equilibrium requires x∗ = 0 and y∗ = M
S2

. So if an equilibrium of

this type exists, then it must be the unique type AC equilibrium. For this equilibrium

to exist, the only condition we need to check is that M
S2

= y ≥ yth = (α− 1)
α−1
α Mp1

αC1
.

For all y∗ = M
S2

, x∗ = 0 is true if and only if Π1 ≤ 0, for all x ≥ 0. So type AC

equilibrium will exist if and only if C1

S1p1
≥ S2

S1

1
α

(α− 1)
α−1
α .
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By symmetry, a type CA equilibrium exists if and only if C2

S2p2
≥ S1

S2

1
α

(α− 1)
α−1
α

and if it exists, then it is the unique type CA equilibrium.

Proposition 4. A type BB equilibrium exists if and only if k ≤
(

1
α−1

) 1
α , 1

k
≤(

1
α−1

) 1
α , C1

S1p1
< α kα

1+kα
and C2

S2p2
< α 1

1+kα
, where k = C1p2

C2p1
, and if it exists, then it

is a unique type BB equilibrium.

Proof. In type BB equilibrium, x∗ > 0, y∗ > 0, PAX1 < S1x and PAX2 < S2y.

Therefore, Π1 (x∗, y∗) = Π′1 (x∗, y∗) and Π2 (x∗, y∗) = Π′2 (x∗, y∗). So Π1 and Π2 are

both twice continuously differentiable at (x∗, y∗). So type BB equilibrium exists

if and only if there exist x and y such that
∂Π′1
∂x

= 0,
∂Π′2
∂y

= 0,
∂2Π′1
∂x2 ≤ 0,

∂2Π′2
∂y2
≤

0,Π′1 ≥ 0,Π′2 ≥ 0,M xα

xα+yα
< S1x and M yα

xα+yα
< S2y. Solving the two First Order

Conditions (FOCs) simultaneously, we get x = αMp1
C1

kα

(1+kα)2
and y = αMp1

C1

kα+1

(1+kα)2
. So

if this equilibrium exists, then it must be the unique type BB equilibrium.

The second order conditions (SOCs) can be simplified to k ≤
(
α+1
α−1

) 1
α and 1

k
≤(

α+1
α−1

) 1
α . Also the Π′1 ≥ 0 and Π′2 ≥ 0 translate into,

k ≤
(

1

α− 1

) 1
α

(4.7)

and
1

k
≤
(

1

α− 1

) 1
α

. (4.8)

Conditions (4.7) and (4.8) make the second order conditions redundant. Finally,

the last two conditions translate into,

C1

S1p1

< α
kα

1 + kα
(4.9)

and
C2

S2p2

< α
1

1 + kα
. (4.10)

Therefore, type BB equilibrium exists if and only if conditions (4.7), (4.8), (4.9)

and (4.10) are satisfied.
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Proposition 5. A type BC equilibrium exists if and only if C1

p1S1

S1

S2
≤ (α− 1)

α−1
α , kα

1+kα
≤

1
α
, 1

1+kα
≤ 1

α
C2

p2S2
and 1

α
C1

p1S1
≥ 1

1+
(
S1
S2

) α
α−1

, where k = C1p2
C2p1

, and if it exists, then it is a

unique type BC equilibrium.

Proof. In type BC equilibrium, x∗ > 0, y∗ > 0, PAX1 < S1x and PAX2 = S2y.

Therefore Π1 (x∗, y∗) = Π′1 (x∗, y∗). So Π1 (x) is twice continuously differentiable at

(x∗, y∗). For local maxima of Π2 at (x∗, y∗), we need Π′2 = Π′′2 and
∂Π′2
∂y
≤ 0.

A type BC equilibrium then exists if and only if there exists (x, y) such that

∂Π′1
∂x

= 0,Π′2 = Π′′2,
∂2Π′1
∂x2 ≤ 0,

∂Π′2
∂y
≤ 0,Π′1 ≥ 0 and M xα

xα+yα
< S1x. The first two

conditions translate into,

xα−1yα

(xα + yα)2 =
C1

αMp1

and
yα

xα + yα
=
S2

M
y.

Solving these two equations simultaneously we get,

x =

(
MC1

αp1S2
2

) 1
α−1

y
α−2
α−1 (4.11)

and

(
yS2

M

) 1
α−1

−
(
yS2

M

) α
α−1

−
(

C1

αp1S2

) α
α−1

= 0. (4.12)

The nonnegativity condition on airline 1’s profit implies that Mp1
xα

xα+yα
≥ C1x.

Substituting equation (4.11) and (4.12) we get,

yS2

M
≤ 1

α
. (4.13)

The LHS of equation (4.12) is a strictly increasing function of y for yS2

M
< 1

α
.

Therefore, there exists a y that satisfies equation (4.12) and inequality (4.13) if and

only if
(

1
α

) 1
α−1 −

(
1
α

) α
α−1 −

(
C1

αp1S2

) α
α−1 ≥ 0, i.e. if and only if
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C1

p1S1

S1

S2

≤ (α− 1)
α−1
α , (4.14)

and if it exists, then it is unique. Therefore, if a type BC equilibrium exists, then

it must be a unique type BC equilibrium.

Simplifying the second order condition and substituting equation (4.11) and equa-

tion (4.12), we get yS2

M
≤ α+1

2α
. Therefore, condition (4.13) makes the second order

condition redundant.

First order condition (FOC) on Π′2 (y) simplifies to x
y
≤ C2p1

C1p2
. Substituting equa-

tion (4.11) and equation (4.12) we get,

yS2

M
≥ kα

1 + kα
. (4.15)

Therefore, there exists a y that satisfies equation (4.12), inequality (4.13) and

inequality (4.15) if and only if

kα

1 + kα
≤ 1

α
and

(
C1

αp1S2

) α
α−1

≥
(

kα

1 + kα

) 1
α−1

−
(

kα

1 + kα

) α
α−1

⇐⇒ kα

1 + kα
≤ 1

α
(4.16)

and
1

1 + kα
≤ 1

α

C2

p2S2

. (4.17)

Finally, the last condition, i.e. the condition that the seating capacity exceeds the

number of passengers for airline 1, simplifies to xα−1

yα−1 ≤ S1

S2
. Substituting equation

(4.11) we get,

yS2

M
≥ C1

αp1S1

. (4.18)

Combining with inequality (4.13) we get, a
α
≥ yS2

M
≥ C1

αp1S1
. Therefore, there exists
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a y that satisfies equation (4.12), inequality (4.13) and inequality (4.18) if and only

if,

(
C1

αp1S2

) α
α−1

≥
(

C1

αp1S1

) 1
α−1

−
(

C1

αp1S1

) α
α−1

⇐⇒ 1

α

C1

p1S1

≥ 1

1 +
(
S1

S2

) α
α−1

. (4.19)

Therefore, type BC equilibrium exists if and only if inequality conditions (4.14),

(4.16), (4.17) and (4.19) are satisfied.

By symmetry, a type CB equilibrium exists if and only if C2

p2S2

S2

S1
≤ (α− 1)

α−1
α , 1

1+kα
≤

1
α
, kα

1+kα
≤ 1

α
C1

p1S1
, 1
α

C2

p2S2
≥ 1

1+
(
S2
S1

) α
α−1

, and if it exists, then it is a unique CB type equi-

librium.

Proposition 6. A type CC equilibrium exists if and only if

(
S2
S1

) α
α−1

1+
(
S2
S1

) α
α−1
≤ 1

α
C1

S1p1
and 1

1+
(
S2
S1

) α
α−1
≤

1
α

C2

S2p2
, and if it exists, then it is a unique type CC equilibrium.

Proof. For type CC equilibrium, x > 0, y > 0, PAX1 = S1x and PAX2 = S2y.

Existence of local maxima of Π1 at x = x∗ requires that
∂Π′1
∂x
≤ 0. Similarly existence

of local maxima of Π2 at y = y∗ requires that
∂Π′2
∂y
≤ 0. So for a type CC equilibrium

to exist at (x, y), the necessary and sufficient conditions to be satisfied are xα

xα+yα
M =

S1x,
yα

xα+yα
M = S2y,

∂Π′1
∂x
≤ 0 and

∂Π′2
∂y
≤ 0. Solving the two equalities simultaneously

we get, x = M

S1

(
1+
(
S2
S1

) α
α−1

) and y = M

S2

(
1+
(
S1
S2

) α
α−1

) .

Therefore, if a type CC equilibrium exists, then it must be the unique type CC

equilibrium. The two inequality conditions translate into,

(
S2

S1

) α
α−1

1 +
(
S2

S1

) α
α−1

≤ 1

α

C1

S1p1

(4.20)

and
1

1 +
(
S2

S1

) α
α−1

≤ 1

α

C2

S2p2

. (4.21)
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Therefore, equation (4.20) and equation (4.21) together are necessary and suffi-

cient conditions for type CC equilibrium to exist.

In any 2-player game, out of 9 possible types, 6 types of equilibria, namely AC,

CA, BB, BC, CB and CC may exist depending on operating cost, fare and seating

capacity values. Furthermore, all the necessary and sufficient conditions for the ex-

istence and uniqueness of each type of equilibrium can be expressed in terms of only

5 unitless parameters namely, r1 = C1

p1S1
, r2 = C2

p2S2
, k = C1p2

C2p1
, l = S1

S2
and α, out of

which l can be expressed as a function of the rest as l = k r2
r1

. So there are only 4

independent parameters, which completely describe a 2-player frequency game. The

total passenger demand M plays no part in any of the conditions.

4.5.2 Realistic Parameter Ranges

Up to 6 different pure strategy Nash equilibria may exist for a 2-player game depend-

ing on game parameters. Apart from α, the flight operating costs, seating capacities

and fares are the only determinants of these parameters. In order to identify realistic

ranges of these parameters, we looked at all the domestic segments in the United

States with exactly 2 carriers providing non-stop service. There are 157 such seg-

ments that satisfied this criteria. Many of these markets cannot be classified as pure

duopoly situations because passenger demand on many of these origin-destination

pairs is served not only by the nonstop itineraries, but also by connecting itineraries

offered by several carriers, often including the two carriers providing the nonstop

service. Moreover, one or both endpoints for many of these non-stop segments are

important hubs of one or both of these nonstop carriers, which means that connecting

passengers traveling on this segment also play an important role in the profitability

of this segment. Therefore, modeling these nonstop markets as pure duopoly cases

can be a gross approximation. Our aim is not to capture all these effects into our

frequency competition model but rather to identify realistic relative values of flight

operating costs, seating capacities and fares. Despite these complications, these 157

segments are the real-world situations that come closest to the simplified frequency
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Figure 4-5: Histograms of parameter values

competition model that we have considered. Therefore, data from these markets were

used to narrow down our modeling focus. Figure 4-5 shows the histograms of k, S1

S2

and C
pS

. All k values were found to lie in the range 0.4 to 2.5, all S1

S2
were in the range

0.5 to 2 and all C
pS

values were found to lie in the range 0.18 to 0.8. We will restrict

our further analysis to these ranges of values only. In particular, for later analysis,

we will need only one of these assumptions, which is given by,

Assumption 3. 0.4 ≤ k ≤ 2.5

For α = 1.5, the conditions for type BB equilibrium were satisfied in 144 out of

these 157 markets, i.e. almost 92% of the times. Conditions for type AC (or CA)

equilibrium were satisfied in 71 markets, of which 8 were such that the conditions for

both type AC and type CA equilibrium were satisfied together. Conditions for type
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BC (or CB) equilibrium were satisfied in only 1 out of 157 markets and conditions

for type CC equilibrium were never satisfied. In all the markets, the conditions for

the existence of at least one pure strategy Nash equilibrium were satisfied. Out of

157 markets, almost 55% (86 markets) were such that type BB was the unique pure

strategy Nash equilibrium.

We have already proved that AA, AB and BA type equilibria do not exist. Further,

as discussed above, AC, CA, BC, CB and CC type equilibria are suspect in terms of

portrayal of reality. Therefore, type BB equilibrium appears to be the most reasonable

type of equilibrium. Indeed, the data analysis suggested that the existence conditions

for type BB equilibrium were satisfied in most of the markets. So for the purpose of

analyzing learning dynamics we will only consider the type BB equilibrium.

Now, we propose two alternative dynamics for the non-equilibrium situations.

4.5.3 Myopic Best Response Dynamic

Consider an adjustment process where the two players take turns to adjust their own

frequency decision so that each time it is the best response to the frequency chosen by

the competitor in the previous period. If xi and yi is the frequency decision by each

carrier in period i, then xi is the best response to yi−1 and yi−1 is the best response to

xi−2 etc. We will prove the convergence of this dynamics for two representative values

of α namely α = 1 and α = 1.5. We chose these two values because they correspond

to two disparate beliefs about the market share-frequency share relationship. There

is nothing specific about these two values that makes the algorithm converge. In fact

given any value in between, we would probably be able to come up with a proof of

convergence. But due to space constraints we will restrict our attention to these two

specific values of α.

Let us define χ = xα and γ = yα. We will often use the χ− γ coordinate system

in this section. Without any loss of generality, we assume that k = C1p2
C2p1

≤ 1. We

will denote the best response functions as xBR (y) and yBR (x) in the x−y coordinate

system and as χBR (γ) and γBR (χ) in the χ − γ coordinate system. Consider a

two-dimensional interval I given by xlb ≤ x ≤ xub, ylb ≤ y ≤ yub where,
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Figure 4-6: Best response curves in 2-player game

yub =
αMp2

4C2

xub = xBR (yub)

ylb = yBR (xub)

xlb = xBR (ylb)

Figure 4-6 provides a pictorial depiction of interval I.

Proposition 7. As long as the competitor frequency for each carrier remains in

region B, regardless of the starting point: (a) the myopic best response algorithm will

reach a point in interval I in a finite number of iterations, (b) once inside interval I,

it will never leave the interval.

Proof. Let us denote the frequency decisions of the two carriers after the ith iteration

by xi and yi respectively. At the beginning of the algorithm the frequency values are

arbitrarily chosen to be x0 and y0. If i ≥ 0 is odd, then xi = xBR (yi−1) and yi = yi−1.

If i ≥ 0 is even, then yi = yBR (xi−1) and xi = xi−1.

Therefore for all i ≥ 2, xi is a best response to some y and yi is a best response to
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some x. Best response curve xBR (y) in region B has a unique maximum at y = αMp1
4C1

with xBR

(
αMp1
4C1

)
= αMp1

4C1
. By symmetry, the best response curve yBR (x) in region B

has a unique maximum at x = αMp2
4C2

with yBR

(
αMp2
4C2

)
= αMp2

4C2
. k ≤ 1 implies that

αMp2
4C2

≤ αMp1
4C1

. Therefore, yi ≤ αMp2
4C2

= yub for all i ≥ 2. ∂xBR
∂y

> 0 for y < αMp1
4C1

.

Therefore, for all i ≥ 3, xi = xBR (yi−1) ≤ xBR (yub) = xub. So for all i ≥ 3, yi ≤ yub

and xi ≤ xub.

Let us now prove that the type BB equilibrium point (xeq, yeq) is contained inside

interval I. yeq is a best response to xeq. Therefore, yeq ≤ αMp2
4C2

= yub. For k ≤ 1,

xeq = αMp2
4C2

4kα−1

(1+kα)2
≥ αMp2

4C2
and yeq = αMp1

4C1

4kα+1

(1+kα)2
≤ αMp1

4C1
.

For all yeq ≤ y ≤ yub,
∂xBR
∂y
≥ 0⇒ xeq = xBR (yeq) ≤ xBR (yub) = xub.

For all xeq ≤ x ≤ xub,
∂yBR
∂x
≤ 0⇒ yeq = yBR (xeq) ≥ yBR (xub) = ylb.

For all ylb ≤ y ≤ yeq,
∂xBR
∂y
≥ 0⇒ xeq = xBR (yeq) ≥ xBR (ylb) = xlb.

Thus, we have proved that xlb ≤ xeq ≤ xub, ylb ≤ yeq ≤ yub, that is, the type BB

equilibrium is contained inside interval I.

Because of existence of a unique type BB equilibrium, the best response curves

intersect each other at exactly one point denoted by (xeq, yeq). Further, for all x < xeq

and for all y < yeq, the yBR curve is above the xBR curve and xBR curve is to the right

of yBR curve. Also, for all y < yeq, xBR (y) < xeq. Therefore, for all xi < xeq, if i is odd

then xi+1 = xi, yi < yi+1 ≤ yub and if i is even then xi < xi+1 < xeq, yi+1 = yi. So in

each iteration, either xi or yi keeps strictly increasing until yi ≥ yeq. In the very next

iteration, xi+1 = xBR (yi) ≥ xeq and yi+1 = yi ≥ yeq. Thus, xlb ≤ xeq ≤ xi+1 ≤ xub

and ylb ≤ yeq ≤ yi+1 ≤ yub. We have proved part (a) of the proposition.

We have already proved that at the end of any iteration i ≥ 2, xi ≤ xub and

yi ≤ yub. So for all i such that xlb ≤ xi ≤ xub and ylb ≤ yi ≤ yub, all that remains

to be proved is that xlb ≤ xi+1 and ylb ≤ yi+1. We first consider the case where i

is even. yi+1 = yi. As proved earlier, for all y such that ylb ≤ y ≤ yub,
∂xBR
∂y
≥ 0.

Therefore, ylb ≤ yi ≤ yub ⇒ xlb = xBR (ylb) ≤ xBR (yi) = xi+1 ≤ xBR (yub) = xub.

Therefore, xlb ≤ xi+1 ≤ xub and ylb ≤ yi+1 ≤ yub. Now consider the case where

i is odd. xi+1 = xi. For all xi such that xeq ≤ xi ≤ xub,
∂yBR
∂x
≤ 0. Therefore,

ylb = yBR (xub) ≤ yBR (xi) = yi+1. On the other hand, for all xi < xeq, yi <
αMp1
4C1

,
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yi+1 = yBR (xi) > yi ≥ ylb. Therefore, if xlb ≤ xi ≤ xub, then ylb ≤ yi+1. Thus we

have proved that xlb ≤ xi+1 ≤ xub and ylb ≤ yi+1 ≤ yub, if i is odd. Therefore, for any

i such that (xi, yi) is in interval I, (xi+1, yi+1) is also in interval I. We have proved

part (b) of the proposition.

Now we will prove that the absolute value of the slope of each of the best response

curves inside interval I is less than 1 in the χ− γ coordinates. We will prove this for

two representative values of α namely, α = 1.5 and α = 1.

Proposition 8. For α = 1.5, the absolute value of the slope of each of the best

response curves inside interval I is less than 1 in the χ− γ coordinates.

Proof. We will first prove that at x = xub, |∂γBR(χ)
∂χ
| < 1.

∂γBR (χ)

∂χ
= −αγ

χ

1− γ
χ

(α + 1) γ
χ
− (α− 1)

The denominator of the right hand side (RHS) is always positive, due to the

second order conditions. At x = xub, x ≥ yBR (x), and hence, ∂γBR(χ)
∂χ

≤ 0. For

α = 1.5, solving for the point where ∂γBR(χ)
∂χ

= −1, leads to a unique solution given

by (x−1, y−1), where,

y−1 =
9

32

Mp2

C2

and x−1 = 3
2
3

9

32

Mp2

C2

.

Because xub = xBR

(
αMp2
4C2

)
, we get,

4

k
=

(
4C2xub
1.5Mp2

)2.5

+ 2

(
4C2xub
1.5Mp2

)
+

(
4C2xub
1.5Mp2

)−0.5

.

Define f (x) =
(

4C2x
1.5Mp2

)2.5

+2
(

4C2x
1.5Mp2

)
+
(

4C2x
1.5Mp2

)−0.5

. f (x) is a strictly increasing

function of x for x ≥ 1.5Mp2
4C2

. f (xub) = 4
k

and f (x−1) ≈ 6.96. f (xub) < f (x−1) if and

only if k ≥ 0.575, which is always satisfied because one of the necessary conditions
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for the existence of type BB equilibrium requires that k ≥ (α− 1)
1
α = 0.5

2
3 > 0.575.

Therefore, xub < x−1. Thus, we have proved that at x = xub, −1 < ∂γBR(χ)
∂χ

< 0.

Also for x ≥ αMp2
4C2

, ∂yBR
∂x
≤ 0, therefore y−1 = yBR (x−1) < yBR (xub) = ylb.

Next, we will obtain the coordinates of the point (which turns out to be unique) such

that ∂χBR(γ)
∂γ

= 1 and prove that the y-coordinate at this point is less than ylb. The

condition,

∂χBR (γ)

∂γ
= 1.5

χ

γ

χ
γ
− 1

(1.5 + 1) χ
γ
− (1.5− 1)

= 1,

can be simplified to obtain,

x ≈ 0.2029
1.5Mp1

C1

and y ≈ 0.1091
1.5Mp1

C1

.

Because k ≥ (α− 1)
1
α = 0.5

2
3 > 0.589, we get ylb > y−1 > 0.10911.5Mp1

C1
. So the

y-coordinate of the point at which ∂χBR(γ)
∂γ

= 1 is less than ylb. Because ∂χBR(γ)
∂γ

≥ 0

throughout interval I, 0 ≤ ∂χBR(γ)
∂γ

< 1 for the χBR (γ) curve at y = ylb.

Now, let us obtain the coordinates of the point (which turns out to be unique)

such that ∂γBR(χ)
∂χ

= 1 and prove that the x-coordinate of this point is less than xlb.

Solving for ∂γBR(χ)
∂χ

= 1 we get,

y ≈ 0.2029
1.5Mp2

C2

and x ≈ 0.1091
1.5Mp2

C2

.

In order to prove that 0.10911.5Mp2
C2

< xlb = xBR (ylb), it is sufficient to prove

that the y-coordinate of the point on the lower part of xBR (y) curve at which x =

0.10911.5Mp2
C2

is less than y−1 = 9
32
Mp2
C2

. This is easy to prove because for y < αMp1
4C1

,

the xBR (y) curve lies below y = x line. Therefore, the y-coordinate corresponding

to x = 0.10911.5Mp2
C2

is less than 0.10911.5Mp2
C2

which is less than 9
32
Mp2
C2

. Therefore, at

x = xlb,
∂γBR(χ)

∂χ
< 1.

So far we have proved that −1 < ∂γBR(χ)
∂χ

≤ 0 at x = xub and ∂γBR(χ)
∂χ

< 1 at

x = xlb. Therefore, −1 < ∂γBR(χ)
∂χ

< 1 for all x such that xlb ≤ x ≤ xub. Also we
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have proved that 0 ≤ ∂χBR(γ)
∂γ

< 1 at y = ylb and 0 ≤ ∂χBR(γ)
∂γ

at y = yub. Therefore,

−1 < ∂χBR(γ)
∂γ

< 1 for all y such that ylb ≤ y ≤ yub.

Therefore for α = 1.5, the absolute value of the slopes of each of the best response

curves inside interval I is less than 1 in the χ− γ coordinates.

Proposition 9. For α = 1, the absolute value of the slope of each of the best response

curves inside interval I is less than 1 in the χ− γ coordinates.

Proof. For α = 1, the χ − γ coordinate system is the same as the x − y coordinate

system. We will first prove that at x = xub, |∂γBR(χ)
∂χ
| < 1.

For α = 1,

∂γBR (χ)

∂χ
= −1

2

(
1− γ

χ

)
> −1

2
.

We know that at x = xub,
∂γBR(χ)

∂χ
≤ 0. Therefore, x = xub, |∂γBR(χ)

∂χ
| < 1.

Next, we will obtain the coordinates of the point (which turns out to be unique)

such that ∂χBR(γ)
∂γ

= 1 and prove that the y-coordinate at this point is less than ylb.

Solving for ∂χ(γBR)
∂γ

=
χ
γ
−1

2
= 1, we get,

x =
3Mp1

16C1

and y =
Mp1

16C1

.

For x ≥ Mp2
4C2

, we have ∂γBR(χ)
∂χ

≤ 0 and for y ≤ Mp1
4C1

, we have ∂χBR(γ)
∂γ

≥ 0.

yub = Mp2
4C2
≤ Mp1

4C1
. So xub = xBR (yub) ≤ xBR

(
Mp1
4C1

)
= Mp1

4C1
. So we get ylb =

yBR (xub) ≥ yBR

(
Mp1
4C1

)
. As per the first order conditions,

Mp1
4C1(

yBR

(
Mp1
4C1

)
+ Mp1

4C1

)2 =
C2

Mp2

⇐⇒ yBR

(
Mp1

4C1

)
=
Mp1

4C1

(
2
√
k − 1

)
.

ylb ≥ yBR

(
Mp1
4C1

)
= Mp1

4C1

(
2
√
k − 1

)
> Mp1

16C1
because k ≥ 0.4. Therefore, the y

coordinate of the point where ∂χBR(γ)
∂γ

= 1 is less than ylb.
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Now, let us obtain the coordinates of the point (which turns out to be unique)

such that ∂γBR(χ)
∂χ

= 1 and prove that the x-coordinate of this point is less than xlb.

Solving for ∂γBR(χ)
∂χ

= 1, we get,

x =
Mp2

16C2

and y =
3Mp2

16C2

.

Because Mp1
4C1
≥ ylb >

Mp1
16C1

, and ∂χBR(γ)
∂γ

> 0 for y < Mp1
4C1

, we get xlb = xBR (ylb) >

xBR

(
Mp1
16C1

)
= 3Mp1

16C1
> Mp2

16C2
. The last inequality holds because k ≤ 1. Therefore, the

x coordinate at the point where ∂γBR(χ)
∂χ

= 1 is less than xlb.

Thus we have proved that −1 < ∂γBR(χ)
∂χ

≤ 0 at x = xub and ∂γBR(χ)
∂χ

< 1 at

x = xlb. Therefore, −1 < ∂γBR(χ)
∂χ

< 1 for all x such that xlb ≤ x ≤ xub. Also we

have proved that 0 ≤ ∂χBR(γ)
∂γ

< 1 at y = ylb and 0 ≤ ∂χBR(γ)
∂γ

at y = yub. Therefore,

−1 < ∂χBR(γ)
∂γ

< 1 for all y such that ylb ≤ y ≤ yub.

Therefore, for α = 1, the absolute value of the slopes of each of the best response

curves inside interval I is less than 1 in the χ− γ coordinates.

In order to prove the next proposition, we assume that the absolute value of slope

of each of the best response curves is less than 1 in interval I.

Proposition 10. If the absolute value of slope of each of the best response curves is

less than 1 in interval I, then as long as the competitor frequency for each carrier re-

mains in region B, regardless of the starting point, the myopic best response algorithm

converges to the unique type BB equilibrium.

Proof. We have assumed that the absolute value of slope of each of the best response

curves is less than 1 in interval I. Also we have proved that as long as the competitor

frequency for each carrier remains in region B, regardless of the starting point the

myopic best response algorithm will reach a point in interval I in a finite number of

iterations and once inside interval I, it will never leave the interval.

Let (χeq, γeq) be the type BB equilibrium point in the χ − γ coordinate system.

We define a sequence L (i) as follows:
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L (i) =

|χi − χeq| if i is odd

|γi − γeq| if i is even.

Let us consider any iteration i after the algorithm has reached inside the interval

I. We will prove that once inside interval I, L (i) is strictly decreasing.

Let us first consider the case where i is odd. L (i) = |χi − χeq|. In the (i+ 1)th

iteration, χ value remains unchanged. Only the γ value changes from γi to γi+1.

L (i+ 1) = |γi+1 − γeq| = |γBR (χi)− γBR (χeq) | = |
χi∫

χeq

(
∂γ (χ)

∂χ

)
dχ|

≤ |
χi∫

χeq

|∂γ (χ)

∂χ
|dχ| < |

χi∫
χeq

1dχ| = |χi − χeq| = L (i)

We have proved that once inside interval I, L (i) is strictly decreasing for odd

values of i. By symmetry, the same is true for even values of i. Moreover, L (i) = 0

if and only if x = xeq and y = yeq. Therefore, L (i) is a decreasing sequence which is

bounded below. So it converges to the unique type BB equilibrium point.

Proposition 11. Regardless of the starting point, the myopic best response algorithm

converges to the unique type BB equilibrium as long as the following conditions are

satisfied.
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αMp1

4C1

< xth

αMp2

4C2

< yth

xcr < xBR (yth)

ycr < yBR (xth)

xcr < xBR (ycr)

ycr < yBR (xcr)

Proof. First we develop sufficient conditions under which the competitor frequency

for each carriers remains in region B for all iterations i ≥ 2, regardless of the starting

point.

As proved earlier, the shape of the best response curve yBR (x) is such that at x =

0, y = M
S2

. Initially it is strictly decreasing followed by a point of non-differentiability

(at xcr) beyond which it is strictly increasing until a local maximum is reached at

x = αMp2
4C2

. Beyond the local maximum, it is strictly decreasing again to a point of

discontinuity (at xth), beyond which it takes a constant value 0. For x ≤ xth, the only

candidates for global minima of the best response curve yBR (x) are xcr and xth. The

only candidates for global maxima are x = 0 and x = αMp2
4C2

. If the y-coordinate at each

of these four important points lies in the range ycr < y < yth, then ycr < yBR (x) < yth

for all x < xth. Similarly, if xBR (y) at y = 0, y = ycr, y = αMp1
4C1

, and y = yth are all in

the range xcr < x < xth, then xcr < xBR (y) < xth for all y < yth. So for any starting

point x0 such that x0 < xth, the algorithm will remain in the region B of both carriers

for all subsequent iterations. The only remaining case is when x ≥ xth or y ≥ yth.

This does not pose any problem because for all x ≥ xth, xBR (yBR (x)) = xBR (0) and

xcr < xBR (0) = M
S2

< xth. So if the aforementioned conditions are satisfied, then

regardless of the starting point, the algorithm will remain in the region B of both

carriers for all iterations i such that i ≥ 2.

For all the aforementioned conditions to be satisfied, it is sufficient to ensure that
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the upper bound conditions on the points of local maxima are satisfied and the lower

bound conditions on the points of local minima are satisfied. Let us first look at the

upper bounds on the points of local maxima. There are 4 such conditions per carrier,

namely M
S1
< xth,

M
S2
< yth,

αMp1
4C1

< xth and αMp2
4C2

< yth.
M
S1
< xth simplifies to,

C2

S2p2

<
S1

S2

1

α
(α− 1)

α−1
α

which is the exact negation of the condition for existence of type CA equilibrium.

Because we have assumed that the only unique PSNE in this game is a type BB

equilibrium, a type CA equilibrium cannot exist. Hence this condition is automati-

cally satisfied. By symmetry, due to the non-existence of a type AC equilibrium, the

condition M
S2
< yth is automatically satisfied.

The remaining six conditions are as follows:

αMp1

4C1

< xth

αMp2

4C2

< yth

xcr < xBR (yth)

ycr < yBR (xth)

xcr < xBR (ycr)

ycr < yBR (xcr)

If each of these conditions is satisfied then the myopic best response algorithm

converges to the unique type BB equilibrium, regardless of the starting point.

Out of the 157 records of 2-player cases analyzed for the domestic US segments,

86 segments were such that the only PSNE was a type BB equilibrium. In each

and every one of these 86 cases, all the 6 conditions mentioned above were satisfied.

Therefore, for each of these 86 cases, the myopic best response dynamic converges to

152



the unique type BB equilibrium point regardless of the starting point. Thus the data

analysis suggests that these conditions are very mild.

4.5.4 Alternative Dynamic

This dynamic is applicable only in the part of region B where the utility function is

strictly concave i.e. we will consider the region where α−1
α+1

+ε ≤
(
x
y

)α
≤ α+1

α−1
−ε, where

ε is any sufficiently small positive number. This requirement is not very restrictive.

This condition is always satisfied at the type BB equilibrium, due to the second

order conditions. Moreover, the x
y

values satisfying this condition cover a large region

surrounding the type BB equilibrium. For example, for α = 1, this condition is always

satisfied for all values of x
y
, while for α = 1.5, the condition translates approximately to

0.342 ≤ x
y
≤ 2.924, which is a large range. In order to provide a complete specification

of the player utilities, we will define the player i utility outside this region by means

of a quadratic function of a single variable xi. The coefficients are such that ui (xi)

and its first and second order derivatives with respect to xi are continuous.

Multiplying the utility function by a positive real number is an order preserving

transformation, which does not affect the properties of the game. We will multiply

the utility of player i by 1
pi

. So ui = Πi
pi

. This dynamic was proposed by Rosen

[84]. Under this dynamic, each player changes his strategy such that his own utility

would increase if all the other players held to their current strategies. The rate of

change of each player’s strategy with time is equal to the gradient of his utility with

respect to his own strategy, subject to constraints. For the frequency competition

game, where each player’s strategy space is 1-dimensional, the rate of change of each

player’s strategy simply equals the derivative of the player’s utility with respect to

the frequency decision, subject to the upper and lower bound on allowable frequency

values. Therefore, the rate of adjustment of each player’s strategy is given by,

dxi
dt

=
dui (x)

dxi
+ bmin − bmax.
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The only purpose of the summation term is to ensure that the frequency values

stay within the allowable range, xmin ≤ x ≤ xmax. bmin will be equal to 0 for all

x > xmin and will take an appropriate positive value at x = xmin to ensure that the

lower bound is respected. Similarly, bmax will be equal to 0 for all x < xmax and will

take an appropriate positive value at x = xmax to ensure that the upper bound is

respected. As long as the competitor frequencies remain in region B for each carrier,

the utilities are given by:

u1 (x, y) = M
xα

xα + yα
− C1

p1

x and u2 (x, y) = M
yα

xα + yα
− C2

p2

y.

The vector of utility functions u (x, y) is given by: u (x, y) = [u1 (x, y) , u2 (x, y)].

The vector of first order derivatives of each player’s utility with respect to his own

frequency is given by: ∇u (x, y) = [∂u1(x,y)
∂x

, ∂u2(x,y)
∂y

]. The Jacobian of ∇u is given by:

U (x, y) =

∂2u1(x,y)
∂x2

∂2u1(x,y)
∂x∂y

∂2u2(x,y)
∂y∂x

∂2u2(x,y)
∂y2



The first order derivatives are given by,

∂u1 (x, y)

∂x
=
Mαxα−1yα

(xα + yα)2 −
C1

p1

and
∂u2 (x, y)

∂y
=
Mαyα−1xα

(xα + yα)2 −
C2

p2

,
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and the second order derivatives are given by,

[U (x, y)]11 =
∂2u1 (x, y)

∂x2
=
Mαxα−2yα

(xα + yα)3 ((α− 1) yα − (α + 1)xα) < 0

[U (x, y)]22 =
∂2u2 (x, y)

∂y2
=
Mαyα−2xα

(xα + yα)3 ((α− 1)xα − (α + 1) yα) < 0

[U (x, y)]12 =
∂2u1 (x, y)

∂x∂y
=
Mα2xα−1yα−1

(xα + yα)3 (xα − yα)

[U (x, y)]21 =
∂2u2 (x, y)

∂y∂x
=
Mα2xα−1yα−1

(xα + yα)3 (yα − xα)

⇒ [
(
U (x, y) + UT (x, y)

)
]11 = 2[U (x, y)]11

and [
(
U (x, y) + UT (x, y)

)
]22 = 2[U (x, y)]22

and [
(
U (x, y) + UT (x, y)

)
]12 = [

(
U (x, y) + UT (x, y)

)
]12 = 0.

Therefore,
(
U (x, y) + UT (x, y)

)
is a diagonal matrix with both diagonal elements

strictly negative. Therefore,
(
U (x, y) + UT (x, y)

)
is negative definite. This is suffi-

cient to prove that the payoff functions are diagonally strictly concave [84]. Therefore,

under the alternative dynamic mentioned above, the frequencies of the competing car-

riers will converge to the unique type BB equilibrium frequencies.

4.6 N-Player Symmetric Game

Now we will extend the analysis to the N-player symmetric case, where N ≥ 2. By

symmetry, we mean that the operating cost Ci, the seating capacity Si and the fare

pi is the same for all carriers. For the analysis presented in this section, it is sufficient

to have Ci
pi

constant for all carriers. However, for computing the price of anarchy in

the next section we need the remaining assumptions. We will simplify the notation

and denote the operating cost for each carrier as C, seating capacity as S and fare

as p. Under symmetry, the necessary and sufficient conditions for the existence of a

type BB equilibrium for a 2-player game reduce to a single condition, αPS
C

> 2. We

will assume that this condition holds throughout the following analysis.

Assumption 4. αPS
C

> 2
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Proposition 12. In an N-player symmetric game, a symmetric equilibrium with

excess seating capacity exists at xi = αMp
C

N−1
N2 for all i if and only if N ≤ α

α−1
and if

it exists, then it is the unique symmetric equilibrium.

Proof. The utility of each carrier i is given by ui (xi, yi) = M
xαi

xαi +yαi
− C

p
xi, where yi =(∑N

j=1,j 6=i x
α
j

) 1
α

is the effective competitor frequency for player i. From the FOCs, we

get xi = αMp
C

xαi y
α
i

(xαi +yαi )
2 . In the symmetric game, Ci

pi
is the same for every player i. In

general, this symmetric game may have both symmetric and asymmetric equilibria.

In a symmetric equilibrium, x1 = x2 = ... = xN . Assume excess seating capacity

for each carrier. Substituting in the FOCs we get yi = (N − 1)
1
α xi. Therefore,

xi = αMp
C

N−1
N2 for all i is the unique solution. Therefore, we have proved that if an

equilibrium exists at this point, then it must be the unique symmetric equilibrium of

this game.

In order to prove that this point is an equilibrium point, we need to prove that

the SOC is satisfied, the profit at this point is non-negative and seating capacity is

at least as much as the demand for each carrier.

The SOC is satisfied if and only if,

∂2Ui
∂x2

i

=
Mαxα−2

i yαi
(xαi + yαi )3 ((α− 1) yαi − (α + 1)xαi ) ≤ 0 ⇐⇒ N ≤ 2α

α− 1
.

The condition on non-negativity of profit is satisfied if and only if,

αMp

C

N − 1

N2
∗ C ≤ Mp

N
⇐⇒ N ≤ α

α− 1
.

The condition of excess seating capacity is satisfied if and only if,

αMp

C

N − 1

N2
∗ S > M

N
⇐⇒ N >

αpS
C

αpS
C
− 1

,

which is always true for αpS
C
> 2.

Thus the symmetric equilibrium exists if and only if N ≤ α
α−1

.

Proposition 13. In a symmetric N-player game, there exists no asymmetric equilib-
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rium where all players have a non-zero frequency and excess seating capacity.

Proof. Let us assume the contrary. For a symmetric N-player game, let there exist

an asymmetric equilibrium such that all players have a non-zero frequency and excess

seating capacity. Let us define β =
∑N

j=1 x
α
j and ωi =

xαi∑N
j=1 x

α
j

. So xi = (ωiβ)
1
α .

Substituting in the FOC, we get,

(ωiβ)
1
α =

αMp

C
ωi (1− ωi)

⇒ C

αMp
β

1
α = ω

α−1
α

i − ω
2α−1
α

i

Let us define a function h (ωi) = ω
α−1
α

i − ω
2α−1
α

i . The value of h (ωi) is the same

across all the players at equilibrium. For all ωi > 0, h (ωi) is a strictly concave

function. So it can take the same value at at most two different values of ωi. So all ωi

can take at most two different values. Let ωi = v1 for m (≤ N) players, and ωi = v2

for the remaining N − m players. Let v1 > v2, without loss of generality. h (ωi) is

maximized at ωi = α−1
2α−1

. So v2 <
α−1
2α−1

< v1.

At equilibrium, each player’s profit must be non-negative. Therefore, the profit

for each player i such that ωi = v2 is given by Mpωi−Cxi. But xi = αMp
C
ωi (1− ωi).

So the condition on non-negativity of profit simplifies to, v2 ≥ α−1
α

. Therefore, α−1
2α−1

>

v2 ≥ α−1
α

, which can be true only if α < 1. This leads to a contradiction. So we have

proved that for a symmetric N-player game, there exists no asymmetric equilibrium

such that all players have a non-zero frequency and excess seating capacity.

Proposition 14. In a symmetric N-player game, there exists some nmin such that

for any integer n with max (2, nmin) ≤ n ≤ min
(
N − 1, α

α−1

)
there exist exactly(

N
n

)
asymmetric equilibria such that exactly n players have non-zero frequency and

all players with nonzero frequency have excess seating capacity. There exists at least

one such integer for N ≥ α
α−1

. The frequency of each player with non-zero frequency

equals αMp
C

n−1
n2 .

Proof. Let us denote this game as G. Consider any equilibrium having exactly n
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players with non-zero frequency. Let us rearrange the player indices such that players

i = 1 to i = n have non-zero frequencies. Let us consider a new game which involves

only the first n players. We will denote this new game as G′. An equilibrium of G

where only the first n players have a non-zero frequency is also an equilibrium for the

game G′ where all players have non-zero frequency. As we have already proved, the

equilibrium frequencies of each of the first n players must be equal to αMp
C

n−1
n2 . This

ensures that any of the first n players will not benefit from unilateral deviations from

this equilibrium profile. In order to ensure that none of the remaining N − n players

has an incentive to deviate, we must ensure that the effective competitor frequency

for any player j such that j > n must be at least equal to yth. This condition is

satisfied if and only if,

n
1
α
n− 1

n2

αMp

C
≥ (α− 1)(

α−1
α ) Mp

αC

⇐⇒ n
1−α
α − n

1−2α
α ≥ (α− 1)

α−1
α

α2
. (4.22)

LHS is an increasing function of n for n ≤ α
α−1

. Also the RHS is a decreasing

function of α (this can be verified by differentiating the log of RHS with respect to

α). Also it can be easily verified that at n = α
α−1

, the inequality holds for every α.

Therefore, for any given α value, there exists some nmin ≥ 0 such that for all n such

that α
α−1
≥ n ≥ nmin, this inequality is satisfied. As proved earlier, the condition for

existence of an equilibrium with all players having non-zero frequency in game G′ is

n ≤ α
α−1

.

So all the conditions for an equilibrium of game G are satisfied if max (2, nmin) ≤

n ≤ min
(
N − 1, α

α−1

)
. Therefore, any equilibrium of game G′ where all players have

non-zero frequency is also an equilibrium of game G where all the remaining players

have zero frequency and vice versa. The players in game G′ can be chosen in
(
N
n

)
ways. Therefore, we have proved that in a symmetric N-player game, for any integer n

such that max (2, nmin) ≤ n ≤ min
(
N − 1, α

α−1

)
, there exist exactly

(
N
n

)
asymmetric

equilibria such that exactly n players have non-zero frequency. To show that there
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exists at least one such integer n, consider 2 cases. If α > 1.5, then it is easy to verify

that the inequality (4.22) is always satisfied for n = 2. If α ≤ 1.5, then we see that

(4.22) is satisfied by n = 1
α−1

= α
α−1
−1. In either case, α

α−1
> 2 is always satisfied. So

there always exist some such n. The frequency of each player with non-zero frequency

equals αMp
C

n−1
n2 .

From here onwards, we will denote each such equilibrium as an n-symmetric equi-

librium of an N-player game.

Proposition 15. Among all equilibria with exactly n players (n ≤ N) having nonzero

frequency, the total frequency is maximum for the symmetric equilibrium.

Proof. As proved earlier, any possible asymmetric equilibria with exactly n players

having nonzero frequency must involve at least one player with no excess seating

capacity. Let player i be such a player with nonzero frequency and no excess seating

capacity at equilibrium. So the effective competitor frequency y must be at most

equal to ycr and xi ≥ xcr = M
S

(
1− C

αpS

)
> M

2S
. Therefore, each such player must

carry at least M
2

passengers. Therefore, at equilibrium there can be at most one such

player. So each of the remaining n − 1 players has excess capacity. Using the same

argument as the one used in proving proposition 13, we can prove that each player

with non-zero frequency and excess capacity will have equal frequency at equilibrium.

Let us denote the equilibrium frequency of the sole player with no excess capacity

by x1 and that of each of the remaining players as x2. We will denote the equilibrium

market share of the player with no excess capacity as l. Therefore, the total frequency

under the asymmetric equilibrium equals,

(n− 1)x2 + x1 =
αMp

C

(n− 1)xα2
(n− 1)xα2 + xα1

(
1− xα2

(n− 1)xα2 + xα1

)
+
M

S

xα1
(n− 1)xα2 + xα1

=
αMp

C
(1− l)

(
1− 1− l

n− 1

)
+
M

S
l

Let us assume that there exists an asymmetric equilibrium where the total fre-

quency is greater than that under the corresponding n-symmetric equilibrium, which
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equals αMp
C

n−1
n

. This condition translates into,

αMp

C
(1− l)

(
1− 1− l

n− 1

)
+
M

S
l >

αMp

C

n− 1

n
,

which further simplifies to, nl (5− n− 2l) > 2. But we know that n ∈ I+, n ≥ 2

and l ≥ 1
2
. So 5 − n − 2l > 0 only if n < 5 − 2l ≤ 4. So n = 2 or n = 3.

For n = 2, the conditions for existence of type BC equilibrium in the 2-player case

require αPS
C
≤ 2, which contradicts our assumption. For n = 3, we need some l such

that 3l2− 3l+ 1 < 0, which is true if and only if 3 (l − 0.5)2 + 0.25 < 0, which is also

impossible. Thus our assumption leads to a contradiction. So we have proved that

among all equilibria with exactly n players (n ≤ N) having nonzero frequency, the

total frequency is maximum for the symmetric equilibrium.

Proposition 16. There exists no equilibrium with exactly n players with non-zero

frequency such that n > α
α−1

.

Proof. We already proved that if n > α
α−1

, there exists no equilibrium with all n

players having excess capacity. We have also proved that the number of players

without excess capacity can be at most one. So consider some equilibrium with one

player with no excess capacity. Let the market share of that player be l and let

the equilibrium frequency of each of the remaining players be x2. Because n > α
α−1

,

therefore α > n
n−1

.

For non-negative profit at equilibrium we require, Mp
C

1−l
n−1
≥ x2. From the FOC,

we get x2 = αMp
C

1−l
n−1

(
1− 1−l

n−1

)
. Combining the two we get,

1 ≥ α

(
1− 1− l

n− 1

)
⇒ n

n− 1
< α ≤ n− 1

n+ l − 2
≤ n− 1

n− 1.5

⇒n < 2,

which is impossible.
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Therefore, we have proved that there exists no equilibrium with exactly n players

with non-zero frequency such that n > α
α−1

.

In this section, we proved that for an N-player symmetric game, if N ≤ α
α−1

,

then there exists a fully symmetric equilibrium where the equilibrium frequency of

each carrier at equilibrium is αMp
C

N−1
N2 and there exists no asymmetric equilibrium

with all N players having a non-zero frequency. On the other hand, if N > α
α−1

,

then there exists no equilibrium with all players having non-zero frequency. In either

case, there exist exactly
(
N
n

)
n-symmetric equilibria for each integer n < N such that

max (2, nmin) ≤ n ≤ min
(
N − 1, α

α−1

)
for some nmin ≥ 0. Additionally, there may be

asymmetric equilibria such that each asymmetric equilibrium has exactly one player

with 100% load factor, n−1 more players with non-zero frequency and excess seating

capacity and N − n players with zero frequency. We also proved that there always

exists at least one equilibrium for an N-player symmetric game. The aforementioned

types of equilibria are exhaustive, that is there exist no other types of equilibria. As

before, we realize that all the equilibria except those where all players have a nonzero

frequency and excess capacity are suspect in terms of there portrayal of reality. So

the fully symmetric equilibrium appears to be the most realistic one. In addition, the

fully symmetric equilibrium is also the worst case equilibrium in the sense that it is

the equilibrium which has the maximum total frequency, as will be apparent in the

next section.

We proved that for some n′ < N , if there exists no symmetric equilibrium for

all n ≥ n′, then there exists no asymmetric equilibrium for all n ≥ n′ either. We

also proved that for any given n, the total frequency at each asymmetric equilibrium

having n non-zero frequency players is at most equal to the total frequency at the

corresponding n-symmetric equilibrium. These results will help us obtain the price

of anarchy in the next section.
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4.7 Price of Anarchy

In any equilibrium, the total revenue earned by all carriers remains equal to Mp. The

total flight operating cost to all carriers is given by
∑n

i=0Cxi = C
∑n

i=0 xi. On the

other hand, if there were a central controller trying to minimize the total operating

cost, the minimum number of flights for carrying all the passengers would be equal

to M
S

and the total operating cost would be MC
S

. Similar to the notion introduced by

Koutsoupias and Papadimitriou [59], let us define the price of anarchy as the ratio of

total operating cost at Nash equilibrium to the total operating cost under the optimal

frequency. The denominator is a constant and the numerator is proportional to the

total number of flights.

A large proportion of airport delays are caused by congestion. Congestion related

delay at an airport is an increasing (often nonlinearly) function of the total number

of flights. Therefore, the greater the total number of flights, more is the delay. Total

profit earned by all the airlines in a market is also a decreasing function of the

total frequency. Also, because the total number of passengers remains constant,

the average load factor in a market is inversely proportional to the total frequency.

Lower load factors mean more wastage of seating capacity. Thus total frequency

is a good measure of airline profitability, total operating cost, airport congestion

and load factors. Higher total frequency across all carriers in a market means lower

profitability, more cost, more congestion and lower average load factor, assuming

constant aircraft size. Greater the price of anarchy, more is the inefficiency introduced

by the competitive behavior of players at equilibrium.

Proposition 17. In a symmetric N-player game, the price of anarchy is given by

αpS
C

n−1
n

, where n is the largest integer not exceeding min
(
N, α

α−1

)
.

Proof. As proved earlier, a symmetric N-player game has
∑min(N, α

α−1)
n=max(2,nmin)

(
N
n

)
equilibria

(for some nmin ≥ 0). such that each equilibrium has a set of exactly n players

each with frequency αMp
C

n−1
n2 and excess capacity, whereas remaining N − n players

have zero frequency. Also, for any n < min
(
N, α

α−1

)
, there may exist equilibria

with exactly n players having non-zero frequency and one of them having no excess

162



capacity at equilibrium. However, the frequency under any equilibrium with exactly n

players having non-zero frequency is at most equal to the corresponding n-symmetric

equilibrium. In any equilibrium having n players with non-zero frequency, the total

flight operating cost is given by αMp
C

n−1
n2 , which is an increasing function of n. The

total cost under minimum cost scheduling would be MS
C

. Therefore, the ratio of total

cost under equilibrium to total cost under minimum cost scheduling is αpS
C

n−1
n

, which

is an increasing function of n. Also, no equilibrium exists for n > α
α−1

. Therefore, the

price of anarchy is given by αpS
C

n−1
n

, where n is the greatest integer less than equal to

min
(
N, α

α−1

)
.

This expression has several important implications. Greater the α value, more is

the price of anarchy. This means that as the market share-frequency share relationship

becomes more and more curved, and goes away from the straight line, greater is

the price of anarchy. So the S-curve phenomenon has a direct impact on airline

profitability and airport congestion. Also, more the airfare compared to the operating

cost per seat (i.e. more is the value of pS
C

), greater is the price of anarchy. In other

words, for short-haul, high-fare markets the price of anarchy is greater. Finally, more

the number of competitors, greater is the price of anarchy (up to a threshold value

beyond which it remains constant).

The equilibrium results from this simple model help substantiate some of the

claims mentioned earlier. The price of anarchy increases because of the S-shaped

(rather than linear) market share-frequency share relationship. Therefore, similar to

the suggestions by Button and Drexler [29] and O’connor [69], the S-curve relationship

tends to encourage airlines to provide excess capacity and schedule greater numbers

of flights. Total profitability of all the carriers in a market under the worst case

equilibrium provides a lower bound on airline profitability under competition. This

lower bound is an increasing function of the price of anarchy, which in turn increases

with number of competitors. Therefore, similar to Kahn’s [56] argument, this raises

the question of whether the objectives of a financially strong and highly competitive

airline industry are inherently conflicting. In addition, these results also establish the

link between airport congestion and airline competition. Airport congestion under
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the worst-case equilibrium is directly proportional to the price of anarchy. So greater

the number of competitors and more the curvature of the market share-frequency

share relationship, greater is the airport congestion and delays.

4.8 Summary

In this chapter, we modeled airline frequency competition based on the S-curve rela-

tionship which has been well documented in airline literature. Regardless of the exact

value of α parameter, it is usually agreed that market share is an increasing (linear or

S-shaped) function of frequency share. Our model is general enough to accommodate

somewhat differing beliefs about the market share-frequency share relationship. We

characterize the best response curves for each player in a multi-player game. Due

to complicated shape of best response curves, we proved that there exist anywhere

between 0 to 6 different equilibria depending on the exact parameter values. All the

existence and uniqueness conditions can be completely described by 3 unitless pa-

rameters (in addition to α) of the game. Only one out of the 6 possible equilibria

seemed reasonable in terms of portrayal of reality. This equilibrium corresponds to

both players having nonzero frequency and less than 100% load factors. In order to

narrow down the modeling effort, realistic parameter ranges were identified based on

real world data that come closest to the simplified models analyzed in this chapter.

We proposed 2 different myopic learning algorithms for the 2-player game and proved

that under mild conditions, either of them converges to Nash equilibrium. For the

N-player (for any integer N ≥ 2) game with identical players, we characterized the

entire set of possible equilibria and proved that at least one equilibrium always exists

for any such game. The worst case equilibrium was identified. The price of anarchy

was found to be an increasing function of number of competing airlines, ratio of fare

to operating cost per seat and the curvature of S-curve relationship.

In this chapter we presented two central results. First, there are simple myopic

learning rules under which less than perfectly rational players would converge to an

equilibrium. This substantiates the predictive power of the Nash equilibrium concept.
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Second, the S-curve relationship between market share and frequency share has direct

and negative implications to airline profitability and airport congestion, as speculated

in multiple previous studies.
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Chapter 5

Administrative Mechanisms for

Airport Congestion Mitigation

This chapter corresponds to the most significant practical contribution of this thesis.

In the previous three chapter of this thesis, we evaluated the impacts of competition

and congestion on the three major stakeholder groups. In this chapter, we propose

some simple modifications to the existing administrative slot allocation mechanisms

at congested airports and assess their impacts on these different stakeholders.

5.1 Introduction

As mentioned in chapter 1, demand-capacity mismatch is responsible for a large

proportion of the National Aviation System (NAS) delays. These delays are dis-

proportionately distributed across airports and metropolitan areas in the country.

Congestion at a few major airports is responsible for a large proportion of overall

delays. An analysis of air traffic patterns and delays by the Brookings Institution

[96] suggests that almost 65% of the delayed flight arrivals are concentrated in the

25 largest metropolitan areas. Moreover, operations across an airline’s network are

interrelated due to linkages in aircraft, crew and passenger movements. Therefore,

delays originating at these major airports propagate across the airline networks caus-

ing system-wide disruptive impacts. In the summer of 2007, according to the New
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York Aviation Rulemaking Committee [68] report, three-quarters of the nationwide

flight delays were generated from the air congestion surrounding New York. This

suggests that mitigation of demand-capacity imbalance at a handful of congested

airports should yield system-wide benefits in terms of delay alleviation.

5.1.1 Demand Management

As mentioned in Chapter 1, in short-to medium-time horizon, demand management

strategies are the most promising approaches for alleviating airport congestion. De-

mand management strategies refer to any administrative or economic policies and

regulations that restrict airport access to users. All the demand management strate-

gies proposed in the literature and practiced in reality can be broadly categorized

as administrative controls and market-based mechanisms, although various hybrid

schemes have also been proposed. The demand management problem involves two

types of decisions, namely, (1) slot determination, which involves deciding the total

number of slots to be allocated, and (2) slot allocation, which involves the decision

on distribution of these slots among the different users. These decisions can be taken

either sequentially, such as in an auction or administrative mechanism, or simultane-

ously, such as in a congestion pricing mechanism.

Administrative Controls

As mentioned in Chapter 1, administrative controls are the most popular form of

demand management strategies currently employed in practice. Five major US air-

ports and several airports in Europe and Asia have been slot controlled for several

years over the last few decades. However, one fundamental problem with the current

administrative slot allocation procedures is that they are economically inefficient be-

cause they create barriers to entry by new carriers ([63]) and encourage airlines to

over-schedule in order to avoid losing the slots [51]. Another problem, as pointed out

by Ball et al. [8], is the implicit need to make a tradeoff between delays and resource

utilization. Specifically, current approaches require ascertaining the declared capacity
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of an airport beforehand even though the actual capacity on the day of operations is a

function of prevalent weather conditions. Declaring too high a value for capacity poses

the danger of large delays under bad weather conditions (Instrument Meteorological

Conditions (IMC)) and declaring too low a value leads to wastage of resources under

good weather conditions (Visual Meteorological Conditions (VMC)). Declared capac-

ity, that is, the total number of allocated slots per time period, ultimately determines

the congestion and delays at an airport.

Congestion Pricing

Congestion pricing and slot auctions are two of the most popular market mechanisms

proposed in the literature. Classical studies such as Vickrey [97], Levine [62] and

Carlin and Park [30] proposed congestion pricing based on the marginal cost of de-

lays. Such pricing schemes, in theory, maximize the social welfare through optimal

allocation of public resources. Under congestion pricing, the total cost to the user

includes the delay cost as well as the congestion price. The notion of equilibrium

congestion prices relies on the existence of a demand function, that is, an expression

that gives the aggregate demand for airport resources as a function of total cost to the

user. Some researchers, such as Morrison [65] and Daniel [40], performed numerical

experiments under some specific assumptions about the underlying demand function,

while others, like Carlin and Park [30], have acknowledged the problems in estimating

demand as a function of congestion prices with any level of reliability because of lack

of sufficient data.

Beyond the unavailability of data, however, there is an even more basic issue

associated with accurate demand estimation. Under congestion pricing, the aggregate

demand for slots at an airport is the sum of the number of slots demanded by each

airline. Assuming profit maximizing airlines, the number of slots demanded by an

airline can be obtained by equating the incremental profitability of the last slot to the

congestion price per slot. In reality, among other factors, the profitability of an airline

depends on its own schedule as well as on competitor schedules. It is easy to see that

the incremental profitability of having an extra flight in a particular market largely

169



depends on the number of additional passengers that the airline will be able to carry

because of the additional flight, which in turn depends on the schedule of flights offered

by the competitor airlines in the same market. So given a set of congestion prices,

the total demand for slots should reflect these competitive interactions. Some recent

congestion pricing studies by transportation economists such as Pels and Verhoef

[80] and Brueckner [25], have modeled competitive effects through Cournot-type [38]

models of firm competition. However, these models do not incorporate the inverse

dependence of one airline’s market share on competitor airlines’ frequencies, which is

a critical component of such competitive interactions.

Slot Auctions

Previous research has shown the efficiency benefits of conducting an auctioning of

airport slots [39, 9, 63, 51]. An auction by itself does not, however, alleviate airport

congestion, but rather allocates a fixed set of resources in a more efficient way. So,

to that extent, auctions are similar to administrative controls, as they too pose an

implicit need to make a tradeoff between delays and resource utilization.

Once the number of slots to be allocated is determined through some procedure,

slot auctions, in theory, should maximize the social welfare by allocating the slots to

those who value them the most. But the determination of the actual value of a package

of slots to an airline is a complicated problem. Harsha (2008) proposed a valuation

model for estimating the value of a package of slots. However, the formulation does

not capture any effects of airline competition.

In summary, in an auction or administrative mechanism, slot allocation must be

explicitly preceded by some process for slot determination. It is this previous step that

primarily determines the congestion level. Existing literature has typically focused on

the second step and the first step has not received much attention. Furthermore, much

of the discussion of the second step excludes any effects of frequency competition.

Although congestion pricing tackles both these decisions simultaneously and hence

implicitly handles the slot determination step, existing literature on congestion pricing

does not capture important elements of frequency competition.
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In this chapter, we propose a framework for assessing different administrative slot

allocation schemes while explicitly modeling the effects of frequency competition. In

our first experiment, we evaluate the impacts of slot determination step in terms of

airline profits and passengers carried by varying the total number of allocated slots.

In our second experiment, for a fixed number of total slots, we focus on the problem

of slot allocation and evaluate the impacts of two different simple strategies for slot

allocation on the various stakeholders. In Chapter 6, we evaluate the effectiveness of

congestion pricing schemes under airline frequency competition.

5.1.2 Literature Review

The existing body of literature on airline frequency competition can be categorized

into three broad groups- econometric, theoretical and computational studies. Studies

by transportation economists such as Brander and Zhang [22], Aguirregabiria and Ho

[4], Norman and Strandenes [67] etc. employ econometric methods to estimate the

parameters in the airline competition models using large datasets and use the cali-

brated models for gaining critical insights into the competitive behavior of the airlines

and for answering policy-related broad questions. These studies do not deal with the

issues of existence, computation and empirical validation of the equilibrium predic-

tions. Theoretical studies including Brueckner [25], Brueckner and Flores-Fillol [28],

Hendricks, Piccione and Tan [52], Pels, Nijkamp, and Rietveld [79], Hong and Harker

[53] etc. investigate analytically solvable game theoretic models of airline competition

and derive theoretical results that provide insights into important characteristics of

equilibria and the comparative statics. These studies do not deal with real datasets.

Computational studies such as Hansen [50], Wei and Hansen [99], [43], Adler ([1],

[2]) etc. employ mathematical models and solution algorithms for obtaining Nash

equilibria of airline competition games. Our research in this chapter falls within this

third category.

Dobson and Lederer [43] model schedule and fare competition as a strategic form

game for a sample problem comprising six airports and two airlines. Adler [1] models

airline competition on fare, frequency and aircraft sizes as an extensive form game and
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presents equilibrium results for a network comprising four airports and two airlines.

Subsequently, Adler [2] considers the decisions on hub locations and decisions about

fares, frequencies and aircraft sizes in a two-stage extensive form game framework

for a reasonably sized-problem consisting of three airlines with two hubs for each

airline. None of these studies provides any empirical justification of suitability of

Nash equilibrium outcome. Hansen [50] analyzes frequency competition in a hub-

dominated environment using a strategic form game model and presents results for a

large network of realistic size involving multiple airlines. This study reports significant

disparities between model predictions and the state of the actual system. Each of

these four studies adopts a successive optimization approach to solve for a Nash

equilibrium. In this chapter, we also use a successive optimizations approach for the

computation of a Nash equilibrium. We assess the impact of starting point on the

equilibrium being reached. We also provide empirical validation of our equilibrium

predictions.

Furthermore, in most of the previous research, scheduling decisions on one segment

are not constrained by the schedule on other segments. (We define a segment as an

origin and destination pair for non-stop flights.) This is a good approximation for a

situation where an airport is not congested, and takeoff and landing slots are freely

available. But some congested US airports and several major airports in Europe and

Asia are slot constrained. With projected passenger demand in the US expected

to outpace the development of new airport capacity, there is a possibility of many

more airports in the US employing some form of demand management in the future.

At a slot constrained airport, increasing the frequency of flights on one segment

usually requires the airline to decrease the frequency on some other segment from that

airport. To the best of the author’s knowledge, no previous study has incorporated

slot constraints into airline competition models.

5.1.3 Contributions

The main contributions of this chapter fall into four categories. First, we propose a

game-theoretic model of frequency competition as an evaluation methodology for slot
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allocation schemes. Second, we provide a solution algorithm with good computational

performance for solving the problem to equilibrium. Third, we provide justification of

the credibility of the Nash equilibrium solution concept in two different ways, through

empirical validation of the model outcome and through convergence properties of the

learning dynamics for non-equilibrium situations. Finally, under simple slot allocation

schemes, we evaluate system performance from the perspectives of the passengers and

the competing airlines, and provide insights to guide the demand management policy

decisions.

In the Chapter 2, we solved a large-scale mixed integer optimization problem

to obtain delay-minimizing schedules for the air transportation network of the en-

tire United States. We concluded that effective administrative and/or market-based

mechanisms for slot control have the potential to reduce delays while satisfying all

passenger demand given the available airport capacity. Le [61] showed that the delays

at congested airports such as LaGuardia airport at New York are caused in large part

due to the inefficient slot controls. Instead of modeling airline competition, this study

assumed a hypothetical ”single benevolent airline” and proved the existence of prof-

itable flight schedules at LGA that can accommodate the passenger demand while

reducing flight delays substantially. Our conclusions in this chapter confirm the find-

ings of Le [61] previous studies. In this chapter, we explicitly model airline frequency

competition and propose tangible mechanisms for achieving profitable schedules that

accommodate passenger demand and significantly reduce delays.

Market-based mechanisms lead to socially efficient resource allocation. But the

problems such as calculating the equilibrium congestion prices or designing an efficient

auction are computationally challenging, even without considering any competitive

interactions among the carriers. Therefore, we approach the problem in a different

way. We do not try to integrate schedule competition into the slot allocations problem.

Instead, given a slot allocation, we provide a framework for predicting the airline

schedules and estimating the impact on passengers and competing airlines.

The airline planning process involves a large number of decision variables. Consid-

erations such as network effects and demand uncertainty introduce further complica-
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tions in the process. More tactical decisions such as pricing and revenue management

often interact with these planning decisions and hence should be considered in eval-

uating an airline’s response to any slot allocation scheme. Therefore, any tractable

mathematical model of airline decisions involves substantial simplifications and ap-

proximations of reality. In this chapter, we present the models of airline competition

along with a brief discussion of the underlying assumptions and the extent of their

validity. After presenting the numerical results, we analyze and estimate the direc-

tion and magnitude of the impacts of the main assumptions on the results. In section

5.2, we provide details of the game-theoretic model of frequency competition under

slot constraints. In section 5.3, we describe an efficient algorithm for equilibrium

computation. In section 5.4, we provide empirical and learning-based justifications

of the Nash equilibrium outcome. Finally, in section 5.5, we consider two different

slot allocation schemes and evaluate their performance based on multiple criteria. In

section 5.6, we conclude with a summary and discussion of the main results.

5.2 Model

In this section, we describe the relevant notation and formulate the model. In Sub-

sections 5.2.1 and 5.2.1, we present two important extensions to this model.

We will first formulate the frequency planning problem as an optimization problem

from a single airline’s point of view. Let us consider an airline a. Consider an airport

which is slot constrained, that is, the number of flights arriving at and departing from

that airport is restricted by slot availability. A slot available to an airline can be used

for a flight to or from any other airport, but the total number of slots available to

each airline is limited. In this model, we will consider only the flight departures from

a slot constrained airport and assume that the airports at the other end are not slot

constrained. This assumption is quite reasonable in the US context, where only a

handful of airports are slot constrained. The timing of a slot is also an important

aspect of its attractiveness from an airline’s point of view. In our model, we focus

only on the daily allocation of slots while ignoring the time-of-the-day aspects.
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We will calculate airlines’ operating profits under the full fare assumption, in

which it is assumed that the entire fare of a connecting passenger contributes to the

operating profits of each of the segments in the passenger’s itinerary. In Sub-section

5.5.5, we will analyze the impact of alternate profit calculation methods on our results.

To begin with, we will consider frequency planning decisions while assuming that

the aircraft sizes remain constant for each segment. We will analyze the impact of

this assumption in Sub-section 5.5.3. We propose a multi-player model of frequency

competition where each airline’s decision problem is represented as an optimization

problem. From here onwards, this model will be referred to as the basic model. In

this basic model, the only decision variables are the numbers of non-stop flights of

airline a on each segment with destination at the slot constrained airport. This basic

model is applicable for situations where the fares and other factors are similar among

the competing airlines and the main differentiating factor between different airlines

is the service frequency. We will relax this assumption in model extension 1 proposed

in Sub-section 5.2.1.

Let Sa be the set of potential segments with destination at the slot constrained

airport. Let pas be the average fare charged by airline a on segment s. Let Qas be the

number of passengers carried by airline a on segment s. In general, a passenger might

travel on more than one segment to go from his origin to destination, which in some

cases involves connecting between flights at an intermediate airport. However, we will

assume segment-based demand, that is, a passenger traveling on two different seg-

ments will be considered as a part of the demand on each segment. This assumption

is quite reasonable for the airports in New York City area where nearly 75% of the

passengers are non-stop [73], but not very accurate for major transfer hubs such as

the Chicago O’Hare airport. We will analyze the extent of impact of this assumption

in Sub-section 5.5.5. Let the total passenger demand on segment s be Ms. Cas is

the operating cost per flight for airline a on segment s. Sas is the seating capacity of

each flight of airline a on segment s. Let αs be the exponent in the S-curve relation-

ship between the market share and the frequency share on the non-stop segment s.

The value of αs depends on the market’s characteristics such as long-haul/short-haul,
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proportion of business/leisure passengers, etc. In short-haul markets and in markets

dominated by business passengers, the value of αs is expected to be higher and in

long-haul markets and in markets dominated by leisure passengers, the value of αs is

expected to be lower.

The vector of decision variables for airline a is [fas]s∈Sa . Because the destination

airport is slot constrained, the maximum number of flights that can be scheduled by

airline a is restricted to Ua. Often, under the current set of administrative policies

based on use-it-or-lose-it type rules, there are restrictions on the minimum number

of slots that must be utilized by an airline in order to avoid losing slots for the next

year. So there may be a lower limit on the number of slots that must be used. Let La

be the minimum number of slots that must be utilized by airline a. Let A be the set

of all airlines and let As be the set of airlines whose set of potential segments include

segment s.

As defined by the S-curve relationship, the market share of airline a on non-

stop segment s equals fas
αs∑

a′∈As fa′s
αs , which provides an upper bound on the number of

passengers for a specific carrier on a specific segment. This restriction is imposed by

constraint 5.2 in the model that follows. Obviously, the number of passengers on a

segment cannot exceed the number of seats. Moreover, due to demand uncertainty

and due to the effects of revenue management, the airlines are rarely able to sell all the

seats on an aircraft. Assuming a maximum average segment load factor of LFmax, the

seating capacity restriction is modeled by constraint 5.3. We present results assuming

85% as the maximum average segment load factor value. We test the sensitivity of

the results to variations in this value in Sub-section 5.5.1. The objective function 5.1

to be maximized is the total operating profit, which is total fare revenue minus total

flight operating cost. We have assumed average fares and deterministic demand. We

will analyze the impact of these two assumptions in Sub-section 5.5.4. The overall

optimization model is as follows,
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maximize
∑
s∈Sa

pasQas − Casfas (5.1)

subject to: Qas ≤
fas

αs∑
a′∈As fa′s

αs
Ms∀s ∈ Sa (5.2)

Qas ≤ LFmaxSasfas∀s ∈ Sa (5.3)∑
s∈Sa

fas ≤ Ua (5.4)

∑
s∈Sa

fas ≥ La (5.5)

fas ∈ Z+∀s ∈ Sa (5.6)

The market share available to each airline depends on the frequency of other com-

peting airlines in the same market, which in turn are decision variables of those other

airlines. Therefore, this is multi-agent model. The optimization problem given by 5.1

through 5.6 can only be solved for a given set of values of competitors’ frequencies.

We now propose two extensions to the basic model. The first extension is applicable

to segments where the competing carriers differ in terms of fare charged or in some

other important way. The second extension is applicable to segments on which only

one carrier operates non-stop flights.

5.2.1 Model Extension 1: Fare Differentiation

The basic model assumes that the market share on each segment depends solely on

the frequency share on that segment. This assumption is reasonable in many markets

where the competitor fares are very close to each other and the competing airlines

are similar from the perspectives of the passengers in most other ways. However,

for markets where the fares are different, the basic S-curve relationship can be a

poor approximation of actual market shares. Consider a market where the competing

airlines are differentiated in both fare and frequency. Different types of the passengers

would react differently to these attributes. While some passengers value lower fares
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more, others give more importance to higher frequency and the associated greater

flexibility in scheduling their travel. In addition, there could be other airline-specific

factors that impact the passenger share. For example, some passengers might have

a preference for the big legacy carriers operating wide-body or narrow-body fleets

over the regional carriers operating turbo-prop aircraft or small regional jets. To

incorporate these effects, we propose an extension of inequality 5.2. Let there be T

types of passengers. Let γts be the fraction of segment s passengers belonging to type

t such that
∑T

t=1 γ
t
s = 1. Let αts be the frequency exponent corresponding to the type

t passengers for segment s, which serves the same purpose as the exponent αs of the

S-curve in the basic model. Let βts be the fare exponent corresponding to the type t

passengers for segment s. Obviously, we expect αts to be non-negative and βts to be

non-positive. Let θa be the airline-specific factor for airline a. Inequality 5.2 can then

be extended as,

Qas ≤
T∑
t=1

θafas
αtspas

βts∑
a′∈As θ

′
afa′s

αtspa′sβ
t
s

γtsMs (5.7)

The market share of each airline is now a function of the fares, frequencies, and

airline specific factors of all competing airlines. This model incorporates the effects

of different fares and frequencies on the passenger shares. Also, it can model multiple

passenger types such as leisure vs. business, by specifying different exponents for

fare and frequency for different types of passengers. Finally, the remaining airline

specific factors are captured through the θa parameter. The magnitudes of αts values

are expected to be high in short-haul markets and in markets dominated by business

passengers because the business passengers tend to give particularly high importance

to more frequent flights. The magnitudes of βts values are expected to be high in

markets dominated by leisure passengers because leisure passengers are more sensitive

to fares. The γts values depend on the business/leisure composition of specific markets,

e.g. destinations such as Orlando, FL and Miami, FL are expected to have a higher

fraction of leisure passengers than destinations such as Washington, DC and Boston,

178



MA. The θa values can be expected to be higher for airlines which have a bigger brand

name and a better track record.

5.2.2 Model Extension 2: Market Entry Deterrence

This second model is similar to the basic model except that the player decisions

are now sequential rather than simultaneous. The idea of modeling the frequency

competition as an extensive form game was proposed by Wei and Hansen [99] where,

for contractual or historical reasons, one airline has the privilege of moving first, i.e.,

deciding the frequency on a segment. The other airline responds upon observing the

action by the first player. The basic model and the first extension implicitly assumed

the existence of at least two competing airlines on a segment. However, frequency

decisions in markets with only one existing airline are not completely immune to

competition and the incumbent airline must consider of possibility of entry by another

competitor while deciding the optimal frequency. Such situations can be modeled

using the idea of Stackelberg equilibrium ([90]) or a subgame perfect Nash equilibrium

of an extensive form game. In this situation, the incumbent carrier is the Stackelberg

leader and the potential entrant is the follower. A potential entrant (a′) is assumed

to be a rational player. Inequality 5.2 can be extended as,

Qas ≤
fas

αs

fas
αs + fa′s

αs
Ms (5.8)

fa′s = arg max
f∈Z+

(
min

(
fαs

fas
αs + fαs

Ms, LFmaxSa′sf

)
pa′s − Ca′sf

)
(5.9)

5.3 Solution Algorithm

We use the Nash equilibrium solution concept to predict the outcome of this airline

frequency competition game. In this section, we describe the solution algorithm used

for solving this problem. In section 5.4, we will provide justification for using the

Nash equilibrium outcome.
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The objective function for each airline is the sum of profits on each segment and the

frequencies of an airline on different segments are interrelated through the constraints

on the minimum and maximum number of slots. The effect of competitors’ frequen-

cies on the profitability of an airline, as described by the basic model, can be fully

captured through the notion of effective competitor frequency. Let us define the effec-

tive competitor frequency for airline a on segment s as f effas =
(∑

a′∈As,a′ 6=a f
αs
a′s

) 1
αs

.

So constraint 5.2 in the basic model can be more succinctly expressed as Qas ≤
fas

αs

fas
αs+feffas

αsMs∀s ∈ Sa. In a two-airline market, f effas for either airline is nothing

but the frequency of the other airline in that market. In case of markets with three

or more airlines, if there is a dominant competitor, then f effas tends to be slightly

higher than the frequency of the dominant competitor. In such cases, f effas is highly

dependent on the frequency of the dominant competitor. For example, in a market

with three competitors with frequencies of 10, 2 and 2 respectively, f effas equals 11.2

(assuming αs = 1.5). If the frequency of one of the marginal competitors increases

from 2 to 3, f effas changes from 11.2 to 11.6. But if the frequency of the dominant

competitor changes from 10 to 11, then the f effas value changes from 11.2 to 12.1. Fur-

thermore, the dependence of f effas on the dominant competitor’s frequency increases

with increasing αs value. On the other hand, in balanced competitive markets, the

dependence of f effas on the frequencies of all the competitors is comparable.

Figure 5-1 shows the typical form of the segment profit function under the basic

model for a fixed value of effective competitor frequency, ignoring slot constraints and

integrality constraints. Under the same assumptions, Figure 5-2 shows the typical

shape of the optimal segment frequency (best response) as a function of effective

competitor frequency. The profit function and the best response function get further

complicated by slot constraints, integrality constraints, and extensions 1 and 2 to the

basic model. The optimization problem has discrete variables, and as visible from

Figure 5-1, its continuous relaxation is non-convex. In addition, optimal decisions

for each airline depend on the frequency decisions by other airlines. Therefore, the

problem of computing an outcome of this multi-agent model can be very challenging.

The strategy space for a typical problem size for a major airport is very large with the
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Figure 5-1: Typical shape of the segment profit function

Figure 5-2: Typical shape of the best response function
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number of potential candidates for equilibrium solutions being of the order of 1050. To

solve this problem, we propose a heuristic based on the idea of myopic best response,

which employs successive optimizations, and individual optimization problems are

solved to full optimality using a dynamic programming-based technique. In Sub-

section 5.3.1, we describe the myopic best response algorithm and in Sub-section 5.3.2

we describe the dynamic programming formulation for individual optimizations.

5.3.1 Myopic Best Response Algorithm

Let fa = [fas]s∈Sa be the vector of frequencies for carrier a. Let f−a = [fa′ ]a′∈A,a′ 6=a be

the vector formed by concatenating the frequency vectors of all competitors of airline

a. So any outcome of this problem can be compactly denoted as f = (fa, f−a). Then

the myopic best response algorithm (a heuristic) is described as follows,

while there exists a carrier a for whom fa is not a best response to f−a do

f ′a ← some best response by a to f−a

f ← (f ′a, fa)

return

This heuristic is based on the idea of myopic best response. Some classes of games

have certain desirable properties which make them solvable to equilibrium using an

algorithm where each player successively optimizes his own decisions while assuming

that the decisions of other players remain constant. Obviously, if such a heuristic

converges to some outcome, then it must be a Nash equilibrium. In general, there

is no guarantee that it will converge. Further, even if such an algorithm converges

to some Nash equilibrium, there is no guarantee that the equilibrium will be unique.

We discuss issues regarding its convergence, and the existence and uniqueness of

equilibrium for the game model under consideration, in Sub-section 5.4.3.
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5.3.2 Dynamic Programming Formulation

The main building block of the myopic best response algorithm is the calculation of

an optimal response of airline a to the competitors’ frequencies. Given the frequencies

of all the competing carriers on all the segments, the problem of calculating a best

response is an optimization problem. This problem can have a large solution space.

For typical problem sizes, the number of discrete solutions in the solution space can

be of the order of 1010. As mentioned earlier, this problem is non-convex and discrete.

However, this problem has a nice structure. Slot restrictions are the only coupling

constraints across different segments and the objective function is additive across

segments. Therefore, the problem structure is amenable to solution using dynamic

programming.

Let Πs (n) denote the profit from operating n flights on segment s.We order the

segments arbitrarily and number them from 1 to |Sa|. Segments are considered in

order and each segment corresponds to a stage. Each state, (S, n) corresponds to

the combination of the last segment being considered, s, and the cumulative number

of flights, n, operated on all the segments considered before and including the last

segment being considered. Let R (S, n) be the maximum profit that can be obtained

from operating a total of n flights on the first s segments. We initialize R (0, 0) = 0

and R (0, n) = − inf for n ≥ 1. For s ≥ 1,

R (s, n) = max
0≤n′≤n

(R (s− 1, n′) + Πs (n− n′)) .

The optimal value of total profit for airline a is given by,

max
La≤n≤Ua

R (|Sa|, n).
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5.4 Validity of Nash Equilibrium Outcome

Similar to our work, almost all the previous studies on airline competition have used

the concept of Nash equilibrium (or one of its refinements) for predicting the outcome

of a competitive situation. The traditional explanation for Nash equilibrium is that

it results from introspection and detailed analysis by the players assuming that the

rules of the game, the rationality of the players, and the profit functions of players are

all common knowledge. A Nash equilibrium outcome is attractive mainly because of

the fact that unilateral deviation by any of the players does not yield any additional

benefit to that player. So given an equilibrium outcome, the players do not have

any incentive to deviate from the equilibrium decisions. However, in the absence of

any apriori knowledge of an equilibrium outcome, given complicated profit functions

such as the ones in this case, it isn’t immediately clear that airlines would take the

equilibrium decisions. In this section, we substantiate the predictive power of the

equilibrium outcome using two different approaches in Sub-sections 5.4.2 and 5.4.3

respectively.

5.4.1 Data Sources and Implementation Details

All the numerical results presented in sections 5.4 and 5.5 correspond to LGA airport

as the slot controlled airport. For reasons of computational tractability we decided

to restrict our analysis to all the segments of all airlines with destination at the

LGA airport. LGA is one of the most congested airports in the US. Furthermore,

a very high proportion of non-stop passengers on segments to LGA airport makes it

comparatively easier to separate the airlines’ decisions at LGA from the rest of the

network. We discuss the impacts of passenger connections and network effects on our

results in more detail in Sub-section 5.5.5.

Flight schedules for the US domestic segments are available on the Bureau of

Transportation Statistics (BTS) website [72] for each certified US carrier with at

least 1% of total domestic passenger revenue. The data on flight frequencies, aircraft

sizes and segment passengers are obtained from the T-100 Segment Database [75].
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Average fare values for each market are obtained from the Airline Origin Destination

Survey database [73]. Aircraft operating costs for each aircraft type for each car-

rier are obtained from the Schedule P-5.2 information [74]. Public data on segment

passengers and operating expenses is available on a monthly aggregate level, while

data on average fares is only available on a quarterly aggregate level. Unfortunately,

more disaggregate values of these entities, such as on a daily level, are not available

publicly. Also the daily values often tend to fluctuate due to various types of cyclical

variations. In order to avoid biases in our model estimates because of choice of certain

days over others, and also to circumvent the data unavailability issue, we ran our ex-

periments on quarterly average values. All results in sections 5.4 (except Sub-section

5.4.4) and 5.5 are for the first quarter of 2008. In Sub-section 5.4.4, we verify the

robustness of our model’s fit to reality by running our model for the 2nd, 3rd and 4th

quarters of 2008.

In order to estimate the flight delay reduction for experiment 2 presented in section

5.5, we use realized values of airport capacity for an entire year, which were made

available by Metron Aviation®, and actual flight delay data obtained from the Airline

On-time Performance Database available on the BTS website [72]. Details of the delay

reduction estimation procedure are described in Sub-section 5.5.1.

Our dataset consists of all segment-carrier combinations with destination at LGA

operating at least one flight per day on average. Thus our dataset encompasses

96.11% of all the flights destined for LGA. For all segments where only one carrier

provides non-stop service, we use the market share function given by model extension

2. We use the market share function given by model extension 1 for segments on

which: 1) the competitors’ average fares differ by more than 5%; and/or 2) one or

more major carriers operating a narrow- or a wide-body fleet compete against one or

more regional carriers operating small jets. For all the other segments, we use the

market share function given by inequality 5.2 in the basic model.

We conducted several test runs to choose the parameters such that the frequency

estimates given by the model match the actual frequency values closely. For the

basic model, we used different αs values for different markets. In general, flights
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into LGA tend to be short haul flights. In our dataset, there was not a single flight

from the west-coast airports. The range of αs values that we used varied from 1.5

for very short-haul markets to 1.2 for the comparatively long-haul markets. For

model extension 1, we considered 2 types of passengers: 1) business passengers, and

2) non-business passengers, i.e. T = 2. The value of airline specific factor (θa)

was taken to be 0.3 for all regional carriers operating turbo-props or small regional

jets, and 1.0 for all other carriers. The fraction of passengers belonging to type

1 (business passengers) was taken to be γ1
s = 0.3, and hence, γ2

s = 0.7, for all

markets. Also, we used the following values for the exponents in model extension 1:

α1
s = 1.3, β1

s = −0.5, α2
s = 0.3, and β2

s = −1.2. Given that in most cases, the average

fares of competing airlines on each segment into LGA were very close to each other,

we assumed the average fare (fa′s) of the potential entrant in model extension 2 to be

the same as the fare charged by the existing operator on that segment. The seating

capacity (Sa′s) and the operating cost (Ca′s) of the potential entrant were taken to

be those corresponding to the most profitable combination (decided by the minimum

ratio of operating cost to seating capacity) available across all the fleet types operated

by all airlines into LGA.

Because we ascertained the values of the model parameters using a heuristic pro-

cess, it is very important to investigate the sensitivity of our results to changes in

these parameter values. The results of the sensitivity analyses to various model pa-

rameter values are presented in Sub-section 5.5.2. Additionally, in order to avoid

over-fitting the model parameters to a certain dataset, we used the same model pa-

rameters to compare the error between the model’s frequency predictions and the

actual frequency values for the 2nd, 3rd, and 4th quarters of 2008. These results are

presented in Sub-section 5.4.4.

5.4.2 Empirical Validation

To validate our model against actual frequency data, we compared the equilibrium

frequencies predicted by the model against the actual values. At LGA, the maximum

number of slots for each airline is restricted and each airline usually wants to make
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Figure 5-3: Empirical validation of frequency predictions

use of all the slots available to it in order to avoid losing any slots in subsequent

seasons. The minimum and maximum numbers of slots available to an airline, that

is, La and Ua, are assumed to be equal. So the total number of slots allocated to

each airline is fixed. The airline needs only to decide the number of slots to allocate

to flights to each of its destinations. Let fas be the actual frequency of airline a on

segment s and f̂as be the equilibrium frequency as predicted by the model. The model

ensures that the total frequency for each airline remains constant. Therefore, when

the model overestimates the frequency on one segment it necessarily underestimates

the frequency on some other segment corresponding to the same carrier. In order to

measure the model fit to reality, we will use Mean Absolute Percentage Error (MAPE)

defined as,

MAPE =

∑
a∈A
∑

s∈Sa |f̂as − fas|∑
a∈A
∑

s∈Sa fas
.

Figure 5-3 compares the actual frequency and the frequency predicted by the

model for each carrier from each origin. The x-axis denotes the actual frequency and
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the y-axis denotes the frequency as predicted by the model. The weight of each point

in this figure indicates the number of observations corresponding to that point. As

shown in the Figure 5-3, most of the observations are on or very close to the 45o

line. The overall MAPE was found to be 14.72%. The model predictions thus match

actual frequencies reasonably well.

5.4.3 Game Dynamics

Airlines typically operate flights on similar sets of segments year after year. The

group of competitors on each segment and the general properties of markets stay

constant over long periods of time. Therefore, the airlines have opportunities to

adapt their decisions primarily by fine-tuning the frequency values to optimize their

profits. Such adjustments can be captured by modeling the dynamics of the game. A

simplified version of the frequency competition model used in this chapter was used

in Chapter 4 and the convergence of best response dynamics was proved in the two-

player case without slot constraints. The key factor responsible for convergence of

the myopic best response algorithm was the flat shape of the best response function

near equilibrium. In other words, the magnitude of the derivative of the optimal

frequency with respect to the effective competitor frequency is very small. Therefore,

the best response for a large range of competitor frequency values is very close to the

equilibrium frequency, resulting in strong convergence properties of the best response

dynamics. The basic model of frequency competition used in this chapter is the same

as the model presented in chapter 4, except for the addition of slot constraints and

integrality constraints. Though the convergence results proved in chapter 4 are not

directly applicable to this complicated model, they provide some intuition.

In this chapter, we have used the best response algorithm for computation of

an equilibrium. For the results of empirical validation presented in the previous

subsection, we used the vector of actual frequency values as the starting point of

the best response algorithm and the algorithm converged to an equilibrium in just 2

iterations per player (per airline). Let us term this equilibrium solution as the base

equilibrium. In this section, we present the impact of variation in the starting point
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on the computed equilibrium prediction.

Table 5.1: Stability of algorithm results to starting point perturbations

Maximum MAPE with respect to MAPE with respect to
Perturbation Actual Frequencies Base Equilibrium

0% 14.72% 0.00%
10% 14.72% 0.00%
20% 14.78% 0.06%
30% 15.04% 0.34%
40% 15.25% 0.56%
50% 15.65% 0.96%
60% 15.81% 1.72%
70% 16.14% 2.50%
80% 16.22% 2.95%
90% 16.43% 3.59%

100% 16.76% 4.27%

For each starting point, the algorithm was run for at most 10 iterations per player.

In most of the following cases, the algorithm converged to an equilibrium and termi-

nated in fewer than 10 iterations. However, in the few cases that the algorithm did

not converge within 10 iterations, it was terminated after 10 iterations. Starting from

the actual frequency values, we perturbed each dimension of the frequency vector uni-

formly between −x% to +x% of the original value. For each x value, we drew 1000

samples of starting points randomly from this uniform distribution. Values presented

in Table 5.1 are the average MAPE values across the 1000 runs obtained by compar-

ing the solution computed by the best response algorithm to the actual frequencies

as well as to the base equilibrium. These results indicate that the model predictions

are quite insensitive even to large perturbations in the starting point. The algorithm

converges to, or comes very close to, the equilibrium solution within very few iter-

ations, irrespective of the starting point. This also suggests that the best response

dynamics displays good convergence properties. Therefore, even assuming less than

perfectly rational players, an equilibrium outcome can be reached through a simple

myopic learning procedure. Empirical validation results, coupled with these desirable

convergence properties, make a strong case for using the Nash equilibrium solution
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concept for predicting the outcome of this airline frequency competition game.

5.4.4 Robustness Verification

In Sub-sections 5.4.2 and 5.4.3, we presented empirical results using data from the

1textst quarter of 2008. In this Sub-section, we will verify the robustness of our models

by validating them against empirical data from the 2textnd, 3textrd, and 4textth quarters

of 2008.

Table 5.2 presents the discrepancy between the frequency values predicted by the

model and the actual frequency decisions taken by the airlines using the MAPE mea-

sure of error for each quarter of 2008. Table 5.2 shows that the error in frequency

predictions is very stable across different time periods. Table 5.3 presents the stability

properties of the algorithm across the four quarters of 2008. We find that the per-

formance is stable across different quarters, which means that the model predictions

are robust to large perturbations to the starting point for different time periods.

Table 5.2: Model prediction error across different quarters

Quarter Mean Absolute Percentage Error

1 14.72%
2 16.12%
3 15.67%
4 14.38%

Table 5.4 presents the MAPE with respect to actual frequencies as the values of

key model parameters vary between -25% to +25% of the values listed in Sub-section

5.4.1. The first row lists the changes in MAPE with different percentage changes in

αs values for all segments. The next six rows list the variation in MAPE with changes

in parameters of model extension 1. The remaining three rows list the variation in

MAPE with operating cost, seating capacity and average fare of the potential entrant

in model extension 2. As shown in Table 5.4, the MAPE values vary between 13.5%

and 19.6% and are reasonably stable to significant variations in model parameters.

Additionally, in Sub-section 5.5.2 we present results on sensitivity of the impacts of
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Table 5.3: Stability of algorithm results to starting point perturbations across different
quarters

Maximum
MAPE with respect to MAPE with respect to

Perturbation
Actual Frequencies Base Equilibrium

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
0% 14.72% 16.12% 15.67% 14.38% 0.00% 0.00% 0.00% 0.00%

10% 14.72% 16.12% 15.67% 14.38% 0.00% 0.00% 0.00% 0.00%
20% 14.78% 16.12% 16.05% 14.45% 0.06% 0.20% 0.73% 0.13%
30% 15.04% 16.12% 16.63% 14.57% 0.34% 0.22% 1.90% 0.40%
40% 15.25% 16.12% 17.07% 14.99% 0.56% 0.23% 2.71% 1.28%
50% 15.65% 16.12% 17.64% 15.35% 0.96% 0.34% 3.91% 2.06%
60% 15.81% 16.19% 18.05% 16.32% 1.72% 0.80% 4.91% 4.99%
70% 16.14% 16.28% 18.53% 16.85% 2.50% 1.53% 6.04% 6.55%
80% 16.22% 16.36% 18.84% 17.23% 2.95% 2.29% 6.71% 7.51%
90% 16.43% 16.72% 19.04% 17.88% 3.59% 3.40% 7.44% 8.77%

100% 16.76% 16.90% 19.47% 18.32% 4.27% 4.05% 8.33% 9.58%

slot reduction to variations in these parameters.

Table 5.4: Sensitivity of prediction accuracy (in MAPE) to model parameters

Parameter -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25%

αs 17.2% 16.0% 16.0% 15.3% 15.3% 14.7% 17.2% 17.8% 19.0% 19.0% 19.6%
θa 17.8% 17.8% 16.6% 15.3% 15.3% 14.7% 17.8% 17.8% 17.8% 17.8% 18.4%
α1
s 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 15.3% 15.3% 17.8% 17.8% 16.6%
β1
s 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 15.3% 15.3% 15.3% 15.3% 15.3%
γ1
s 15.3% 15.3% 15.3% 15.3% 14.7% 14.7% 15.3% 16.0% 17.8% 17.8% 17.8%
α2
s 15.3% 15.3% 15.3% 15.3% 15.3% 14.7% 15.3% 15.3% 18.4% 18.4% 16.0%
β2
s 17.8% 17.8% 17.8% 17.8% 14.7% 14.7% 15.3% 15.3% 16.0% 16.0% 16.0%

Ca′s 19.6% 16.6% 17.8% 14.7% 13.5% 14.7% 14.1% 13.5% 14.1% 14.1% 14.1%
Sa′s 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 14.7%
pa′s 14.1% 14.1% 14.1% 14.1% 14.1% 14.7% 13.5% 14.7% 17.8% 17.2% 16.6%
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5.5 Evaluation of Simple Slot Reduction Strate-

gies

In this section, we propose two different strategies for allocating the available slots

among different airlines and evaluate the performance of each strategy under the Nash

equilibrium modeling framework.

Proportionate Allocation Scheme: Under the existing administrative con-

trols, airlines often receive a similar number of slots from year to year. Historical

precedent is usually used as the main criterion for slot allocation. There is opposition

from the established carriers to any significant redistribution of slots. In the spirit of

maintaining much of the status quo, our first slot distribution strategy involves pro-

portionate allocation of slots. We vary the total number of slots at an airport while

always distributing them among different carriers in the same ratio as that of actual

flight schedules. For example, if the total number of slots at an airport is reduced

from 100 to 80 and if the 100 slots were distributed as 40 and 60 between two carriers,

then under our proportionate allocation scheme, the 80 slots will be distributed as 32

and 48 between the same two carriers.

Reward-based Allocation Scheme: While the proportionate allocation scheme

is likely to be considered more acceptable by major carriers, it ignores the level of

efficiency with which an airline utilizes its slots. Airlines differ, often substantially,

in the number of passengers carried per flight or per slot. The idea behind the

reward-based allocation is to reward those airlines which carry more passengers per

slot, due to larger planes and/or higher load factors, and penalize those who carry

fewer passengers per slot. Under this scheme, the number of slots allocated to each

airline is proportional to the total number of passengers carried by that airline. In the

previous example, if the first airline currently carries 140 passengers per slot and the

second airline currently carries 120 passengers per slot, then under our reward-based

allocation scheme, when the total number of slots is reduced to 80, the first airline

will receive 35 slots and the second airline will receive 45 slots.

Next we present results of the impacts of slot reduction assuming that these strate-
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gies are implemented as administrative slot controls. Alternatively, these slot alloca-

tions can also be as results of some more complicated demand management strategy,

such as a market mechanism. If the market mechanism involves monetary payments,

the resulting airline profits will have to be adjusted to account for the payments.

In Sub-section 5.5.1, we present the impacts of slot reduction on various important

metrics using the models presented in section 5.2. Subsequently, in Sub-sections 5.5.2

through 5.5.5, we test the sensitivity of our results to the various parameters and

assumptions underlying our models.

5.5.1 Numerical Results

We conducted the following two experiments. In the first experiment, we varied the

total number of allocated slots at LGA and studied the impact on two important

metrics, namely, the total operating profits of all the airlines and the total number

of passengers carried. Figures 5-4 and 5-5 show the changes in total operating profits

of all the airlines with slot reductions under the proportionate and reward-based

allocation schemes, respectively. Figures 5-6 and 5-7 show the change in the total

number of passengers carried, assuming that the aircraft type (and seating capacity)

for each airline on each segment remains unchanged upon slot reduction. The total

number of passengers carried decreases as the number of slots decreases, but at a

much lower rate. For the proportionate allocation scheme, up to a 30% slot reduction,

each 1% reduction in slots leads to, on average, just a 0.27% reduction in the total

passengers. A 30% reduction in slots leads to approximately 8% reduction in total

passengers. Beyond 30%, the rate of decrease in passengers nearly quadruples, with

each 1% reduction in slots leading to about 1.12% reduction in total passengers.

Also, the total operating profit for the proportionate allocation scheme increases

with increasing slot reduction percentage, up to 30% slot reduction. Beyond that

point, the operating profit starts to decrease. Very similar patterns are observed

for the reward-based allocation scheme. Up to a 40% reduction in slots, each 1%

reduction in slots leads to, on average, just a 0.25% reduction in the total passengers.

A 40% slot reduction results in about 10.2% reduction in total passengers. However,
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beyond that point, each 1% reduction in slots results in about 0.86% reduction in

total passengers. Similarly, total operating profit increases up to a 40% reduction

and decreases thereafter.

These effects are easy to understand intuitively. Given that aircraft sizes remain

constant, the initial reduction in the number of slots results primarily in increases in

load factors and hence, under our constant fares assumption, operating costs decrease

at a faster rate than the rate of decrease in total revenue. So the operating profit

increases. This effect continues until a point where the aircraft size constraint becomes

binding and reduces the number of passengers almost proportionally to the number

of slots. Therefore the operating revenue decreases at almost the same rate as the

operating cost decrease, causing the operating profit to decrease.

Also, the rate of change in total profits and in passengers carried is comparable for

both the proportionate and the reward-based strategies at small levels of slot reduc-

tion. However, at higher slot reduction percentages, the decrease in total passengers

carried is smaller for the reward-based strategy, which makes sense given that the

reward-based strategy allocates a greater proportion of slots to carriers who carry

more passengers per slot. As a result, the increase in total profits is also greater for

the reward-based strategy at higher slot reduction percentages.

In our second experiment, we fixed a particular level of slot reduction and evalu-

ated its system-wide impacts on the airlines (both individually and as a group), and

on the passengers, based on multiple metrics. We considered the impact on the follow-

ing metrics: airline operating profits, average flight delays, average passenger delays,

total number of passengers carried, and average schedule displacement for passengers.

The airport capacity benchmark report published by the Federal Aviation Adminis-

tration [44], sets the IMC capacity of LaGuardia airport at approximately 87.7% of

its VMC capacity. Currently, the number of operations scheduled at LaGuardia is

close to the VMC capacity. We chose to evaluate the case of a 12.3% reduction in

slots, which approximately corresponds to scheduling at IMC capacity instead of at

VMC capacity. This policy is very similar to that currently followed at many major

European airports.
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Figure 5-4: Total operating profit as a function of slot reductions under a proportion-
ate allocation scheme assuming constant aircraft sizes

Figure 5-5: Total operating profit as a function of slot reductions under a reward-
based allocation scheme assuming constant aircraft sizes
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Figure 5-6: Total number of passengers carried as a function of slot reductions under
a proportionate allocation scheme assuming constant aircraft sizes

Figure 5-7: Total number of passengers carried as a function of slot reductions under
a reward-based allocation scheme assuming constant aircraft sizes

196



Next, we describe the procedures used to estimate the average flight delays, the

average passenger delays and the average schedule displacement. In order to esti-

mate the impact on the average flight delays, we used the information on ground

delay programs (GDPs) for an entire year (made available from Metron Aviation ®)

and actual flight delay data (obtained from the airline on-time performance database

available on the BTS website [72]). All the delay computations were performed only

for the NAS delay component of flight delays. While the number of operations cur-

rently scheduled at LaGuardia is close to its VMC capacity, realized capacity drops

to the IMC value during bad weather. We assumed that the realized capacity equaled

the IMC capacity during the period when a GDP was implemented at LGA, and it

equaled the VMC capacity otherwise. We calculated the average NAS delays to flights

landing at LaGuardia for both GDP and non-GDP periods for the entire year. We

assumed that the average flight delays under IMC capacity after 12.3% slot reduction

equal the average flight delays under the VMC capacity before slot reduction. After

the 12.3% slot reduction, the average flight delays under VMC capacity will be lower

than those under VMC capacity before slot reduction. However, in order to be con-

servative in our delay reduction estimates, we assumed that the average delays under

VMC capacity remain unchanged upon 12.3% slot reduction. Finally, we calculated

the overall average flight delay as the expected value of delays under VMC and IMC

capacities.

In addition to flight delays, passenger itinerary disruptions due to flight cancella-

tions and missed connections are responsible for a significant component of passenger

delays. Barnhart, Fearing and Vaze [12] estimated the ratio of average passenger

delay to average flight delay in the domestic US to be 1.97. Their procedure is also

described briefly in chapter 3. In this chapter, we used this representative value for

computing the average passenger delays from the average flight delays.

The total trip time for the passengers is also affected by what is known as schedule

displacement ([17]) or schedule delay. Schedule displacement is a measure of the

difference between the time when a passenger wishes to travel and the actual time

when he/she can travel given a flight schedule. The higher the daily frequency of
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flights, the lower is the schedule displacement. Due to slot reduction, the flight

frequency on some segments is expected to reduce, which affects schedule displacement

adversely. Schedule displacement is expressed as K
F

, where F is the flight frequency

and K is a constant which depends on the distribution of flight departure times and

the distribution of desired times when passengers wish to travel. In this research, we

assume both these distributions to be uniform. Let T be the duration of time over

which the frequency F is distributed. Under the uniform distribution assumption for

flights, if we divide the time T into F intervals of equal size, then there will be one

flight scheduled at the midpoint of each interval. So the schedule displacement for

all the passengers with desired departure times in that interval will vary uniformly

between 0 and 1
2
T
F

, with an average value of T
4F

. Therefore, K equals T
4
. We assume

T to be 16 hours because 97% of all the arrivals at LGA are concentrated in the 16

hour time duration from 8:00 am to midnight [72].

Table 5.5 summarizes the impacts of slot reduction to airlines and passengers based

on various metrics. Values in the 3rd and 4th columns correspond to those under the

actual frequencies and the base equilibrium before slot reduction, respectively. The

results in the 5th and 6th columns correspond to a 12.3% reduction in slots for propor-

tionate and reward-based allocation schemes respectively. The values in parentheses

indicate the percentage change in each metric with respect to the base equilibrium

before slot reduction. The level of congestion depends on the total number of slots

and not on the distribution of these slots among different airlines. Therefore, the de-

lay reduction is the same under both proportionate and reward-based slot allocation

schemes. Under either strategy, slot reductions lead to substantial reductions in flight

delays as well as passenger delays. The total operating profits across of all carriers

increase substantially. There is a small reduction in the total passengers carried.

However, this is partly because we have assumed that aircraft sizes on each segment

for each airline remain unchanged upon slot reduction. We will investigate the impact

of relaxing this restriction in Sub-section 5.5.3. The average schedule displacement

increases by just over 2 minutes. The total travel time for passengers arriving at LGA

includes not only the schedule displacement and the duration of the flight into LGA,
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but also the airport access and egress times, and in cases of connecting passengers, the

layover times and duration of the first flight in their itineraries. For flights into LGA

airport, the average flight duration itself is 185.38 minutes. Therefore, in comparison,

the increase in schedule displacement is negligibly small.

Table 5.5: Effect of a 12.3% slot reduction on system-wide performance metrics

Stakeholder Metrics
Actual No Reduction Proportionate Reward-based

Frequencies Equilibrium Reduction Reduction

Airline

Operating Profits $1,228,749 $1,281,663 $1,550,565 $1,501,100
(Excl. Delay Costs) (20.98%) (17.12%)
NAS Delay/Flight 12.74 min 12.74 min 7.52 min 7.52 min

(-40.97%) (-40.97%)

Passengers

Total Passengers 22,896 22,965 22,678 22,661
Carried (-1.25%) (-1.32%)
Avg. Passenger Delay 25.10 min 25.10 min 14.81 min 14.81 min
(due to NAS Delays) (-40.97%) (-40.97%)
Avg. Schedule 24.23 min 25.05 min 27.68 min 27.32 min
Displacement (10.50%) (9.06%)

Table 5.6 presents the distribution of operating profits across different carriers.

Profits of all carriers that account for at least 1% of the operations at LGA are in-

cluded. The impacts of a 12.3% slot reduction on the remaining carriers are negligible

because their slots do not get reduced under a 12.3% reduction due to integral round-

ing. The 2nd, 3rd, 4th and 5th columns correspond to actual frequencies, base equilib-

rium before slot reduction, 12.3% reduction under proportionate allocation scheme,

and 12.3% reduction under reward-based allocation scheme respectively. Again, the

values in parentheses represent the percentage increases in profits compared with the

base equilibrium before slot reduction. When the total number of slots is reduced

under either allocation scheme, the operating profit of each carrier is strictly greater

compared to that under the no slot reduction scenario. The relative increase in op-

erating profits is largest for the regional carriers operating small regional jets into

LGA. This is primarily because they had very low operating profit margins at LGA

under the no slot reduction scenario. In fact, for one of regional carriers, the slot

reduction under reward-based allocation helps achieve an operating profit instead of

an operating loss, which is the case under the no slot reduction scenario. On the other
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hand, the network legacy carriers achieve the maximum absolute increase in operating

profit per carrier. This is primarily because the average number of slots per day for

network legacy carriers (34.50) itself is nearly 27% higher than that for the remaining

carriers (27.25), and the average operating profits for the network legacy carriers per

day ($192,276) are much higher than that for the remaining carriers ($23,037) under

the no slot reduction scenario. If we compare against the actual frequencies case, then

the profit for all but one carrier increases after slot reduction under both allocation

schemes.

Table 5.6: Increase in operating profits due to a 12.3% slot reduction

Carrier
Actual No Reduction Proportionate Reward-based

Frequencies Equilibrium Reduction Reduction

Network Legacy $349,363 $390,735 $452,701 $423,466
Carrier 1 (15.86%) (8.38%)
Low Cost $47,090 $26,684 $34,487 $31,887
Carrier 1 (29.24%) (19.50%)
Network Legacy $49,693 $71,922 $79,550 $75,823
Carrier 2 (10.61%) (5.42%)
Network Legacy $202,489 $206,315 $299,385 $282,772
Carrier 3 (45.11%) (37.06%)
Low Cost $54,000 $59,927 $79,766 $73,541
Carrier 2 (33.11%) (22.72%)
Regional Carrier $29,836 $34,461 $39,480 $39,473
1 (14.56%) (14.54%)
Network Legacy $91,772 $85,708 $113,736 $106,451
Carrier 4 (32.70%) (24.20%)
Regional Carrier - $28,493 - $28,923 - $2,227 $8,513
2 (n.a.) (n.a.)
Network Legacy $200,796 $200,796 $201,786 $208,280
Carrier 5 (0.49%) (3.73%)
Network Legacy $196,346 $198,180 $216,043 $214,913
Carrier 6 (9.01%) (8.44%)

Total: Network $1,090,459 $1,153,656 $1,363,201 $1,311,705
Legacy Carriers (18.16%) (13.70%)
Total: Low $101,090 $86,611 $114,253 $105,428
Cost Carriers (31.92%) (21.73%)
Total: Regional $1,343 $5,539 $37,254 $47,986
Carriers (572.61%) (766.39%)
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These results in Tables 5.5 and 5.6 are obtained assuming a maximum average

segment load factor (LFmax) of 85%. Now, we will present results on the sensitivity

of slot reduction impacts to this assumption. We will focus on the sensitivity of the

results of the second experiment. Table 5.7 describes the sensitivity of total profits

and total number of passengers carried to variations in the maximum average segment

load factor value. Obviously, the average flight delays, average passenger delays and

average schedule displacements do not change, because they depend only on the

scheduled number of flight operations. The increase in total operating profit varies

between 16.56% and 21.99% and the decrease in number of passengers varies between

0.49% and 3.71%. With increases in the maximum average segment load factor, we

observe a general trend towards smaller reductions in total passengers due to slot

reduction, which is intuitively reasonable. Consequently, we also observe a general

trend towards greater increases in total profits with increases in the maximum average

segment load factor. Due to the integrality constraints on the number of slots, the

results don’t vary smoothly in some cases.

Table 5.7: Sensitivity of slot reduction impacts to the maximum average segment
load factor value under a 12.3% slot reduction

Maximum Increase in Total Profits Decrease in Passengers Carried

Load Factor Proportionate Reward-based Proportionate Reward-based

75% 20.25% 16.65% 3.71% 3.36%
80% 19.18% 16.56% 2.59% 2.14%
85% 20.98% 17.12% 1.25% 1.32%
90% 21.14% 17.93% 0.94% 0.94%
95% 21.99% 17.86% 0.49% 0.95%

5.5.2 Sensitivity to Model Parameters

Table 5.4 in Sub-section 5.4.4 showed that the model’s prediction accuracy is not

highly sensitive to variations in model parameters. In this section, we present the

sensitivity of slot reduction impacts to variations in the values of various parame-

ters in the basic model and in the model extensions 1 and 2. The parameters are
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varied within -25% to +25% of their values listed in Sub-section 5.4.1. Tables 5.8

and 5.9 present the percentage increase in total profits and the percentage decrease

in passengers carried, respectively, under a 12.3% reduction with the proportionate

allocation scheme. Even with significant variations in the parameter values, slot re-

duction results in at least a 17.3% increase in total operating profits with at most

a 1.9% reduction in passengers carried (assuming constant aircraft sizes). We also

performed similar sensitivity analyses of our slot reduction results under the reward-

based allocation scheme and found the results to be similarly stable, as shown in

Tables 5.10 and 5.11. Even with significant variations in the parameter values, under

our reward-based based slot allocation scheme, a 12.3% reduction in total number of

slots results in at least a 10.9% increase in total operating profits with at most a 2.8%

reduction in passengers carried (assuming constant aircraft sizes).

Table 5.8: Sensitivity of increase in total profit due to slot reduction to model pa-
rameters (under 12.3% reduction with proportionate allocation)

Parameter -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25%

αs 20.3% 20.9% 20.4% 20.7% 21.5% 21.0% 21.3% 18.9% 18.3% 19.1% 18.7%
θa 21.5% 21.2% 21.0% 20.8% 20.5% 21.0% 21.6% 21.0% 22.3% 22.4% 22.4%
α1
s 20.8% 20.7% 20.7% 20.5% 20.8% 21.0% 20.9% 20.5% 20.3% 21.6% 20.3%
β1
s 21.0% 21.0% 21.0% 21.0% 21.0% 21.0% 20.8% 20.9% 20.9% 20.8% 20.8%
γ1
s 20.7% 20.7% 20.7% 20.7% 20.8% 21.0% 20.8% 20.6% 20.4% 20.4% 20.4%
α2
s 20.7% 20.7% 20.7% 20.8% 20.9% 21.0% 20.9% 20.5% 20.3% 20.3% 20.2%
β2
s 20.3% 21.3% 21.0% 21.0% 21.0% 21.0% 20.8% 20.5% 20.1% 21.1% 20.5%

Ca′s 22.8% 27.7% 19.2% 17.3% 19.3% 21.0% 23.7% 24.2% 24.1% 25.5% 25.8%
Sa′s 21.0% 21.0% 21.0% 21.0% 21.0% 21.0% 21.0% 21.0% 21.0% 21.0% 21.0%
pa′s 25.8% 25.8% 25.5% 24.1% 23.7% 21.0% 19.3% 17.3% 20.4% 24.0% 27.7%

5.5.3 Effect of Aircraft Upgauges

Results in section 5.5.1 were obtained under the assumption that, even when the total

number of slots available to an airline is reduced, the airline will continue to operate

the same-size aircraft as it did in the absence of slot reduction. This assumption

might be realistic for very small reductions in the number of slots, but for significant

reductions, it is reasonable to expect that the airlines will operate larger aircraft

202



Table 5.9: Sensitivity of decrease in passengers carried due to slot reduction to model
parameters (under 12.3% reduction with proportionate allocation)

Parameter -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25%

αs 1.17% 1.23% 1.41% 1.63% 1.30% 1.25% 1.29% 1.77% 1.71% 1.41% 1.52%
θa 1.03% 1.30% 1.13% 1.45% 1.40% 1.25% 0.91% 1.17% 1.30% 1.25% 1.30%
α1
s 1.29% 1.30% 1.28% 1.33% 1.26% 1.25% 1.22% 1.46% 1.43% 1.43% 1.45%
β1
s 1.25% 1.25% 1.26% 1.25% 1.25% 1.25% 1.27% 1.23% 1.22% 1.23% 1.23%
γ1
s 1.30% 1.31% 1.30% 1.30% 1.26% 1.25% 1.23% 1.39% 1.39% 1.39% 1.39%
α2
s 1.30% 1.30% 1.30% 1.27% 1.26% 1.25% 1.23% 1.46% 1.42% 1.33% 1.46%
β2
s 1.30% 1.01% 1.14% 1.14% 1.24% 1.25% 1.22% 1.40% 1.40% 1.36% 1.50%

Ca′s 1.37% 0.85% 1.59% 1.90% 1.35% 1.25% 1.03% 0.99% 0.82% 0.78% 0.60%
Sa′s 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25%
pa′s 0.60% 0.60% 0.78% 0.82% 1.03% 1.25% 1.35% 1.90% 1.37% 0.88% 0.85%

Table 5.10: Sensitivity of increase in total profit due to slot reduction to model
parameters (under 12.3% reduction with reward-based allocation)

Parameter -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25%

αs 16.8% 17.5% 17.1% 17.4% 17.6% 17.8% 18.0% 13.4% 13.7% 13.6% 13.5%
θa 16.8% 16.3% 16.7% 16.5% 16.3% 17.1% 18.1% 18.2% 17.6% 17.5% 17.8%
α1
s 17.4% 17.0% 17.0% 17.0% 17.0% 17.1% 16.9% 16.9% 16.8% 17.4% 16.1%
β1
s 17.1% 17.1% 17.1% 17.1% 17.1% 17.1% 16.9% 16.9% 16.9% 16.9% 16.9%
γ1
s 17.0% 17.0% 17.0% 17.0% 17.0% 17.1% 16.9% 16.9% 16.2% 16.2% 16.1%
α2
s 17.0% 17.0% 16.9% 16.9% 17.1% 17.1% 16.9% 16.9% 16.6% 16.2% 16.1%
β2
s 17.7% 17.7% 17.6% 17.3% 17.2% 17.1% 16.9% 16.0% 15.5% 15.9% 16.6%

Ca′s 19.5% 20.0% 10.9% 11.7% 13.4% 17.1% 17.6% 18.0% 17.1% 17.0% 17.4%
Sa′s 17.1% 17.1% 17.1% 17.1% 17.1% 17.1% 17.1% 17.1% 17.1% 17.1% 17.1%
pa′s 17.4% 17.4% 17.0% 17.1% 17.6% 17.1% 13.4% 11.7% 13.2% 19.4% 20.0%
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Table 5.11: Sensitivity of decrease in passengers carried due to slot reduction to model
parameters (under 12.3% reduction with reward-based allocation)

Parameter -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25%

αs 1.07% 1.13% 1.39% 1.39% 1.35% 1.32% 1.58% 2.42% 2.33% 2.35% 2.37%
θa 1.19% 1.49% 1.49% 1.45% 1.54% 1.32% 1.21% 1.40% 1.69% 1.76% 1.86%
α1
s 1.33% 1.34% 1.32% 1.34% 1.33% 1.32% 1.34% 1.34% 1.32% 1.53% 1.55%
β1
s 1.33% 1.33% 1.33% 1.33% 1.33% 1.32% 1.34% 1.34% 1.34% 1.34% 1.34%
γ1
s 1.34% 1.35% 1.34% 1.34% 1.33% 1.32% 1.33% 1.33% 1.53% 1.53% 1.53%
α2
s 1.34% 1.33% 1.33% 1.34% 1.33% 1.32% 1.34% 1.33% 1.36% 1.42% 1.56%
β2
s 1.20% 1.20% 1.20% 1.20% 1.32% 1.32% 1.33% 1.65% 1.66% 1.55% 1.43%

Ca′s 1.29% 1.63% 2.74% 2.80% 1.85% 1.32% 1.27% 1.26% 1.26% 1.23% 1.06%
Sa′s 1.32% 1.32% 1.32% 1.32% 1.32% 1.32% 1.32% 1.32% 1.32% 1.32% 1.32%
pa′s 1.06% 1.06% 1.23% 1.26% 1.27% 1.32% 1.85% 2.80% 2.34% 1.29% 1.63%

on some of the segments in order to accommodate more passengers and therefore

increase profit. The main problem with modeling aircraft size decisions is that such

decisions depend on the fleet availability. We estimate the impact of aircraft size

upgauges by allowing for a limited number of upgauges for each airline. We sort all

the available types of aircraft operated into LGA by any of the airlines in increasing

order of seating capacity. We allow a certain maximum percentage of an airline’s fleet

(flying into LGA) to be upgauged to the next bigger-sized aircraft. This constraint

indirectly models the fact that an airline cannot arbitrarily increase aircraft sizes due

to fleet availability constraints. We calculate the equilibrium frequency solution under

the slot reduction scenario as described in section 5.5 and subsequently perform, for

each airline, the most profitable flight upgauges subject to the limits on maximum

allowable upgauge percentage. As before, we assume a maximum average segment

load factor of 85%.

Figure 5-8 describes the impact of a limited number of aircraft upgauges on the

reductions in total passengers when the total number of slots is reduced by 12.3%,

and the proportionate allocation scheme is used. The maximum allowable upgauge

percentage is on the x-axis, which represents the maximum percentage of an airline’s

flights that can be upgauged to the next bigger aircraft size. The percentage reduction

in the total number of passengers varies from 1.25%, assuming 0% upgauges, to
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Figure 5-8: Effect of limited upgauging on total number of passengers under a 12.3%
slot reduction

0.39% assuming at most 8% upgauges for each airline. This shows that even with

a small fraction of flights upgauging to a larger-sized aircraft, most of the reduction

in the number of passengers disappears. The remaining reduction in the number of

passengers is primarily attributable to the fact that there is only a limited number

of aircraft sizes available; and on some segments, the number of passengers who are

denied a seat due to a smaller aircraft size is not large enough to justify a profitable

upgauge to the next bigger aircraft size.

5.5.4 Effects of Demand Uncertainty and Revenue Manage-

ment Practices

The results presented in Sub-section 5.5.1 assume deterministic passenger demand and

the existence of a fixed fare value for each flight. In reality, passenger demand varies

from day-to-day and these variations affect the number of passengers transported.

Spill (or spilled passengers) is defined as the portion of passenger demand that cannot
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be accommodated because of the limited capacity of the aircraft. Models of spill

estimation typically assume some distribution of demand and calculate the expected

value of this distribution truncated by the seating capacity to obtain the expected

number of passengers carried ([18]). In our models presented thus far, to account for

demand stochasticity, we put a hard constraint on the maximum number of seats sold

on each segment at 85% of the seating capacity of all flights on the segment. This is

a fairly conservative value, considering the fact that in the year 2007, across all 7,452

combinations of segments and carriers in the domestic U.S. with at least 1 flight per

day, 923 combinations had an average load factor of greater than 85%. Moreover, the

higher the demand factor, the higher is the average load factor, where demand factor

is defined as the ratio of average passenger demand to seating capacity. If the total

number of seats offered on a segment is reduced, which is likely to be the case under a

slot reduction scenario, the demand factor increases further. Therefore, we expect our

method to introduce a downward bias in the expected number of passengers carried.

The revenue management methods practiced by the airlines affect the average fares

of the spilled passengers by ensuring that the spilled passengers are predominantly the

low-fare passengers. Until now, we have ignored this effect. Therefore, our method

can also be expected to introduce a downward bias in the average fare values, and

therefore, in the operating profit estimates. Moreover, as pointed out by Belobaba

and Farkas ([18]), in addition to impacting the average fares of the spilled passengers,

revenue management practices also affect the number of spilled passengers. In this

section, we estimate the extent and direction of this bias, in the number of passengers

carried and in the airline profits, introduced by our simplified assumptions about

demand uncertainty and fares.

Under a slot reduction scenario, the total segment seating capacity is reduced,

unless there is a substantial increase in aircraft sizes. Revenue management systems

used by the airlines are expected to readjust their seat allocation decisions across

different fare classes by spilling the low-fare passengers, resulting in some increase

in average fares. In order to estimate the effect of demand uncertainty and revenue

management on expected spills and average fares, we use passenger spills and average
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Figure 5-9: Expected spill per seat obtained using the spill modeling approach for a
fare discount ratio of 0.7 (Source: Belobaba and Farkas, 1999)

fares of spilled passengers (called spill fares) estimated by Belobaba and Farkas ([18])

using a multiple nested fare class, single booking period model. Belobaba and Farkas

([18]) have estimated the expected spills and spill fares for a 5-fare class example using

different values of demand factors and fare discount ratios, where a fare discount ratio

is defined as the ratio of the fare of a class to the fare of the immediately higher fare

class.

Figures 5-9 and 5-10 show the expected spill and spill fare for different values of

demand factors and fare discount ratios estimated by Belobaba and Farkas ([18]).

In both figures, different curves correspond to different fare discount factors. The

demand factor is on the x-axis in both figures. Figure 5-9 has the ratio of the expected

number of spilled passengers to the aircraft seating capacity on the y-axis while Figure

5-10 has the average fare of spilled passengers on the y-axis. Note that Figure 5-10

corresponds to a maximum fare of $600. For other fare values, the average spill fare

can be calculated by simply rescaling the y-axis accordingly.

We will call our default approach as the deterministic approach and this new
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Figure 5-10: Average spill fare obtained using the spill modeling approach for a fare
discount ratio of 0.7 (Source: Belobaba and Farkas, 1999)

approach as the spill modeling approach. Under the spill modeling approach, for a

given set of flight frequencies, the demand for each airline on each segment is computed

using the appropriate market share model (given by constraint 5.2, constraint 5.7, or

by constraints 5.8 and 5.9). The expected number of spilled passengers on each

segment is calculated using Figure 5-9 and the average fare of the spilled passengers

is calculated using Figure 5-10. The airline’s revenue is obtained by subtracting the

product of the expected spill and spill fare from the product of the demand and the

overall average fare across the unconstrained demand for each airline on each segment.

Table 5.12: Effect of a 12.3% slot reduction under spill modeling approach

Metrics
Actual No Reduction Proportionate Reward-based

Frequencies Equilibrium Reduction Reduction

Operating Profit $1,263,650 $1,326,149 $1,617,158 $1,566,471
(Excl. Delay Costs) (21.9%) (18.1%)
Passengers 23,085 23,129 22,927 22,897
Carried (-0.87%) (-1.00%)
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For the equilibrium frequency solution with and without slot reductions, we recal-

culated the airline profits using the spill modeling approach. Table 5.12 confirm that

our deterministic approach introduces a slight downward bias in number of passengers

carried as well as in the total operating profits. This can be observed by comparing

these results with those in Table 5.5. Furthermore, as the demand factor increases,

the magnitude of this bias increases, which means that the bias is greater for the slot

reduction scenario than for the no reduction scenario. So, our deterministic approach,

in fact, slightly underestimates the benefits of slot reduction. This is apparent from

the greater increase in total operating profits and smaller reduction in passengers

carried due to slot reduction as reported in Table 5.12 compared to that in Table 5.5.

The preceding discussion about increases in average fares assumes that the total

seating capacity on a segment is reduced due to slot reduction. However, in light of

the possibility of aircraft upgauges as discussed in Sub-section 5.5.3, the decrease in

seats due to frequency reduction might be partially or completely compensated by

increases in seats per flight, depending on the extent of upgauging. Therefore, even

the results presented in Table 5.12 are likely to be overestimates of the reduction in

passengers carried and underestimates of the increase in total operating profits.

In addition to the effects of demand uncertainty and revenue management, one

can consider the possibility of changes in the actual fare values due to a reduction

in the total number of seats offered on a non-stop segment. Slot reduction can have

an impact on fares in different ways. Borenstein ([21]) noted that an airline’s share

of passengers on a route and at an airport affects fares. Slot reduction might affect

the passenger shares of different airlines differently, thus leading to an increase in

fares for some combinations of routes and carriers, and a decrease for some other

combinations. However, there is no reason to expect any significant change in the

overall fare levels because of this effect. Additionally, the delay reduction resulting

from slot reduction strategies can, in turn, be expected to have an impact on fares

in multiple ways. Britto, Dresner and Voltes ([24]) found that an increase in flight

delays increases airline costs and hence has an increasing effect on fares. According to

their results, for every minute of reduction in average flight delays, the fares decrease
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by about $0.04. On the other hand, Forbes ([46]) analyzed a rather extreme delay

situation for LGA airport and concluded that an increase in flight delays deteriorates

the quality of air service and therefore decreases the fares. According to the findings

of this study, the fares increase by about $1.42 for every minute of reduction in average

flight delays. Detailed analysis of these various, often opposite, effects is beyond the

scope of this research. However, the possibility of net increases in fares upon slot

reduction suggests that our results are likely to be conservative, that is, the actual

increase in total profits of the airlines due to slot reduction strategies could be even

higher than what we report in Table 5.5.

In addition to the inherent demand stochasticity, the total demand for travel on

each segment into LGA (Ms), is likely to be affected by slot controls in a complicated

way. A significant proportion of passengers traveling to New York City have other

travel alternatives to flying into LGA, e.g. travel by car, travel by rail, and travel by

air into other New York area airports such as Newark (EWR) and Kennedy (JFK).

Upon slot reduction at LGA, the impact on total passenger demand can be several-

fold. Substantial delay reduction is expected to make LGA more attractive while a

corresponding reduction in frequency on some routes and a possible increase in fares

are expected to make LGA less attractive. While the net effect is difficult to predict,

it is reasonable to expect some increase in net attractiveness of LGA unless EWR

and/or JFK also implement similar slot reduction strategies. This is yet another

reason the passenger demand and actual number of passengers carried into LGA

after slot reduction can be expected to be higher than those presented in Table 5.5.

5.5.5 Effects of Passenger Connections

Our models of frequency competition assume segment-based demand. In reality,

passengers demand seats on itineraries, which might be combinations of two or more

flights. Accordingly, the airlines also charge fares on an itinerary basis rather than

on a flight basis. So calculation of the fare revenue generated by a segment is not

a straightforward process. Belobaba ([16]) acknowledged that different assumptions

made by airline planners can lead to very different estimates of profitability. The
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results presented in Sub-section 5.5.1 were calculated under the full fare assumption.

One potential issue with full fare assumption is that the fare of a one-stop passenger

gets counted twice, once for each flight in the passenger’s itinerary. In this research,

we have considered only those segments which have one end-point at LGA airport.

Because a very small fraction of passengers ( 5%) connect at LaGuardia [73], there will

be very little double-counting of the revenues. Moreover, whatever double counting

occurs has a comparable effect on the results under the slot reduction scenario and

the scenario with no slot reduction. So the issue of double-counting does not affect

the percentage increase in total profits significantly.

Another issue with the full fare assumption is that when a passenger is spilled,

the entire fare revenue corresponding to that passenger is assumed to be lost. This

fails to capture the possibility of having an additional non-stop passenger on the other

segment, which has seats available. For example, when a reduction in the frequency of

American Airlines’ flights from LGA to Dallas-Fort Worth (DFW) airport results in

spilling a passenger traveling from LGA to Los Angeles (LAX) via DFW due to lack of

seats on the LGA-DFW segment, there is still a possibility of recovering a part of that

revenue by carrying an additional non-stop passenger on the DFW-LAX segment. An

alternative method for fare revenue calculation is the complete proration approach,

in which the fare is completely prorated based on distance. Under this assumption,

if the airline is not able to carry a connecting passenger, it will only lose the revenue

equal to a fraction of the passenger’s full fare. This is not necessarily the most

valid representation of segment profits either, because of the possibility that the seat

vacated by that passenger on the other segment may not be filled by another non-stop

or connecting passenger. In the aforementioned example, the seat on the DFW-LAX

segment vacated by the spilled passenger going from LGA to LAX via DFW may

not get filled by another passenger. Moreover, another issue with the distance-based

proration is that the fares are not necessarily well correlated with distances.

While neither the full fare assumption nor the complete proration assumption is

very accurate, these represent the two extremes of possible methods for calculating

segment profitability. Any reasonable method of fare revenue estimation is expected
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to lie somewhere in between these two extremes. To measure the difference between

these extreme scenarios, we evaluated the impact of slot reduction strategies under

the distance-based complete proration assumption. The results are presented in Table

5.13. As expected, the profitability values are considerably lower than those corre-

sponding to the full fare assumption, i.e. those in Table 5.5. However, the absolute

increase in total profits due to slot reduction changes only slightly.

Table 5.13: Effect of a 12.3% slot reduction under completely prorated fares approach

Metrics
Actual No Reduction Proportionate Reward-based

Frequencies Equilibrium Reduction Reduction

Operating Profit $901,346 $959,944 $1,247,750 $1,174,736
(Excl. Delay Costs) (29.98%) (22.38%)
Passengers 22,895 22,971 22,676 22,532
Carried (-1.29%) (-1.91%)

In addition to the fare proration issue, another limitation of the S-curve model of

market share is that it does not estimate the connecting passenger shares accurately.

The model predicts that when the frequency of one carrier decreases compared to that

of another competing carrier, a fraction of its passengers will shift to the other carrier.

But this does not make sense for connecting passengers if the other carrier does not

offer a connecting itinerary to that passenger’s final destination. For example, if

American Airlines reduces its flight frequency from DFW to LGA, the segment-based

S-curve model predicts that some passengers on the DFW-LGA segment will shift

to other airlines on DFW-LGA segment. But in reality, a passenger traveling from

LAX to LGA via DFW may not shift to the DFW-LGA flights of another airline if

that other airline does not offer service from LAX to DFW. In fact, with changes

in frequency values, the passengers might shift to traveling through a completely

different hub of the same carrier or some other carrier to their final destinations. For

example, with a reduction in the frequency of American Airlines’ flights from DFW

to LGA, a passenger traveling from LAX to LGA on American Airlines through

its DFW hub may decide to instead travel on Continental Airlines by connecting at

Houston (IAH) or to continue traveling on American Airlines but through the Chicago
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O’Hare (ORD) hub rather than DFW. Therefore, such interactions can get extremely

complicated.

Of all passengers on flights arriving at LaGuardia, approximately 75% are non-stop

passengers, only 20% are connecting passengers with a final destination at LGA and

the remaining 5% connect at LaGuardia itself [73]. Of all the connecting passengers

with a final destination at LGA, nearly 97% are carried by seven major airlines and

nearly 89% of them connect through the two biggest hubs of each of these seven

airlines. We expect the effects of connecting passengers to be fairly well distributed

across these major airlines, without any obvious advantages or disadvantages to any

particular carriers. Furthermore, these connecting passenger effects should have a

similar impact on results with and without slot reduction. So we expect that the

passenger connections would not affect the main results of this study significantly.

5.6 Summary

Any demand management strategy implicitly or explicitly involves deciding the total

capacity to be allocated and the distribution of this capacity among different airlines.

In this research, we explicitly consider these two stages separately. Although there is

extensive literature on airport demand management strategies, none of the previous

studies have captured critical elements of frequency competition among carriers. To

the best of the author’s knowledge, this is the first study that tries to model airline

competition under demand management strategies.

We developed a game theoretic model of airline frequency competition based on

the S-curve relationship, which is a popular model of market share in the airline liter-

ature. Due to the discreteness of the problem and the non-convexity of its continuous

relaxation, the optimization problem for each airline is complicated. Furthermore,

due to competitive interactions among different players, the problem becomes one of

computing a Nash equilibrium. The large size of the solution space makes it very

challenging to solve. We propose an efficient solution algorithm for obtaining a Nash

equilibrium. We justify the predictive power of the Nash equilibrium solution con-
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cept using empirical validation of the model estimates under existing slot allocation.

Irrespective of the starting point, the best response algorithm was found to approach

the equilibrium outcome within a very few iterations. This shows that even less than

perfectly rational carriers can reach the equilibrium outcome through simple myopic

learning dynamics, and thus provides further justification of the predictive power of

Nash equilibrium outcome.

We evaluated two simple slot reduction strategies. The results showed that in

addition to a substantial reduction in flight and passenger delays, small reductions

in total allocated capacity can improve the operating profits of carriers considerably.

While the two strategies led to some differences in the actual profitability increases

across individual carriers, the aggregate impacts were similar. Under each strategy,

slot reduction led to a substantial increase in the operating profits of all carriers across

the board, and substantial reductions in flight delays and passenger delays. It also

led to a small reduction in the number of passengers carried. However, most of the

reduction in total passengers carried was eliminated when the possibility of a limited

number of aircraft upgauges was introduced. The increase in schedule displacement

due to the slot reduction was negligibly small compared to the overall travel times of

the passengers.

These results are obtained based on the various conceptual and numerical assump-

tions made in developing our Nash equilibrium-based modeling framework. Therefore,

we tested the sensitivity of the results to many of our assumptions, parameter values

and changes in time periods and datasets. In most of the cases, the model results

varied only slightly. Also in most of the cases, our assumptions were found to be con-

servative, that is, relaxing these assumptions is expected to make the slot reduction

schemes even more attractive.

Therefore, a small reduction in the total number of slots at congested airports

is beneficial to the carriers, all of whom experience reductions in delay costs as well

as increases in planned operating profits. It also benefits the passengers, almost all

of whom get transported to their respective destinations, with negligible increases

in schedule displacement and significantly lower average passenger delays. It is also
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beneficial to the airport operators because congestion and airport delays are reduced

substantially. From the perspective of the entire system, slot reduction strategies

lead to almost all passengers being transported with many fewer flights and lower

total cost. Hence, slot reduction strategies are also attractive from the perspective of

overall social welfare.
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Chapter 6

Pricing Mechanisms for Airport

Congestion Mitigation

As mentioned earlier, Chapter 5 describes a detailed computational experiment which

demonstrates the potential stakeholder benefits to be had from an administrative slot

reduction mechanism at a congested airport such as LGA. This corresponds to the

most significant practical contribution of this thesis. In this chapter, we extend our

framework for modeling airline frequency competition to a congestion pricing setting.

Using a small, hypothetical network of airlines, we provide a proof-of-concept demon-

stration of some critical characteristics of airline competition, which when captured

appropriately, can critically modify the stakeholder benefits of a congestion pricing

mechanism.

6.1 Introduction

With airport capacity being a scarce resource, market-based mechanisms such as

congestion pricing and slot auctions are expected to bring demand and supply in

balance by placing monetary prices on the airport capacity. These market-based

mechanisms rely on the ability of the airlines to assess the economical value of airport

slots, while bidding for slots in the case of auctions and for determining the demand for

slots at a given level of prices in the case of congestion pricing. Airlines are typically
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assumed to be rational decision makers, each driven by its own profit-maximization

objective. However, an airline needs to account for competition from other airlines

operating in the same markets as it does while ascertaining its own valuation of

an airport slot. In this chapter, we model the airline frequency decisions under

congestion pricing mechanisms through explicit modeling of competition and assess

the dependence of the effectiveness, or lack thereof, of airport congestion pricing

mechanisms on the characteristics of the airline markets. Many prior studies have

accounted for airline competition under pricing using conventional micro-economic

models of firm competition. However, these generalized models fail to capture some

essential characteristics of competition which are peculiar to the airline industry and

therefore, as we show later in this chapter, tend to underestimate the congestion

pricing benefits to the airlines. We capture these characteristics through an industry-

specific competition model and generate insights that were not possible with the

previous models.

The rest of this chapter is organized as follows. Section 6.2 describes the rele-

vant existing literature on airport congestion pricing. Section 6.3 provides details

of our model of frequency competition that captures airline frequency decisions in

the presence of delays and congestion prices. Section 6.4 describes our delay model

that captures the dependence of flight delays on airline frequency decisions. Section

6.5 presents the algorithm that we used to solve this problem iteratively. Section

6.6 outlines the data sources and experimental setup for the subsequent computa-

tional experiments. Section 6.7 provides results of delay function fitting. Section

6.8 provides computational results from the pricing experiments for a small hypo-

thetical network of airlines. Section 6.9 concludes with a summary of the practical

implications of this research and a description of directions for future research.

6.2 Literature Review

A user (such as an airline) of a public resource (such as an airport) generates value

for itself through the utilization of the resource. Such utilization might sometimes
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result in detrimental effects to the other users of the public resource. In particular, an

airline operating at a congested airport imposes additional delay costs on the other

airlines operating at the same airport. Economists have long been advocating the

use of pricing of public resources in the presence of negative externalities such as

congestion, wherein each user of the public resource is required to pay a toll equal

to the marginal cost imposed by that user on all the other users of the resource [97].

Such prices based on marginal costs have been claimed to achieve the social welfare

maximization objective. Not surprisingly, early studies on airport congestion pricing,

including Levine [62], and Carlin and Park [30], have advocated marginal cost pricing

of airport resources. Levine [62] proposed to implement a system in which each airport

user is charged fully for the marginal cost of an additional operation, while Carlin and

Park [30] recommended a hybrid system involving pricing and administrative controls

due to various practicality issues associated with a full marginal cost pricing scheme.

Airport congestion pricing, however, is fundamentally different from pricing of a

resource such as roadway infrastructure which involves a large number of users, each

using a very small portion of the capacity of the public resource, otherwise known as

atomistic users. Airlines, on the other hand, are considered to be non-atomistic users

of airport resources because each airline typically operates more than one flight at

an airport, and the number of users of an airport resource is comparatively smaller.

So each additional operation by an airline delays the flights of other airlines as well

as the other flights of the same airline at that airport. More recent studies such

as Daniel [40, 41], Brueckner [25, 26], Pels and Verhoef [80] recognize the fact that

airlines automatically internalize a part of the congestion costs they impose. A recent

study by Morrison and Winston, however, compared the atomistic (or flat) and non-

atomistic pricing policies across 74 commercial US airports in 2005. They found the

difference between the net benefits generated by the two congestion pricing policies to

be small because the bulk of airport delays are not internalized [66]. In this chapter,

we analyze the impacts of various levels of flat pricing (also known as atomistic

pricing) as well as the marginal cost pricing (also known as non-atomistic pricing)

equilibrium for non-atomistic users.
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Daniel [40, 41] modeled the interaction between airport demand, slot prices and

delays using detailed queuing theoretic models. These two studies, however, do not

capture frequency-based competition for passenger share of a market, even though

such competition between airlines is intricately related to the congestion problem at

major airports.

Several other existing studies have tackled this problem from a microeconomic

perspective. Studies such as Brueckner [25, 26], Pels and Verhoef [80], and a re-

cent one by Perakis and Sun [81] provide a rigorous mathematical treatment of the

problem of airport slot pricing under airline frequency competition and derive the

Nash equilibrium outcomes of such models mathematically. However, these studies

model airline capacity allocation decisions using general micro-economic models of

firm competition, which typically assume Cournot-type [38] quantity competition.

By assuming constant load factors and constant aircraft seating capacities, they fail

to recognize the important distinguishing features of the airline industry for which

the quantity produced can be captured by three different entities: number of flights,

number of seats and number of passengers carried.

As discussed in Sub-section 5.1.1, the incremental profitability of having an extra

flight in a particular market largely depends on the number of additional passengers

that the airline will be able to carry because of the additional flight, which in turn de-

pends on the schedule of flights offered by the competitor airlines in the same market.

So, given a set of congestion prices, the total demand for slots should reflect these

competitive interactions. However, Cournot-type [38] models of firm competition do

not incorporate the inverse dependence of one airline’s market share on competitor

airlines’ frequencies, which is a critical component of such competitive interactions.

Furthermore, the assumption of constant load factors and constant aircraft seating

capacities means that studies such as Brueckner [25, 26], Pels and Verhoef [80], and

Perakis and Sun [81], cannot account for the possibility of increases in average number

of passengers per flights (through increased load factors, or increased number of seats

per aircraft, or both) as the slots become more expensive under congestion pricing.

Consequently, delay cost reductions have often been considered as the only type of
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benefit from congestion pricing. Most of the prior studies evaluate congestion pricing

benefits in terms of overall societal welfare gain, rather than in terms of the benefits to

airlines and passengers. Perakis and Sun conclude that, while congestion pricing leads

to the welfare maximization solution, both airlines and passengers are worse off than

without congestion pricing because the welfare gain from congestion pricing is in the

form of the revenue generated from pricing [81]. Many of the prior congestion pricing

studies propose some form of direct or indirect mechanisms for re-distribution of this

revenue gain among the airlines if the congestion pricing scheme is to be attractive

to the airlines.

Our models are able to explicitly capture the phenomenon of varying number of

passenger per flight. In fact, as we show in Section 6.8, a reduction in operating costs

is an important driver of the benefits of congestion pricing to the airlines, which has

not been considered in any of the prior studies.

Schorr provided a model of airline frequency competition under flat pricing of

airport slots [86]. He produced interesting results on the benefits of flat pricing,

albeit focusing on symmetric equilibria for the somewhat restrictive case of identical

airlines. We model airline frequency competition under congestion pricing using a

popular market share model of frequency competition, which is similar to Schorr’s

model. The main objective of this research is to investigate the role of airline frequency

competition under congestion pricing. We consider the general case of non-identical

airlines and do not restrict our analysis to symmetric equilibria.

The major contributions of the research in this chapter are threefold. First, we

develop a model for airline frequency competition that explicitly accounts for the

relationship between the number of flights operated, number of seats flown and the

number of passengers carried by an airline under slot pricing. To the best of author’s

knowledge, this is the first computational study that accounts for this relationship.

Second, using a small hypothetical network, we evaluate the impacts of congestion

prices on the various stakeholders and investigate the dependence of effectiveness of

congestion pricing mechanisms on the different characteristics of airline competition in

individual markets. Third, we provide computational results under flat prices, as well
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as marginal cost pricing equilibrium. Our results show that variation in the number

of passengers per flight plays a vital role in determining the degree of attractiveness

of congestion pricing to the airlines. A significant part of impact of congestion pricing

could not be accounted for using the earlier models based on assumptions of constant

load factors and constant aircraft sizes.

6.3 Model

Our model of airline decision making is an extension of the basic model presented

in Section 5.2. In all of our computational experiments, we assume that congestion

pricing is being considered at a single airport. From here onwards, the airport which

is under consideration for implementation of congestion pricing will be simply denoted

as the airport. Before presenting the model, let us first define the relevant notation,

the majority of which is similar to that described in Section 5.2.

� Sa = Set of potential segments for airline a with destination at the airport

� pas = Average fare charged by airline a on segment s

� Qas = Number of passengers carried by airline a on segment s

� Ms = Total passenger demand on segment s

� Cas = Operating cost per flight for airline a on segment s

� Sas = Seating capacity of each flight of airline a on segment s

� αs = Exponent of the S-curve relationship between market share and frequency

share on the non-stop segment s

� Ua = Maximum number of slots that can be utilized by airline a at the airport

� La = Minimum number of slots that must be utilized by airline a at the airport

� A = Set of all airlines

222



� As = Set of all airlines whose set of potential segments includes s

� LFmax = Maximum average segment load factor

� ca = Unit cost of flight delay to airline a (in $/aircraft-minute)

� O = Total number of operations at the airport

� D (.) = Average flight delay as a function of total number of operations at the

airport

� T (., .) = toll (in $) charged to an airline as a function of that airline’s demand

for operations and the total number of operations at the airport

� fas = Daily frequency of flights for airline a on segment s

Our model of frequency competition, just like the one presented in Section 5.2,

we will assume segment-based demand, that is, we will assume that all the passenger

demand on a segment is that for non-stop travel on that segment and is independent

of demand on other segments. The definition of a segment here is the same as that

given in section 2.1, which was, an origin and destination pair for non-stop flights. So

we will use the terms market and segment interchangeably in the rest of this chapter.

Expressions (6.1) through (6.6) describe the problem of deciding the flight fre-

quencies as an optimization formulation from the perspective of a single airline. The

objective function, 6.1, consists of three parts: 1) the difference between the total

revenue and operating costs summed across all markets, 2) flight delay cost incurred

by the airline, and 3) the congestion prices paid by the airline. Note that the operat-

ing cost inside the first summation excludes the cost due to flight delays. Flight delay

cost is the product of the unit cost of flight delay (ca) to that airline, the total number

of operations of that airline at the airport (
∑

s∈Sa fas), and the average flight delay

(D (.)), which is a function of the total number of operations from all airlines at the

airport (
∑

a′∈A
∑

s∈Sa′
fa′s). The congestion price (T ) paid by the airline is decided

by the airport administrator. It is reasonable to expect that T will be a function of

total number of operations (
∑

s∈Sa fas) of airline a at the airport. The greater the
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number of operations of airline a at the airport, the higher is the total congestion

price paid by airline a. Furthermore, we can expect T to also be a function possibly

of the total number of operations by all airlines at that airport. For the same number

of operations of airline a at the airport, the greater the number of total operations

of all airlines at the airport with congestion prices, the greater is the value of each

slot, the greater is the additional delay cost imposed by airline a on other users, and

consequently, the higher is the total congestion price paid by airline a. So we consider

T to be a function of
∑

s∈Sa fas and
∑

a′∈A
∑

s∈Sa′
fa′s. Note that this framework is

general enough and it still accounts for the possibility that T is a constant (a constant

function). The constraints (6.2) through (6.6) are same as those defined in Section

5.2 of Chapter 5.

maximize
∑
s∈Sa

(pasQas − Casfas)− ca ∗

(∑
s∈Sa

fas

)
∗D

∑
a′∈A

∑
s∈Sa′

fa′s


− T

∑
s∈Sa

fas,
∑
a′∈A

∑
s∈Sa′

fa′s

 (6.1)

subject to: Qas ≤
fas

αs∑
a′∈As fa′s

αs
Ms∀s ∈ Sa (6.2)

Qas ≤ LFmaxSasfas∀s ∈ Sa (6.3)∑
s∈Sa

fas ≤ Ua (6.4)

∑
s∈Sa

fas ≥ La (6.5)

fas ∈ Z+∀s ∈ Sa (6.6)

In this chapter, we present two types of experiments. In the first type of exper-

iments, we compute the impacts of continuously varying slot prices. In such exper-

iments we will assume flat prices, that is, an equal price per slot is charged to all

airlines. Under flat congestion prices, there is a constant price per slot paid by each

airline regardless of the total number of operations of that airline. We use cF to de-
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note the flat congestion price per slot. Then the total congestion price paid by airline

a is given by,

T (
∑
s∈Sa

fas,
∑
a′∈A

∑
s∈Sa′

fa′s) = cF
∑
s∈Sa

fas. (6.7)

In such experiments, we will need to compute the frequency decisions by all airlines

such that the frequencies of each airline are optimal with respect to the frequencies

of all the other airlines at that airport. We will compute one such competitive equi-

librium at each cF value. Let us denote these experiments as type I experiments.

On the other hand, in the second type of experiments, we will compute an equi-

librium between prices and demand. In such experiments, the marginal delay cost

imposed by each airline on other airlines equals the total congestion price paid by

that airline. Mathematically, at an equilibrium,

T (
∑
s∈Sa

fas,
∑
a′∈A

∑
s∈Sa′

fa′s) =
∑

a′∈A,a6=aca′ ∗
∑
s∈Sa′

fa′s

D
∑
a′′∈A

∑
s∈Sa′′

fa′′s

−D
 ∑
a′′∈A,a′′ 6=a

∑
s∈Sa′′

fa′′s

 . (6.8)

In such experiments, we will need to compute the frequency decisions by all airlines

such that the frequencies of each airline are optimal with respect to the frequencies

of all other airlines at that airport, as well as the corresponding prices T , that satisfy

equation (6.8). Thus the demand-price equilibrium involves equilibrium decisions by

all the airlines and by the airport administrator. Let us denote such experiments as

type II experiments.

In our discussion so far, we have assumed the delay model D (.) as a given. In the

next section, we describe our choice of delay model in detail.
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6.4 Flight Delay Model

Flight delays at a congested airport are dependent largely on the utilization ratio,

which is the ratio of flight demand to airport capacity. However, some part of flight

delay is independent of congestion at that airport. Such delays are due to other

effects such as propagated delays, delays due to mechanical failures, absence of crews

etc. Some prior studies have developed detailed queuing theoretic models of delays

as a function of the number of operations and solved them through simulation or

numerical methods [40, 41]. Such detailed simulation models are beyond the scope of

this research. We are interested in a simple delay function that captures the critical

queuing theoretic elements. Many existing studies have used simplified assumptions

for modeling delay as a function of utilization [30, 25, 80, 26]. Carlin and Park [30]

as well as Pels and Verhoef [80] assumed delays to be an increasing linear function

of the number of operations. A linear delay function is not very realistic given that

it is well known that delays increase with utilization and the rate of increase itself

increases very fast as the utilization ratio approaches 1.0. Brueckner [25, 26] assumed

the delay cost to be a general non-decreasing and convex function of the number of

airport operations. Zhang and Zhang suggested four standard conditions that a delay

function must satisfy. Morrison [65], and Zhang and Zhang [100] used delay functions

derived from steady-state queuing theory. The expression that we chose for the delay

function is given in equation (6.9), with ρ being the utilization ration, that is, the

ratio of the total number of scheduled operations to the airport capacity.

D = a
1

1− ρ
+ b (6.9)

Here, a and b are parameters of the model that have to be estimated using actual

delay data. This expression has a number of favorable properties. It is non-decreasing

and convex in the number of operations as assumed by Brueckner [25, 26]. Also it

satisfies all the four conditions specified by Zhang and Zhang [100]. The functional

form is somewhat different from the one used by Morrison [65], and Zhang and Zhang
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[100]. We considered using the exact functional form used by these two studies, but

decided in favor of the chosen form because it gave a much better fit to the empirical

delay data, as shown in Section 6.7.

6.5 Solution Algorithm

The solution algorithm used to solve the congestion pricing equilibrium problem builds

on the myopic best response algorithm described in Sub-section 5.3.1. The solution

algorithm used to obtain a solution to the Type I experiments is described in Sub-

section 6.5.1 and that for the Type II experiments is described in Sub-section 6.5.2.

In fact, the algorithm to obtain the solution for the type I experiments serves as

a component, which is run multiple times, to obtain the solution for the type II

experiments.

6.5.1 Solution Algorithm for Type I Experiments

For a given value of flat prices cF , the total congestion price paid by an airline depends

only on the total number of operations of that airline. Therefore, for a given level

of average flight delay D, the objective function of each airline is the same as the

objective function given by 5.1 in Chapter 5 except that the operating cost per flight,

cas is now replaced by cas+cF +ca ∗D. Therefore the problem of computing the Nash

equilibrium solution is the same as the problem presented in Section 5.2 of Chapter

5, for a given level of average flight delay D and for given flat prices dF per slot.

However, the added complication comes from the fact that the average flight delay

itself is an increasing function of the total number of flight operations. Thus the

equilibrium frequencies affect the average flight delay and average flight delay affects

the equilibrium frequencies. In order to solve this problem iteratively, we employ an

algorithm similar to that presented in Section 5.3, but we update the average flight

delay after each iteration of the best response heuristic. The algorithm ends when

1) the flight frequency of each airline on each segment is optimal with respect to the

frequency of competing airlines for the given level of average flight delays, and 2) the
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change in the number of operations from iteration to iteration is within a pre-defined

tolerance level.

Module I presented below is implemented to obtain solutions to all type I experi-

ments. fa = [fas]s∈Sa is the vector of frequencies for carrier a and f−a = [fa′ ]a′∈A,a′ 6=a is

the vector formed by concatenating the frequency vectors of all competitors of airline

a. So the set of frequencies of all airlines can be compactly denoted as f = (fa, f−a).

The average flight delay is updated using moving averages so as to smooth any sharp

fluctuations in the value of the sum of flight frequencies from iteration to iteration.

We use Õ to denote the moving average estimate of the total number of operations

at the airport. Õ is used to compute the average flight delay after each iteration.

We use, for each airline a, the vector of actual frequency values f 0
a = [f 0

as]s∈Sa as

the starting values of the flight frequencies for the best response algorithm. Also, we

assume Õ =
∑

s∈S
∑

a∈As f
0
as at the starting point. We set the tolerance level ε1 = 0.5.

Module I

while (there exists a carrier a for whom fa is not a best response to f−a)

or

(
|Õ−

(∑
s∈S

∑
a∈As

fas

)
| ≥ ε1

)
do

f ′a ← some best response by a to f−a

f ← (f ′a, fa)

Õ←

((∑
s∈S

∑
a∈As

fas

)
+ Õ

)
/2

return

6.5.2 Solution Algorithm for Type II Experiments

Module I, as described above, is used for obtaining a solution to all the type I exper-

iments ; and as a component for obtaining solutions to all the type II experiments.

At a solution to a marginal cost pricing (type II ) experiment, all the conditions
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mentioned in the type I experiment must be satisfied. Additionally, the total conges-

tion price paid by each airline must equal the delay cost imposed by that airline on

all the other airlines operating at the airport. For a given level of congestion prices,

module I produces a set of flight frequencies such that the each airline’s frequencies

are optimal with respect to the frequencies of all other airlines and the average flight

delay. However, the flight frequencies produced by a module I solution might lead to

a different set of values of marginal delay costs imposed by each airline on the other

airlines. Thus, the module I solution affects the congestion prices and the congestion

prices affect the module I solution. Therefore, we solve this problem by an outer

iterative algorithm, where we update the estimates of the total number of operations

by each airline after every run of module I. The algorithm ends when the change in

the number of operations from iteration to iteration is within a pre-defined tolerance

level.

The full algorithm for obtaining solutions to all the type II experiments, is pre-

sented below. Updates are performed using moving averages so as to smooth large

jumps in the congestion prices from iteration to iteration. We use Ôa to denote the

moving average estimate of the total number of operations of airline a at the airport.

We assume Ôa =
∑

s∈Sa f
0
as∀a ∈ A at the starting point. We set the tolerance level

ε2 = 0.1.

Module II

while ∃a ∈ A such that |Ôa −

(∑
s∈Sa

fas

)
| ≥ ε2 do

Run Module I

Ôa ←

((∑
s∈Sa

fas

)
+ Ôa

)
/2 ∀a ∈ A

return
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6.6 Experimental Setup and Data Sources

We build a mathematical framework for evaluating the impacts of congestion pricing

mechanisms on the various stakeholders, while explicitly modeling the competition

between airlines. Using this framework, we generate insights into the extent to which

the effectiveness of congestion pricing mechanisms depends on the various character-

istics of the airline markets. In order to allow extensive analysis of the relationships

between congestion pricing and the market characteristics, we opt for a simple exper-

imental setup consisting of 3 airports and up to 5 airlines. We will denote the airport

which is under consideration for the implementation of a congestion pricing mecha-

nism as AP0. In order to have balanced operations, on average, an airline operates

approximately the same number of flights per day in both directions on a segment.

Therefore, in our experiments we focus on only the flights arriving at AP0 and not on

those departing from AP0. Our setup includes two more airports, namely, AP1 and

AP2. As mentioned before, our model assumes segment-based demand. Therefore,

we assume that passengers demand non-stop service from AP1 to AP0 and from AP2

to AP0. Thus we have AP1 to AP0 and AP2 to AP0 as the two markets under

consideration. Our experiments consist of two airlines, denoted as AL1 and AL2,

operating in each of these two markets.

Our experiments are loosely based on data from two big markets into LaGuardia

(LGA) airport at New York, namely, Logan (BOS) airport to LaGuardia (LGA) and

Reagan (DCA) airport to LaGuardia (LGA). Furthermore, the data is loosely based

on two major airlines, namely, Delta Airlines (DL) and US Airways (US) operating

in each of these two markets. We obtained data on average fares, seating capacities,

operating costs and passenger flows through the Bureau of Transportation Statistics

(BTS) website. We obtained the average fares from the DB1B Market database [73].

We retrieved the operating cost values from the Form 41 financial data reported by

the airlines in Schedules P-5.2, and Schedule P-7 [74, 76]. Aircraft seating capacities

and passenger flows were obtained from the T100 Segment database [75]. Actual flight

frequencies were obtained from the ASQP database [72]. The airport capacities for
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estimation of the delay model were obtained from the FAA’s airport capacity bench-

mark report [44]. All the data used in our computational experiments corresponds to

the 1st quarter of 2008.

In order to generate broader insights into the effectiveness of congestion pricing

mechanisms, we varied important characteristics of our markets (e.g. sensitivity of

the passengers to frequency, average fares, number of competitors in the markets, etc.)

and tested their impacts on the effectiveness of the congestion pricing mechanism.

6.7 Delay Function Fitting

As mentioned in Section 6.4, the delay function represents the relationship between

airport utilization and average delays to flights. To model this relationship, we used

data including average flight delays, number of operations and the expected values of

airport capacities from 34 major airports in the continental US. We tried a variety of

functional forms and selected the one described by equation (6.9), because of its fit

and intuitive appeal based on its similarity with queuing theoretic results.

As mentioned in Section 6.6, the expected values of airport capacities were ob-

tained from the FAA’s airport capacity benchmark report [44]. The number of air-

port operations is obtained from the Aviation System Performance Metrics (ASPM)

database maintained by the FAA [3]. The average utilization rate for each airport

is calculated as the ratio of the average total number of operations (takeoffs and

landings) that took place at that airport in the 18-hour time period from 6:00 am to

midnight across all days of the 1st quarter of 2008, to the product of the expected

value of hourly capacity of that airport (as given by the benchmark report) and 18.

The average flight delay is computed as the average of delays to all the flights of the

ASQP-reporting airlines landing and taking off from that airport during the 18-hour

time period, from 6:00 am to midnight across all days of the 1st quarter of 2008.

Parameters a and b are estimated by using simple linear regression with average

flight delays as the dependent variable and 1
1−ρ as the independent variable. Figure

6-1 shows the regression data and model fit. The regression analysis gave a strong
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Figure 6-1: Estimation of delay function parameters using linear regression
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goodness of fit, with an R2 value of 53.37%. We will use this delay function extensively

in our experiments described in Section 6.8 for calculating: 1) average flight delays;

and 2) the marginal delay cost imposed by any one airline on others at the airport.

6.8 Numerical Results

Using the experimental setup described in Section 6.6, we conducted a series of com-

putational experiments, some involving flat pricing of slots and others involving com-

putation of a marginal cost pricing equilibrium. In Sub-section 6.8.1, we present the

flat pricing results and in Sub-section 6.8.2, we present the marginal cost pricing

equilibrium results.

6.8.1 Flat Pricing Results

Experiment 1: Administrative controls and zero slot prices

Let us first analyze the base case scenario where we assume that the slots at AP0

airport are restricted under administrative slot controls and no congestion pricing

mechanism has been implemented. In particular, we assume that the upper (Ua)

and the lower (La) bound on the total number of slots available to an airline are

equal, and there is no congestion price being charged to the airlines. Mathematically,

Ua = La and T = 0,∀a ∈ A. In our experiment, the total number of flights operated

by AL1 to AP0 from either AP1 or AP2 is 30 and that for AL2 it is 32. So the only

decision to be taken by each airline is how to distribute the available slots across the

two markets. For this base case, we assume AP1-AP0 and AP2-AP0 to be short-

haul, business-intensive markets, similar to BOS-LGA and DCA-LGA. Therefore, we

assume that the S-curve parameter α takes on a value of 1.5.

In Table 6.1, the frequency predictions based on the output of our solution algo-

rithm are given in column titled Model Frequency.
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Table 6.1: Model results for the base case

Market Carrier Avg. Model Seats/ Passe Operating Revenue Profit
Fare Freq. Flight ngers Cost ($) ($) ($)

AP1 AL1 161 15 134 726 110,813 116,886 6,073
AP1 AL2 163 16 124 797 110,984 129,911 18,927
AP2 AL1 152 15 134 741 110,269 112,632 2,363
AP2 AL2 160 16 124 813 108,747 130,080 21,333

Experiment 2: No administrative controls and zero slot prices

In this experiment, we assume that there are neither any administrative slot controls

nor any slot prices. Mathematically, Ua = ∞, La = 0, and T = 0, ∀a ∈ A. We

find that the model predictions in this experiment match the frequencies predicted

in the previous experiment exactly. Both of these are represented in Table 6.1. The

results presented in Table 6.1 will be referred to as the base case and will be used as a

reference point for our remaining experiments, all of which involve congestion prices.

In Section 4.7 of Chapter 4, we proved that the level of congestion introduced by

airline competition is an increasing function of three factors, namely, 1) the S-curve

parameter α (which is nothing but the sensitivity of passenger demand to frequency),

2) the market’s gross profit margin (the ratio of average fare to operating cost per

seat), 3) the number of competitors. The higher the value of any of these three

factors, the greater is the incentive for the airlines to schedule more frequent flights,

and hence the greater the adverse impact of competition on congestion. In the absence

of congestion prices, airline competition leads to congestion. Thus, it is reasonable

to expect that the success of a congestion pricing mechanism depends directly on

the extent to which the congestion prices can discourage the airlines from scheduling

frequent flights. Therefore, each of these three factors is expected to play a critical

role in determining the success of a congestion pricing mechanism. In each of the next

three experiments, we analyze the impact of one of these three factors. In particular,

in order to analyze the impact of gross profit margin (which is the ratio of average

fare to operating cost per seat), we will vary the average fares.

In the next three experiments, we evaluate the impacts of varying the slot prices
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assuming a flat pricing scheme. Obviously, an exceedingly high value of congestion

price per slot would result in airlines no longer being able to operate flights profitably.

So in each case we make sure that we do not reach such high levels of congestion prices

per slot.

Experiment 3: Effect of sensitivity of passenger demand to frequency

As mentioned earlier, an airline provides more frequency in a market to attract a

higher share of the market. The extent to which the distribution of market share

is affected by frequencies is what we call the sensitivity of passenger demand to

frequency. In our S-curve model (as shown in equation 6.1), sensitivity of passengers

to frequency is represented by parameter α. In the base case, we assumed α = 1.5.

In this experiment, we vary the congestion price per slot and evaluate the impacts on

three important system performance metrics, namely, demand for airport operations,

total delay cost to passengers and total operating profits of the airlines for six different

values (1.5, 1.4, 1.3, 1.2, 1.1, and 1.0) of parameter α.

Figures 6-2, 6-3 and 6-4 show the variation in these three performance metrics with

increasing slot prices for different α values. The flat slot price in $/slot is on the x-

axis. In Figures 6-2 and 6-3, y-axis shows the normalized value of demand for airport

operations and total delay costs to the passengers respectively. The normalization

is performed such that the value for zero slot prices equals 100. Figure 6-4 has the

change in operating profit margin percentage for the airlines on the y-axis. Operating

profit margin percentage is defined as the ratio of total operating profit earned by

both airlines in both markets to total fare revenue generated by both airlines in both

markets.

Each line in each of these three figures corresponds to a different value of α. The

plots are not smooth because of the integrality constraints on the number of flights in

each market. Each time the slot price exceeds a certain threshold value, it abruptly

becomes unprofitable to operate the last flight being operated by an airline. So the

demand drops in a lumpy fashion, resulting in non-smooth trends in the performance

metrics. Therefore, rather than looking at any single slot price for comparison across

235



Figure 6-2: Demand for airport operations as a function of slot prices for different
values of α

different α values, we base our conclusions on the overall trends that can be observed

from Figures 6-2, 6-3 and 6-4.

As shown in Figure 6-2, with an increase in slot price, the total demand for airport

operations falls and consequently, the total passenger delay cost decreases, both of

which are intuitively reasonable. The impact of increasing slot prices on change

in operating profit margin percentage is more complicated. Due to increasing slot

prices, the airlines are incentivized to reduce their flight frequency, thus increasing

load factors. Therefore, the airlines benefit from lower operating costs, as well as from

a reduction in flight delay costs. Depending on whether these benefits partially or

fully offset the total congestion price paid by the airlines, the airline profits increase

or decrease as a result of congestion prices.

For a given slot price, the total demand for airport slots increases with an increase

in α value. At higher values of α, passengers are more sensitive to frequency, which

means that for a given level of slot price, airlines’ demand larger numbers of slots. As

a result, for a given slot price, the higher the α value, the greater is the slot demand
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and the larger is the total delay costs to the passengers. Also, because airlines are

comparatively more reluctant to reduce flight frequency at a higher α value, airline

profits are lower at higher α. Thus, the curvature of the S-curve (α) plays a crucial role

in determining the effectiveness of slot prices. At high values of α, slot prices result

in very little reduction in demand and delays and a significant reduction in airline

profits. However, at lower α values, airline profits increase under congestion pricing,

due to a significant reduction in operating costs and in delay costs. Furthermore,

a greater reduction in passenger delays opens up the possibility of some increase in

average fares. The airlines could monetize a part of the passengers’ gains through

increased fares, resulting in further increases in airline profits.

As shown in Figure 6-4, for flat pricing in the absence of average fare increases,

operating profits are decreasing with increasing slot prices for α values of 1.5, 1.4,

1.3, and 1.2. For α values of 1.1 and 1.0, there is a slight increase in operating profits

in some cases. But the operating profit increase is never more than 1% or 2% across

different values of α and across different values of slot prices. In Sub-section 6.8.2,

however, we show that under marginal cost pricing, airline profits could actually

increase with congestion pricing even under the constant average fares assumption.

An important reason for this difference is the fact that marginal cost pricing explicitly

accounts for the non-atomistic nature of the airport congestion pricing problem. We

look at this phenomenon in more details in Sub-section 6.8.2.

Experiment 4: Effect of average fare

Apart from the sensitivity of passenger demand to frequency, the ratio of average fare

to operating cost per seat (which we term as gross profit margin or GPM) determines

the effectiveness of congestion pricing. Markets with high GPM are the markets where

fares are relatively high compared to the operating costs, which indicates that the

passengers are willing to pay more for a given travel distance.

For markets with higher GPM, the passengers are also more valuable to the air-

lines, as they provide more revenue compared to operating cost per seat. So the

airlines have an even greater incentive to acquire more market share and hence, are
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Figure 6-3: Passenger delay costs as a function of slot prices for different values of α

Figure 6-4: Total operating profits of the airlines as a function of slot prices for
different values of α
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more reluctant to give up market share by decreasing the number of flights even under

congestion pricing. This hypothesis is confirmed by the trends shown in Figures 6-5

and 6-6. In these two figures (as well as in Figure 6-7), we vary the price per slot (on

the x-axis) and plot the corresponding variation in the respective performance metric

on the y-axis. The entities on the y-axis in Figures 6-5, 6-6 and 6-7 are the same as

those for Figures 6-2, 6-3 and 6-4 respectively. We vary the average fare (thus varying

the GPM) on each segment from -20% to +30% of the base case value in increments

of 10% each. There are 6 lines in each of these three figures, one line corresponding

to each value of GPM.

For Figures 6-5, 6-6, and 6-7, we assume α = 1.3, and hold the operating cost

and flight seating capacities equal to those in the base case for each segment for each

airline. For this experiment, we considered the possibility of using the base case value

of α = 1.5, but decided against it because of the following issues. In this experiment,

we vary the average fares above and below the base case values. For a high alpha

value (such as 1.4 or 1.5) and for a low average fare value, (such as 0.8 times the base

case fare), the combination of low fares and extreme sensitivity of passenger demand

to frequency, makes it impossible for the airlines to continue operating profitably even

at moderately high congestion price per slot, resulting in discontinuation of service.

So the range of slot prices under consideration gets reduced. Therefore, in order to

improve the expository power of our analysis and the following discussion, we decided

in favor of using an α value of 1.3 instead of 1.5 for this particular experiment.

As expected, at a given slot price, there is a smaller decrease in airport slot

demand and in passenger delay costs for a higher value of GPM than for a lower

value of GPM. Also, at a higher value of GPM, a given slot price yields a smaller

reduction in flight frequencies, thus leading to a smaller increase (or greater decrease)

in operating profits. By the same reasoning as given in the explanation of results

from the previous experiment, airline operating profits could be higher if airlines are

able to monetize a part of the passengers’ gain (in terms of lower passenger delay

costs) resulting from congestion prices through increased fares. In the absence of

such fare increases, Figure 6-7 shows that the airline profits decrease (or increase by
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Figure 6-5: Demand for airport operations as a function of slot prices for different
fare levels

less than 2%) across all slot price levels and across all the 6 levels of GPM considered

here. However, as shown in Sub-section 6.8.2, we find that the profit increases under

a marginal cost pricing equilibrium compared to that without congestion pricing. We

explain this phenomenon in detail in Sub-section 6.8.2.

Experiment 5: Effect of the number of competitors

As shown in Section 4.7 of Chapter 4, apart from the sensitivity of passenger demand

to frequency (α) and the gross profit margin (GPM), the number of competing airlines

in a market also affects the extent of congestion introduced by competition. However,

the effect of the number of competitors on the extent of congestion is not as strong

as that of α or GPM. Figures 6-8, 6-9, and 6-10 show the impact of variation of

the congestion price per slot on the demand for airport operations, total passenger

delay costs, and the total operating profits to the airlines for different numbers of

competitors. The congestion price per slot is on the x-axis. The entities on the y-

axes of Figures 6-8, 6-9, and 6-10 are the same as those for Figures 6-2, 6-3 and 6-4
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Figure 6-6: Passenger delay costs as a function of slot prices for different fare levels

Figure 6-7: Total operating profits of the airlines as a function of slot prices for
different fare levels
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respectively.

As shown in Section 4.7, for a symmetric game, the maximum number of com-

petitors which can have a non-zero frequency at a Nash equilibrium, cannot exceed

α
α−1

. Extending the same intuition to asymmetric games, we conclude that at higher

values of α, the maximum number of competitors with non-zero frequencies at a Nash

equilibrium will be low. We considered different values of α for this computational ex-

periment and the computational results confirmed our intuition. In this experiment,

we vary the number of competitors up to 5 and hence we need to use a lower value

of α for enhancing the expository power of our analyses. So we decided in favor of

using α = 1.0 for this experiment. The operating cost, average fare and the seating

capacities used for this experiment were the same as those for the base case on each

segment operated by AL1 and AL2.

We vary the number of competitors from 2 to 5. For the 3-, 4-, and 5-competitor

cases, we assume that respectively 1, 2, and 3 additional competitors compete with

AL1 and AL2 in each market. All additional competing airlines are assumed to have

average fares, seating capacities and operating costs on each segment equal to the

average values for DL and US on that respective segment.

We proved, in Section 4.7, that the price of anarchy for the airline frequency com-

petition game, is given by α ∗ ps
C
∗ n−1

n
where n is the largest integer not exceeding

min
(
N, α

α−1

)
. Here, N is the number of competing airlines. Thus, the level of conges-

tion introduced by competition (given by α∗GPM∗ N−1
N

assuming N < α
α−1

) increases

1) linearly with α, 2) linearly with GPM, but 3) slower than linearly with the number

of competitors (N). The trends in Figures 6-8, 6-9, and 6-10 are consistent with these

earlier results from Section 4.7.

For any given slot price, the effect of the number of competitors on the demand for

airport operations and the passenger delay costs is not as high as that of α or GPM.

But the reduction in demand for airport operations and the reduction in passenger

delay costs does decrease with an increase in the number of competitors for the same

slot prices. As shown in Figure 6-10, the effect of the number of competitors on airline

profit is more obvious. As the number of competing airlines increases, the operating
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Figure 6-8: Demand for airport operations as a function of slot prices for different
number of competitors

profit margin decreases, for the same slot prices.

Partial monetization of passenger delay reduction gains through increases in aver-

age fares can increase airline profits beyond the values shown in Figure 6-10. However,

assuming constant average fares, we observe that the airlines’ operating profits de-

crease with increasing flat slot prices, just as we observed in Experiment 3 and 4. We

will contrast these results with those in Sub-section 6.8.2.

6.8.2 Marginal Cost Pricing Results

Experiment 6: Marginal cost pricing equilibrium

In Experiments 3, 4, and 5, we assumed flat prices per slot across different airlines,

and analyzed the impacts on three different performance metrics. According to the

microeconomic theory, social welfare is maximized if each user of a public resource,

such as airport capacity, pays exactly the marginal cost imposed by that user on the

remaining users [97, 62]. However, in the airport congestion pricing literature, such
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Figure 6-9: Passenger delay costs as a function of slot prices for different number of
competitors

Figure 6-10: Total operating profits of the airlines as a function of slot prices for
different number of competitors
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as Daniel [40, 41], Brueckner [25, 26], Pels and Verhoef [80] etc., it is recognized that

airlines being non-atomistic users of the airport resources, internalize a part of the

airport congestion cost and in order to achieve the social optimal, each user must be

charged a congestion toll which may be different across users. In this experiment, we

compute the marginal cost pricing equilibrium and evaluate the various performance

metrics at the point of equilibrium, where the marginal delay cost imposed by each

user on all other users equals the congestion price paid by that user.

Table 6.2: Marginal cost pricing equilibrium results (Experiment 6)

Case % Change in % Change in Change in Operating Profit Margin

Number of Passenger Due to Due to Due to Overall
Operations Delay Costs Tolls Delays Op. Cost

6a

α = 1.0 -10.64% -16.67% -2.58% 2.25% 4.69% 4.35%
α = 1.1 -9.80% -15.90% -2.97% 2.36% 4.69% 4.08%
α = 1.2 -9.26% -15.22% -3.23% 2.40% 4.86% 4.02%
α = 1.3 -8.62% -14.44% -3.61% 2.45% 4.86% 3.70%
α = 1.4 -8.33% -14.14% -3.81% 2.50% 4.89% 3.58%
α = 1.5 -6.45% -11.61% -4.42% 2.15% 4.09% 1.82%

6b

0.8*Base Fare -10.64% -16.67% -3.23% 2.81% 5.86% 5.44%
0.9*Base Fare -9.62% -15.56% -3.37% 2.61% 5.43% 4.67%
1.0*Base Fare -8.62% -14.44% -3.61% 2.45% 4.86% 3.70%
1.1*Base Fare -6.56% -11.84% -3.94% 1.97% 3.68% 1.71%
1.2*Base Fare -6.25% -11.37% -3.87% 1.82% 3.40% 1.35%
1.3*Base Fare -5.97% -10.93% -3.46% 1.69% 2.78% 1.01%

6c

2 Competitors -10.64% -16.67% -2.58% 2.25% 4.69% 4.35%
3 Competitors -11.48% -17.67% -5.26% 3.08% 6.59% 4.41%
4 Competitors -11.76% -18.01% -7.30% 3.50% 7.34% 3.53%
5 Competitors -12.50% -18.70% -8.42% 3.82% 8.36% 3.76%

Table 6.2 summarizes the results from this experiment. We conduct three Sub-

experiments (6a, 6b, and 6c), one each for understanding the impacts of variation

in α, GPM, and the number of competitors, on the effectiveness of marginal cost

congestion pricing. The first column provides the Sub-experiment designation, while

the second column describes the exact case including the entity being varied in each

Sub-experiment. The next two columns list the percentage change in the number of
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operations and in the passenger delay costs respectively. All changes are reported with

respect to the zero price case. The next three columns describe the change in operating

profit margin due to each cause. The main three causes of change in profit margin are

the congestion tolls paid by the airlines (which reduces the profit margin), a reduction

in delay costs (which increases the profit margin) and a reduction in operating costs

due to a reduction in the number of flights operated (which also increases the profit

margin). The last column reports the overall change in operating profit margin. All

the changes in operating profit margin are computed as a percentage of total fare

revenue. For example, for the first row of Sub-experiment 6a, the marginal cost

equilibrium reduces the total demand for airport operations by 10.64%, reduces the

total passenger delay cost by 16.67% and results in a 4.35% increase in the operating

profit margin for the airlines. Out of this 4.35% increase, 2.25% is due to a reduction

in delay costs to the airlines, 4.69% is due to an operating cost reduction due to fewer

flights, while the congestion tolls paid by the airlines reduce the profit margin by

2.58%.

In sub-experiment 6a, we vary the α value between 1.0 and 1.5. As the α value de-

creases, a greater percentage reduction is achieved in the number of operations as well

as in the passenger delay costs at equilibrium. Furthermore, percentage improvement

in airline profits at equilibrium is also greater at lower values of α. Thus, congestion

pricing can be greatly beneficial in markets with lower sensitivity of demand to fre-

quency. These results are consistent with the results from Experiment 3. Reduction

in the number of operations, reduction in the passenger delays and increase in airline

profits, are all greater at lower values α.

In Sub-experiment 6b, we vary the average fares between 0.8 times to 1.3 times

the base fares. Just as in Experiment 4, we assumed α = 1.3 for this Sub-experiment

and used the operating costs and seating capacities equal to those in the base case

experiment. Intuitively, in markets with a higher ratio of average fare to operating

cost per seat, airlines continue to find it profitable to operate high frequency service

even if it means paying congestion prices. Loosely speaking, in such markets, an

airline’s monetary gains from additional flights are more than the marginal delay cost
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they impose on other users. Thus, congestion pricing has a more positive effect in

markets where the ratio of average fare to operating cost per seat is lower rather than

higher. These results are consistent with our flat-price results in Experiment 4.

In Sub-experiment 6c, we vary the number of competing airlines from 2 to 5.

We assumed α = 1.0, just as we did in Experiment 5. The average fares, operating

costs and seating capacities are assumed to be those in the base case experiment. As

shown in Chapter 4, the extent of congestion introduced by competition increases

with an increase in the number of competitors, but the increase is slower than linear.

Consequently, as shown in Experiment 5, for a given slot price, reduction in airport

operations, reduction in passenger delays, and increase in airline profits are all greater

for a smaller number of competitors. But the effect is not as strong as the effect

of sensitivity of demand to frequency or that of gross profit margin (as shown in

Experiments 3 and 4, respectively). But as shown in Table 6.2, with increases in the

number of competitors, the percentage reduction in operations and the percentage

reduction in delays increase while the increase in operating profit margin shows no

clear trend.

On the face of it, the results in this Sub-experiment appear to be inconsistent

with those in Experiment 5, but the disparity can be easily explained by noting that

these results are for a marginal cost pricing equilibrium, while those in Experiment

5 are for a given level of slot prices. As the number of competitors increases, the

marginal delay cost imposed by each airline on all other airlines also increases, which

in turn increases the slot prices under marginal cost pricing, leading to a greater

reduction in operations and delays. Thus, for greater number of competitors, the

airlines benefit more from reduction in operating costs and delays, but at the same

time have to pay higher slot prices. Thus, the net effect of an increase in the number

of competitors on the operating profit margin is complicated and no clear trend is

observed. This phenomenon cannot be observed under the flat pricing regime (in

Experiment 5), leading to the apparent inconsistency between results in Experiment

5 and in Sub-experiment 6c.

Beyond these factors affecting the effectiveness of congestion prices, results pre-
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sented in Table 6.2 show airline profit increases due to marginal cost pricing, while the

results from the flat pricing experiments (Experiments 3, 4, and 5) show the operating

profits to be either decreasing, or very modestly increasing with congestion prices in

most cases. This is another interesting manifestation of the difference between flat

prices and marginal cost prices. Under marginal cost pricing, an airline has to pay a

congestion price equal to the cost of the increase in delays to other airlines because

of the operations of that airline. Therefore, the incremental price of a marginal slot

to an airline is often substantially greater than the average price being paid by each

airline. So under marginal cost pricing, the additional price of an extra operation

becomes prohibitively high at a level of demand where the actual average congestion

price per slot being paid by the airlines is still relatively low. The result is that air-

lines are discouraged from adding extra flight frequencies even though they continue

to pay a relatively small congestion price per slot for the flights they operate. In this

way, marginal cost pricing can discourage airlines form increasing airport operations

without penalizing them with an exceedingly high congestion price per slot, leading

to a lower level of congestion and higher profits for the airlines. This is a ramification

of the fact that some of the delay is internalized by the airlines.

Consider a concrete example of the phenomenon described above. Specifically,

consider the case in the sixth row below the header row of Table 6.2 where α = 1.5,

AL1 and AL2 are the only two competitors, and the average fares, operating costs

and seating capacities are the same as those in the base case. Under the marginal cost

pricing equilibrium, the total number of operations is reduced by 6.45% (from 62 to

58) and passenger delay costs are reduced by 11.61%. At equilibrium, the price of each

additional slot is approximately $1046, averaged across the two airlines ($1118/slot

for AL1 and $974/slot for AL2). However, the average congestion price being paid

by the airlines is approximately $367. As a result, the total operating profit margin

increases by 1.82% compared to the base case. Under flat pricing case, in order to

achieve the same 6.45% reduction in operations, the marginal as well as the average

congestion price paid by the airlines equals $900 per slot. As a result, the total

operating profit margin decreases by 4.43%. Alternatively, at a flat congestion price
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of $367 per slot, airline operations are reduced only by 3.23%, resulting in passenger

delay cost reductions of just 6.54%, and a 1.12% decrease in total operating profit

margin of the airlines.

It is important to note that these results are for a relatively small number of

airlines at the airport; 2 in most experiments and 3, 4, or 5 in the remaining ex-

periments. Thus the large differences between flat pricing and marginal cost pricing

results obtained in our experiments, are partly owing to the small number of airlines,

which internalize a large part of the delays. It should be noted that for airports with

many airlines each contributing a smaller part of the operations at that airport, the

difference between the flat and marginal cost pricing results is expected to be lower.

Finally, it must be noted that a large proportion of the congestion pricing benefits

to the airlines come from a reduction in operating costs because of operating a smaller

number of flights. In fact, in many cases in the Table 6.2, the benefits due to delay

reduction are more than compensated by the congestion tolls. Hence operating cost

reduction due to a smaller number of flights is a prime reason behind the profit

increases.

6.9 Summary

Congestion pricing has already been implemented in practice fairly widely for con-

gestion reduction in other contexts, such as roadway infrastructure, which involve a

large number of individual users such that 1) each user uses only a small portion of

the capacity of the public resource (atomistic users), and 2) the users do not directly

compete with each other (non-competing users). The former point implies that the

users of such resources internalize a negligibly small part of the delay costs and the

latter point implies that beyond the congestion costs that the users impose on each

other, the value derived by the users through their usage of the public resource does

not depend on the usage by other users. Either of these points is not true for the

utilization of airport resources by airlines. In order to understand the impacts of

airport congestion pricing, it is critical to model the airline frequency competition
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and the partial internalization of delay costs imposed by an airline. In this chapter,

we model airline frequency competition under congestion prices and investigate the

differences between the atomistic and non-atomistic pricing. We identify a variety of

characteristics of airline markets that critically determine the effectiveness of airport

congestion pricing mechanisms.

Our model of frequency competition under slot pricing is an extension of the

models developed in Chapters 4 and 5, which in turn are consistent with a popular

characterization of the relationship between market share and frequency share. In

this chapter, we developed and used an efficient algorithm that iteratively solves the

problem of equilibrium computation under congestion pricing.

Our results showed that the frequency sensitivity of passenger demand (or the

exponent in the S-curve relationship), a measure of the gross profit margin (or the

ratio of average fare to operating cost per seat), and the number of competitors in

a market, critically affect the effectiveness of a congestion pricing mechanism. As

expected, slot prices reduce congestion by reducing the number of operations at the

airport. But the impact of slot prices on airlines’ operating profit margin is not that

straightforward. Airlines benefit from reduction in operating costs because of fewer

flights and higher load factors, and also benefit from the delay cost reduction. The

net impact of airline profit margin depends on whether these benefits are sufficient

to offset the slot prices paid by the airlines.

While flat pricing has the advantage of being comparatively easier to understand

and implement, we found that the marginal cost pricing (non-atomistic pricing) is

more effective in reducing congestion without penalizing the airlines with exceedingly

high congestion toll payments. Marginal cost pricing discourages the airlines from

scheduling additional operations through high incremental price for an additional

slot, while keeping the average price for the purchased slots relatively low. On the

other hand, for flat pricing, the incremental and average congestion prices are equal

by definition. As a result, compared to flat pricing, marginal cost pricing results

in higher operating profit margins for the airlines for the same level of congestion

reduction. However, it must be noted that these differences between flat and marginal
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cost pricing paradigms were amplified because our example network involved a small

number of airlines.

The main aim of this research was to develop a model of congestion pricing under

airline frequency competition and to generate insights into the critical factors that

affect the effectiveness of a congestion pricing mechanism. But it must be noted

that our research in this chapter was conducted for a small hypothetical network,

consisting of 2 markets and 2, 3, 4 or 5 airlines. In order to fully quantify the effects

of congestion pricing, it is necessary to develop a full-scale case study of a congested

airport. Furthermore, we made a number of assumptions including a segment-based

demand, constant average fares and constant aircraft sizes. In order to conduct a

full investigation of the impacts of congestion pricing, the extent of validity of these

assumptions needs to be assessed and the effects of relaxing these assumptions need

to be quantified.

Although, this evidence based on a small hypothetical network is insufficient to

conclude whether the net effect of congestion pricing on airline profits will be positive

or negative, the results clearly show that appropriately capturing the variation in

number of passengers per flight could have a decisive impact on the answer to this

vital question. Therefore, an interesting followup study would be a more detailed

experiment with a much larger real dataset. Our results and insights based on a small

network provide sufficient motivation for a full-fledged analysis of airline frequency

competition under congestion pricing, and the models and algorithms developed by

us in this research will serve as useful tools for this followup analysis.
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Chapter 7

Conclusions and Recent Events

In this thesis, we modeled the interactions between the various decision-makers in

the National Aviation System (NAS) of the United States as a system of multiple

autonomous agents. We evaluated the dynamics between competition and congestion

in the NAS from the perspectives of these different agents and proposed measures

for congestion mitigation that are beneficial to these various stakeholders. In this

chapter, we discuss the main conclusions of our study especially in the context of

recent events in the US airline industry. Section 7.1 focuses on our main conclusions

and contributions in each chapter of this thesis. These conclusions are based on our

theoretical as well as computational analyses. All computational results are based

on data either from the year 2007 or from the early part of year 2008. Section

7.2 discusses some of the more recent changes in the US airline industry, and the

applicability and validation of our conclusions in the context of these changes.

7.1 Conclusions and Contributions

Scheduling and operational decisions by airlines require them to balance the often-

conflicting objectives of minimizing the cost of operating their schedules and maximiz-

ing their attractiveness to the passengers relative to the attractiveness of their com-

petitors’ schedules. We found that airline competition is an important determinant

of the level of congestion and this relationship between competition and congestion
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critically affects the level of efficiency in the NAS, the level-of-service experienced by

the passengers and the profits earned by the airlines. Furthermore, accurate under-

standing and modeling of this relationship is vital for evaluating the impacts of any

congestion mitigation strategy on the different stakeholders of the system.

The major contributions of this thesis can be divided into two broad categories.

In Chapters 2, 3, and 4 we evaluate the impacts of competition and congestion from

the perspectives of three major groups of stakeholders, and in Chapters 5 and 6, we

propose and assess mechanisms for congestion mitigation that are beneficial for the

different stakeholders.

In the next 5 sub-sections, we summarize the main conclusions and contributions

of each chapter, from Chapter 2 through 6, sequentially.

7.1.1 Chapter 2: Minimization of System-wide Delays in the

Absence of Competition

Efficiency is one of the most important objectives from the perspectives of the system

operators. In Chapter 2, we measure the extent to which airport capacity in the US

domestic air transportation network is being inefficiently utilized because of airlines’

competitive scheduling practices. By comparing the delays in a hypothetical network

of a single, delay-minimizing airline with the delays in the existing network of multi-

ple, competing, profit-maximizing airlines, we demonstrated that airline competition

introduces a large degree of inefficiency in NAS resource utilization. Delays could be

substantially lower in the absence of airline competition. Obviously, getting rid of

(or even reducing the extent of) competition between airlines is a highly unrealistic

strategy in the real world. It is also not the point of the research presented in this

chapter. However, these results show that there is a significant room for improve-

ment in the level of congestion even with the existing airport infrastructure. Given the

available capacity, efficient administrative controls and/or market-based mechanisms

can potentially lead to substantial reductions in airport congestion and delays. These

results strongly motivate our work on demand management strategies for congestion
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mitigation in Chapters 5 and 6.

The main contributions of this chapter are threefold. First, we propose a novel,

optimization-based approach for attributing the congestion-related delays in the NAS

to two different causes, namely, delays due to insufficient airport capacity and delays

due to inefficient utilization of available capacity due to airline competition. Second,

we develop an aggregated, integrated airline scheduling model with a proxy objec-

tive function for delay minimization and an elaborate heuristic-based approach for

an approximate solution of this large-scale (non-binary) mixed-integer programming

problem. Finally, and most importantly, this is the first study which proves that

there is a significant room for reducing the level of congestion even with the existing

airport infrastructure without compromising the passengers’ level-of-service, if we can

control the negative impacts of airline competition through efficient demand manage-

ment strategies. In this chapter, we make a case for the strong potential for demand

management-based mechanisms for congestion mitigation.

7.1.2 Chapter 3: Quantification and Analysis of Passenger

Delays and Disruptions

Passenger delays and disruptions are an important manifestation of airline competi-

tion and congestion, and in turn, affect the overall level-of-service experienced by the

passengers. Airlines tune their networks, schedules and operations in order to attract

a larger share of the market while minimizing costs, but in the process, critically mod-

ify the passenger delays and disruptions. In Chapter 3, we present a framework that

combines data mining and statistical modeling techniques for generating disaggregate

data on passenger travel and delays. We subsequently use this rich dataset to carry

out a sequence of analyses that provide insights into the impacts of airline scheduling

and operational decisions related to network structures, hub locations, connecting

bank structures, flight frequencies, departure schedules, flight cancellations, passen-

ger re-bookings etc on passenger delays and disruptions. Beyond the analyses and

findings in this chapter, we foresee several other applications of this passenger delays
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framework for passenger-centric decision-making in airline scheduling, air traffic flow

management, and aviation policy.

The three main contributions of the research in this chapter are as follows. First,

we develop a detailed approach for disaggregating publicly available aggregate passen-

ger flow data which, among other applications, facilitates the usage of a pre-existing

passenger delay calculation heuristic to a much wider dataset. Second, we analyze

the spatio-temporal patterns in passenger delays using these estimated disaggregate

passenger flows and present numerous insights into the factors affecting passenger

delays. Such insights could not be generated in any of the prior studies due to a

lack of comprehensive passenger itinerary flow data. Third, we investigate the causes

of passenger travel disruptions by applying data analysis and statistical modeling

to historical flight and passenger data. We believe that our research in this chap-

ter has opened a whole new avenue for the air transportation research concerning

passenger-related issues.

7.1.3 Chapter 4: Implications of Airline Frequency Compe-

tition for Airline Profitability and Airport Congestion

Competition affects airlines’ seating capacity allocation decisions, which in turn have

a strong impact on airline profitability and on airport congestion. In Chapter 4, we

study this relationship using game-theoretic models of airline frequency competition

and prove several important properties of this relationship. We find the Nash equi-

librium solutions to be particular suitable for modeling such competitive situations

because of their attractive convergence and stability properties. We conclude that

the worst-case degree of inefficiency and congestion introduced by competition is a

direct and increasing function of intensity of competition, profit margins, and number

of competing airlines. This is the first study, to the best of the author’s knowledge,

which actually proves that the S-curve has direct and adverse implications on air-

line profitability and airport congestion, as has been speculated in multiple previous

studies. Furthermore, these results provide the intuition behind our framework for
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modeling the frequency competition under administrative slot controls in Chapter 5

and under congestion pricing mechanisms in Chapter 6.

The main contributions of the research in this chapter are threefold. Ours is the

first study that models the S-curve-based airline frequency competition using game-

theoretic tools. The S-curve has been mentioned in many empirical studies and has

also been an important part of the airline-industry lore. Second, we provide credibility

to the idea of using Nash equilibrium as a means of modeling airline frequency compe-

tition by proving the convergence of 2 alternative simple frequency adjustment rules

(otherwise known as myopic learning dynamics) to a Nash equilibrium. Finally, using

the idea of Nash equilibrium, we prove that the S-shaped relationship between market

share and frequency share has direct and adverse implications on airline profitability

and airport congestion. These results make a strong case for careful incorporation

of airline frequency competition in subsequent research on modeling the impacts of

demand management mechanisms (as presented in Chapters 5 and 6).

7.1.4 Chapter 5: Administrative Mechanisms for Airport

Congestion Mitigation

Some varieties of administrative controls have been in place at some of the busiest

US airports and yet these airports often suffer from large delays and congestion. In

Chapter 5, we propose simple slot reduction mechanisms which fall under the um-

brella of administrative slot controls and evaluate their benefits in the presence of

airline frequency competition. We model the competitive airline frequency planning

decisions under slot constraints using game-theoretic models and solve the model to a

Nash equilibrium. We propose a successive optimizations heuristic, wherein individ-

ual optimization problems are solved to full optimality using dynamic programming.

Empirical validation of model results shows that a Nash equilibrium outcome to our

model is able to describe the actual airline decisions with a reasonable level of ac-

curacy. We evaluate two simple slot reduction strategies. Under the assumptions of

our model, the results show that, in addition to a substantial reduction in flight and
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passenger delays, small reductions in total allocated capacity (i.e. slot reductions)

can improve the operating profits of carriers considerably. Our sensitivity analyses of

major results to many of our assumptions, parameter values, changes in time periods

and datasets show that our results are robust and our original estimates of benefits

from slot reduction are conservative in most cases. Thus, we show that a small reduc-

tion in the total number of slots at a congested airport is beneficial to all the major

stakeholders including the airlines, passengers and system operators.

The most significant practical contributions of this thesis are presented in this

chapter. The main contributions of this chapter fall into four categories. First, we

propose a game-theoretic model of frequency competition under slot constraints as

an evaluation methodology for slot allocation schemes. Second, we provide a solution

algorithm with good computational performance for solving the problem to a Nash

equilibrium. Third, we provide justification of the credibility of the Nash equilibrium

solution concept in two different ways, through empirical validation of the model

outcome and through a computational demonstration of the convergence properties

of the learning dynamics for non-equilibrium situations. Finally, under simple slot

allocation schemes, we evaluate system performance from the perspectives of the

passengers and the competing airlines, and provide insights to guide the demand

management policy decisions. Our administrative slot allocation-based strategies are

shown to be beneficial to all the major NAS stakeholders at the same time.

7.1.5 Chapter 6: Pricing Mechanisms for Airport Congestion

Mitigation

Airport slot pricing mechanisms have often been proposed in literature for efficient

utilization of airport capacity. In Chapter 6, we propose a modeling framework for

analyzing the effectiveness of slot pricing in the presence of airline competition. We

develop an equilibrium model and solve it using iterative algorithms. Our prelimi-

nary results using a small hypothetical network highlight some important differences

between marginal cost pricing and flat pricing. We find that the effectiveness of a
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congestion pricing mechanism critically depends on three essential characteristics of

frequency competition in individual markets. These are the same three parameters

that affect the level of congestion introduced by competition as described in Chapter

4. We show that a marginal cost pricing mechanism is able to deter the airlines from

scheduling very frequency flights without penalizing them with very high congestion

toll payments. Most importantly, we prove that in addition to delay reduction ben-

efits, a significant part of congestion pricing benefits to the airlines are in the form

of reduction in operating costs due to a greater number of passengers per flight. Our

models of competition are able to capture this important effect which could not be

captured by previous studies.

The major contributions of the research in this chapter are threefold. First, we

develop a model for airline frequency competition that explicitly accounts for the

relationship between the number of flights operated, number of seats flown and the

number of passengers carried by an airline under slot pricing. To the best of author’s

knowledge, this is the first computational study that accounts for this relationship.

Second, using a small hypothetical network, we evaluate the impacts of congestion

prices on the various stakeholders and investigate the dependence of effectiveness of

congestion pricing mechanisms on different characteristics of airline competition in

individual markets. Third, we provide computational results under flat prices, as

well as under a marginal cost pricing equilibrium. Our results show that variation

in the number of passengers per flight plays a vital role in determining the degree

of attractiveness of congestion pricing to the airlines. A significant part of the im-

pact of congestion pricing could not be accounted for using the earlier models based

on the assumptions of constant load factors and constant aircraft sizes. These re-

sults, based on a small hypothetical network, provide an important proof-of-concept

demonstration of the potential benefits of congestion pricing.
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7.2 Recent Events

All the results and conclusions in this thesis are based on data either from the year

2007 or from the 1st quarter of 2008. This is primarily because the year 2007 and

early part of 2008 were amongst the worst times, in terms of congestion and delays,

in the history of US aviation industry. Since then, a variety of recent events have

modified the congestion situation in the NAS. In this section, we look at some recent

noteworthy trends and discuss the validity of our conclusions in this thesis in the light

of these recent events.

As shown in Table 1.1 in Chapter 1, the period from 2002 to 2007 saw a sustained

growth in passenger demand and the number of flights, which paralleled the growth

in various other sectors of the US economy. However, the year 2008 was marked by

two patterns of significant economic consequences. First, a sharp rise in global crude

oil prices in the first half of 2008 resulted in a steep hike in jet fuel prices. As shown

in Figure 7-1, in the 5-month period from February to July 2008, average jet fuel

prices increased by 45%, which corresponds to approximately an 8% monthly rate of

increase [78]. This resulted in a sharp increase in airlines’ unit operating costs.

As shown in Figure 7-1, the jet fuel prices reached their peak value of $3.69 per

gallon in July 2008. From August onwards, the prices started decreasing. However,

before the industry could recover from the shock of fuel price hike, the next important

trend began to manifest. Following the financial meltdown and the credit crunch on

Wall Street, the US economy drifted towards an economic recession. These economic

troubles were accompanied by a significant decrease in passenger demand in the US

domestic air transportation markets. Figure 7-2 shows the trend in the total number

of domestic passengers carried by all the US carriers from January 2000 to January

2011 [75]. The number of passengers in each month of a year is normalized such

that the number equals 100 for each month of 2007. In other words, the number

of passengers in each month of a year is divided by the number of passengers in the

same month in year 2007 and then multiplied by 100. This normalization is performed

to segregate the seasonal fluctuations in demand from year-to-year decreases in the
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Figure 7-1: Trend in jet fuel prices

261



Figure 7-2: Trend in the number of passengers

numbers of passengers. Note that 2007 corresponded to the highest annual number of

domestic passengers flown in the decade. As shown in Figure 7-2, immediately after

the peak jet fuel prices, the normalized passenger demand began to fall precipitously.

The number of passengers fell by approximately 10.5% by November 2008 compared

to the number of passengers in July 2008, which corresponds to an average monthly

rate of decrease of approximately 2.7% over that 4-month period.

The number of flights scheduled by an airline is obviously an increasing function

of the passenger demand and, as shown by the game-theoretic analysis presented in

Section 4.7, it is also a decreasing function of the operating costs. The combination

of a sharp increase in fuel prices and a sharp decline in demand resulted in intense
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Figure 7-3: Trend in number of flights

pressure on airlines to cut down on the number of flights. Figure 7-3 shows the trend

in the monthly number of flights operated by US carriers in the domestic markets

from January 2000 to January 2011 [75]. Again the numbers are normalized in the

same way as the number of passengers shown in Figure 7-2. As shown in Figure 7-3,

the normalized number of flights operated by the US carriers in the domestic markets

were down by approximately 10.1% by November 2008 as compared to July 2008, a

2.6% average monthly rate of decrease in that 4-months period.

This reduction in the number of flights resulted in a substantial reduction in

average flight delays. The dotted blue line in Figure 7-4 shows the trend in the

normalized average arrival delays in the US domestic markets for the flights of all
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the ASQP-reporting carriers (that is, certified U.S. air carriers that account for at

least one percent of domestic scheduled passenger revenues) [74]. As before, the

numbers are normalized with respect to the corresponding month in the year 2007.

Average arrival delays depend not only on the number of flights scheduled but also on

the realized values of airport capacities on the day of operations, which are directly

affected by weather. As a result of the variability in weather patterns, the monthly

average values of arrival delays fluctuate considerably. Therefore, in order to allow

for an easy visual inspection of the trends in average arrival delays, we also plotted

their 6-monthly moving averages. The solid black line shows the 6-monthly moving

average values of the normalized average arrival delays. As expected, the solid black

line is much smoother than the dotted blue line and has some visible lag compared

to the dotted blue line. The average arrival delays were approximately 32.2% lower

in the first quarter of 2009 as compared to the first quarter of 2008.

After the fuel price shock in mid-2008, the jet fuel prices came down very fast as

well. Over the subsequent 2 years, while jet fuel prices never reached the record levels

of mid-2008, it is interesting to note that the number of passengers, the number of

flights, and the average arrival delays all remained considerably lower than the record

levels of 2007 and early months of 2008. In the year 2009, the number of passengers

was 9.0% lower, the number of flights was 10.9% lower and the average arrival delays

were 24.4% lower than 2007. While in 2010, the number of passengers was 7.3% lower,

the number of flights was 11.6% lower and the average arrival delays were 26.7% lower

than 2007. By the second half of 2010, the US domestic passenger demand had started

displaying some signs of growth; the number of passengers in the fourth quarter of

2010 was 4.4% higher than that in the fourth quarter of 2009. The fourth quarter of

2010 was also the first quarter after 2007 that saw an increase (albeit a very small

increase of 0.8%) in the number of flights compared to the same quarter a year before.

Given that our analysis in Chapters 5 and 6 specifically focussed on the LaGuardia

Airport (LGA) in New York, we are especially interested in investigating the recent

trends in the number of operations and delays at LGA. Figure 7-5 shows the recent

trend in the seasonally normalized values of the total number of operations by all
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Figure 7-4: Trend in average arrival delays
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Figure 7-5: Trend in number of operations for ASQP reporting airlines at LGA
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Figure 7-6: Trend in NAS delays per flight at LGA

the ASQP-reporting airlines at LGA [74]. The values are normalized such that the

corresponding values for each month in the year 2007 equal 100. Figure 7-6 shows

the recent trend in the average NAS delays per flight at LGA [74]. The average

value of NAS delay is calculated across all flights either departing from or arriving

at LGA in a particular month. Finally, Figure 7-7 shows the corresponding trend

in the normalized values of the average arrival delays per flight for all flights either

departing from or arriving at LGA [74].

For the year 2010, the total operations of ASQP-reporting airlines at LGA had

reduced by 16.6%, the average NAS delays at LGA were lower by 47.1% and the

average arrival delays at LGA were lower by 39.9% compared to the respective values
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for the year 2007.

In Chapters 5 and 6, we evaluated the impacts of administrative controls and con-

gestion pricing mechanisms for managing the demand for flight operations at LGA. In

Section 5.5, we concluded that a 12.3% reduction in the number of operations resulted

in approximately a 41.0% reduction in average NAS delay per flight. After 2007, Oc-

tober 2010 was the month when the percentage reduction in the number of operations

at LGA was the closest to the 12.3% reduction proposed by our administrative slot

reduction mechanisms. From Figures 7-5, 7-6 and 7-7, it is especially interesting to

note that in the month of October 2010, the number of operations reduced by 12.1%

resulting in a 46.4% reduction in average NAS delays per flight and a 40.1% reduction

in average flight delays at LGA. These numbers are consistent with our estimate of

a 41.0% reduction due to a 12.3% reduction in the number of slots, which was based

on a somewhat conservative methodology.

Furthermore, for the domestic US flights, the average load factor increased by

2.9%, and the average number of passengers per flight increased by 4.6% from 2007

to 2010 [77]. If we focus only on the flights at LGA airport, then the average load

factor increased by 3.1%, and the average number of passengers per flight increased

by 4.1% from 2007 to 2010 [77]. The percentage reduction in the number of flights has

been considerably greater than the percentage reduction in passengers, both at LGA

and in domestic US flights overall. Thus, the primary drivers for delays reduction in

2010 compared to 2007 are the increased load factors and increases in average aircraft

sizes, which are identical to the ones we demonstrated to be the major drivers of delay

benefits in Chapter 5.

In Chapter 5, we analyzed the problem of airport congestion and delays from a sys-

tem perspective. By modeling the problem as a multi-agent game, we replicated the

complexity of airline decision-making under competition with reasonable accuracy.

Subsequently, based on this game-theoretic model, our computational experiments

predicted that a delay reduction of over 40% can be achieved by reducing the oper-

ations at an administratively controlled airport through slot reduction of just over

12%. The benefits of slot reductions were achieved through increased load factors
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Figure 7-7: Trend in average arrival delay at LGA
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and increases in average aircraft sizes.

These results have been validated by the series of events that happened in the

US airline industry over the last 3 years. Due to the various changes in the US

airline industry over the past 3 years, we have seen double digit reductions in the

number of operations by the major carriers at LGA airport (as well as at many

other airports across the NAS). That the percentage reduction in operations at LGA

turned out to be similar to those proposed by our administrative mechanisms is

an interesting coincidence. But more importantly, it is not a coincidence that the

resultant reductions in delays are also very much comparable to those estimated by

our data analysis based on the 2007 delays data. Furthermore, the main drivers of

these delay savings are also identical to those in our computational results in Chapter

5. Thus, these recent trends are a further testament to the validity our conclusions,

especially those derived in Chapter 5.

Because of these recent events in the US airline industry, we have been able to

provide a real-life validation of the computational experiment we performed. Rather

than just being a queuing-theoretic claim that reducing operations will reduce de-

lays, our computational experiments and models provided a behavioral description of

the complex interactions between the airline decisions and passenger decisions in a

competitive industry landscape. It is remarkable to note that our conclusions based

on this system-modeling approach are nicely validated because of the recent events

serving as a real-life case study.

However, it should be noted that these recent reductions in delays are brought

about primarily because of the reduction in passenger demand for air transportation,

which in turn is due to the economic downturn that has affected the US economy for

a major part of the last 3 years. Thus the temporary respite from flight delays was a

result of the economic recession. However, large delays are expected to return once

the economic crisis subsides [96]. Therefore, in the future, the administrative and/or

pricing mechanisms proposed and evaluated in this thesis will become increasingly

important and relevant for efficient management of demand for airport resources in

the National Aviation System.
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Appendix A

Abbreviations

A.1 Carrier Abbreviations

Table A.1: Carrier names and IATA codes

IATA Code Carrier Name

9E Pinnacle Airlines
AA American Airlines
AQ Aloha Airlines
AS Alaska Airlines
B6 JetBlue Airways
CO Continental Airlines
DL Delta Air Lines
EV Atlantic Southeast Airlines
F9 Frontier Airlines
FL AirTran Airways
HA Hawaiian Airlines
MQ American Eagle Airlines
NW Northwest Airlines
OH Midwest Airlines
OO SkyWest Airlines
UA United Airlines
US US Airways
WN Southwest Airlines
XE ExpressJet Airlines
YV Mesa Airlines
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A.2 Airport Abbreviations

Table A.2: Airport names and IATA codes

IATA
Code

Airport Name IATA
Code

Airport Name

ABQ Albuquerque International Sunport LGA New York LaGuardia
ATL Hartsfield-Jackson Atlanta Interna-

tional
MCI Kansas City International

AUS Austin-Bergstrom International MCO Orlando International
BNA Nashville International MDW Chicago Midway International
BOS Boston Logan International MEM Memphis International
BWI Baltimore Washington International MIA Miami International
CLE Cleveland Hopkins International MSP Minneapolis - St. Paul International
CLT Charlotte Douglas International OAK Oakland International
CMH Columbus Regional ONT Ontario International
CVG Cincinnati / Northern Kentucky In-

ternational
ORD Chicago O’Hare International

DAL Dallas Love Field PDX Portland International
DCA Reagan National PHL Philadelphia International
DEN Denver International PHX Phoenix Sky Harbor International
DFW Dallas / Fort Worth International PIT Pittsburgh International
DTW Detroit Metro RDU Raleigh-Durham International
EWR Newark Liberty International SAN San Diego International
FLL Fort Lauderdale - Hollywood Inter-

national
SAT San Antonio International

HNL Honolulu International SEA Seattle - Tacoma International
HOU Houston Hobby SFO San Francisco International
IAD Washington Dulles International SJC Mineta San Jose International
IAH Houston George Bush SLC Salt Lake City International
IND Indianapolis International SMF Sacramento International
JFK John F Kennedy International SNA John Wayne
LAS Las Vegas - McCarran International STL Lambert-St. Louis International
LAX Los Angeles International TPA Tampa International
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