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1. Introduction:  

Surface tension driven break-up of cylindrical fluid elements into droplets plays a crucial 
role in the use or processing of many multicomponent complex fluids like paints, inks, insecticides, 
cosmetics, food, etc [1, 2]. These industrial fluids are typically formulated using dilute polymer 
solutions, and are exposed to a wide range of shear and extension rates. Since the polymer solutions 
and the resulting dispersions have low viscosity and short relaxation times, their non-Newtonian 
behavior is not apparent in the conventional rheometric measurements. However, the presence of 
even a dilute amount of polymer alters the character of capillary break-up during dripping, jetting 
and thinning of a stretched liquid bridge [2]. In all three scenarios (sketched in figure 1), the 
presence of polymers leads to a delayed pinch-off.  

 The interplay of capillary, inertial, elastic and 
viscous effects on small length and time scales typically 
leads to complex dynamics in a necking fluid thread and 
in some cases, the extensional stresses generated in the 
neck lead to formation of very thin and stable filaments 
between drops, or to ‘beads-on-a-string’ structure [2, 3]. 
In a capillary-thinning extensional rheometry experiment 
(or CABER test), the self-thinning of liquid bridge of a 
viscoelastic fluid follows the elasto-capillary scaling 
R / R0 ~ exp ! t 3"# $, where R0 is the initial radius. In this 
case, the relaxation time, ", of the fluid can be measured 
directly, but practically the use of this method is restricted 
to fluids with relaxation times of 1 ms or higher (or 
extension rates of 103 s-1 or lower) [4]. 

In this paper, we explore the influence of 
transient extensional rheology in the breakup of thin fluid threads at time scales of 1 ms and below. 
We study the influence of both elasticity and extensibility on the growth of instability and capillary 
break-up of the viscoelastic fluids. Using experiments and simulations, we show that by carefully 
controlling the excitation frequency at which a fluid jet is excited, it is possible to drive the 
break-up in a particularly simple and symmetric mode, which can be used to extract extensional 
viscosity information using familiar capillary thinning analysis. While bead formation and 
extension rates are self-determined in a CABER experiment, we infer that it is possible to influence 
the dynamics of the bead formation in the capillary break-up during jet process by controlling the 
amplitude and frequency of the imposed disturbances. 
2. Theory and simulation 
 The temporal evolution of the jet depends on the relative magnitude of the viscous, 
inertial, and elastic stresses and the capillary pressure within the liquid jet [1, 2]. In order to study 

Figure 1: Capillary break-up of complex fluids 
(a) Dripping (b) Liquid bridge (c) Jetting. 



this inertio-elasto-capillary balance in detail, we introduce two dimensionless parameters: the 
intrinsic Deborah number !" defined as the ratio of the time scale for elastic stress relaxation, ", to 
the “Rayleigh time scale” for inertio-capillary breakup of an inviscid jet, tR % &R0

3 '# $0.5#$%& the 
Ohnesorge number   Oh % (0 &'R0 which is the ratio of viscous to inertio-capillary time scale. 
Here && is the fluid density, (0 is the zero shear viscosity, (s is the solvent viscosity, and ' is the 
surface tension. In this study, we particularly focus on jetting behavior at a small Ohnesorge number 
and a Deborah number of order unity where it is challenging to perform the CABER test. The 
concatenated image of a jet of dilute solution of 0.01% PEO (Mw = 300,000 Daltons) in 
glycerol-water mixture in figure 2 illustrates the typical behavior of a weakly viscoelastic jet. The 
thinning dynamics of the jet at different distances downstream reveals information about either the 
initial growth rate of instability on a harmonically perturbed jet as predicted by linear stability 
analysis or about relaxation time, as computed from the elastocapillary regime, exactly like in 
CABER. The schematic shows both these regimes, along with two other regimes that can be 
observed in certain cases: 1) inertio-capillary regime with scaling law 
R(ic) / R0 ~ [tic ! t] / tR# $2 /3 and 2) finite extensibility regime with R / R0 ~ [tec ! t] / tR# $n . The 
inertio-capillary regime with asymmetric pinch-off is always observed in capillary break-up during 
dripping of a low viscosity fluid, but in a jetting experiment, the scaling observed depends upon 
frequency and the elasto-capillary regime can kick in directly, and as chains get stretched, the finite 
extensibility will dictate the thinning dynamics in the last stage.  
 

Figure 2: Life and Death 
of a Viscoelastic Jet. The 
concatenated image of a 
jet of 0.01% PEO in 
glycerol /water issuing 
out of 175 )m nozzle 
showing instability 
growth and pinch-off as 
observed in experiment. 
The schematic illustrates 
the multiple scaling 
regimes observed during 
thinning in a viscoelastic 
jet undergoing break-up. 
Shaded region shows 
that minimum 
observable size is 
limited by experimental 
spatial resolution.  
 
 

To better understand the complex evolution of thinning filament during jetting, we 
numerically investigate the growth and evolution of surface-tension-driven instabilities on an 
axisymmetric viscoelastic jet using a nonlinear 1D theory for a range of different constitutive 
equations. The linear instability analysis for small perturbations shows that a viscoelastic jet is 
initially more unstable when compared to a Newtonian fluid of the same viscosity and inertia as 
shown in figure 3. As the radius of local constrictions in the jet thins under the action of surface 
tension, elastic stresses grow and become comparable to the capillary pressure, leading to formation 
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of a uniform thread connecting two primary drops. This ‘beads-on-a-string’ structure can be 
captured by the Oldroyd-B model, and the radius of the thin cylindrical ligament connecting the 

beads necks down exponentially in 
time. The finite time breakup of the jet 
observed experimentally can be 
captured using the nonlinear Giesekus 
model. The spatial frequency of small 
imposed disturbances, which is 
proportional to the perturbation wave 
number, can be used to control the 
self-thinning dynamics of fluid jet 
breakup as shown in the space-time 
diagrams of figure 4. The contour 
plots of '()10(*) in the z-t plane shows 
that for a wave number smaller than 
the one corresponding to the 
maximum growth rate (kR0=0.67) a 
satellite droplet forms. Both the 

satellite and main drops oscillate due to coupling with capillary forces (at the Lamb’s frequency) as 
clearly illustrated in the space time-diagram.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Space-time diagrams for thinning and breakup of an Oldroyd-B liquid jet at different disturbance wave 
numbers, +, = 0.05, !" = 1.5, s 0. ( (% = 0.6. Simulations are continued till a minimum dimensionless radius of 
R/R0=0.0003 is obtained. Dimensionless axial position, -, varies 

In these simulations we find that an exponential thinning can be observed in the thread 
connecting the main and the satellite drops, demonstrating elasto-capillary scaling applies for this 
system. For a wave number larger than the one corresponding to the maximum growth rate, the 
formation of the satellite droplet is strongly suppressed which is desirable in an extensional 
rheometer.  
3. Jetting experiments 
 The growth of instability and the thinning of neck before pinch-off for a low viscosity 
((0=4.1 mPas) and short relaxation time (theoretical value for Zimm time, "Zimm~ 0.05 ms) were 
visualized using a special set-up developed in the group. The jet is perturbed using a piezoelectric 
transducer and visualized using a CCD camera and strobe system, where we achieve a temporal 
resolution of a microsecond by changing the phase difference between the strobe and perturbation 
frequency, and spatial resolution of 2.5 microns. As the frequency of perturbation or kR0 is 

a) kR0=0.5 

b) kR0=0.85 

Figure 3: Dispersion curve predicted by linear stability analysis 
of a viscoelastic jet compared to viscous and inviscid jet. 



increased, we find that the growth rate of the instability goes through a maximum around kR0 = 0.65, 
and the shape of the neck tends to become increasingly symmetric as we go to higher 

wave-numbers, as shown in figure 5. The 
concentrations examined and the range of 
parameters used here are too low for observing 
stable “beads on a string” morphology, which is 
discussed in detail elsewhere [1-3, 5]. At lower 
excitation frequencies, longer wavenumbers 
(hence shorter wavelength) instability has faster 
growth rate, and hence it competes with the 
applied frequency. At higher frequencies, the 
more unstable wavelengths are larger, therefore 
the faster growing modes cannot be 
accommodated and hence do not influence the 
shape of the jet. Thus at high wavenumbers, we 
are closest to the highly desirable case of fluid 
with a constant stretch history. In the two 

montages, we show the change in neck diameter as a function of time, and as wavenumber is 
increased from kR0 = 0.55 to kR0 = 0.85, the number of necks visible increases, showing that the 
wavelength is becoming shorter. By following radius as a function of time, growth rate is computed 
from the slope of log (*R/R0) vs time. The relaxation time obtained from the elastocapillary regime, 
(as discussed before), turns out to be 0.16 ms, which is a factor of three larger than the estimated 
Zimm relaxation time. Using the radius of the neck, we can determine the extension rate, 

!", % (!2 / R)(dR / dt) , and the apparent extensional viscosity in the elastocapillary region is then 
given by !(E % (' / R) / &, . The initial extension rates are a function of excitation frequency or 
wavenumber as well as the perturbation amplitude and in these experiments on PEO system, 
extension rates !", ~104 s-1 were achieved.  
4. Conclusions: 

In this study, we describe how the instability growth and capillary break-up in a weakly 
viscoelastic jet contain information about elasticity and extensibility at time scales and length scales 
that are not apparent in conventional extensional or shear rheometry measurements. The filament 
thinning before pinch-off allows us to determine the relaxation time and apparent extensional 
viscosity for highly dilute polymer solutions. We show an example of 0.01% PEO solution in 
Glycerol/Water mixture where the relaxation time of 0.16 ms was measured for a solution with 
c/c*=0.03, or in other words for a concentration that is 3% of overlap concentration. 
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Figure 5: Digitized edge profiles of 0.01% PEO solution 
(Mw = 300,000 Daltons) in Glycerol/Water; Oh = 0.05, tR 
=0.11 ms, We = 20  (a) kR0 = 0.55 (b) kR0=0.85. 


