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We describe a general methodology for introducing thorough chaotic mixing in

microdroplets. The mixing properties of fluid flows in microdroplets are governed by their

symmetries, which give rise to invariant surfaces serving as barriers to transport. Complete

three-dimensional mixing by chaotic advection requires destruction of all flow invariants. To

illustrate this idea, we demonstrate that complete mixing can be obtained in a time-dependent

flow produced by moving a microdroplet along a two-dimensional path. The theoretical

predictions are confirmed by experiments that use the thermocapillary effect to manipulate

microdroplets.

Introduction

It is well known that liquids do not mix easily in microfluidic

systems, which are being developed into ‘‘labs-on-a-chip’’

that promise revolutionary applications in biotechnology,

chemistry and medicine.1–4 For devices based on continuous

flow through microchannels, strategies for inducing chaotic

mixing by altering device geometries have been proposed.5,6

Here we study mixing in discrete volume (microdroplet)

systems,4,7–13 which allow miniaturization of many standard

laboratory protocols that are difficult to realize with con-

tinuous flow.

Physically, typical microscale flows are characterized by a

low Reynolds number Re ; Va/n , 1, where V and a are,

respectively, a characteristic flow speed and length, and n is the
liquids’ kinematic viscosity. In this regime, flows are smooth

(laminar), and turbulence, which dominates fluid mixing in

standard-size laboratory tests, cannot arise. Mixing by

molecular diffusion alone is often too slow, even at the scale

of typical microfluidic devices. Thus, efficient mixing of liquids

at the microscale requires a stirring mechanism, such as

chaotic advection,14,15 that stretches and folds fluid elements

throughout the entire volume of the flow. The folding

leads to a decrease in the average distance between unmixed

volumes of liquid with different composition, while stretching

exponentially sharpens the concentration gradients

enhancing diffusion, which acts more rapidly to smooth out

nonuniformities.

Designing a chaotic microflow with good mixing properties

is particularly difficult for highly symmetric flows such as

those that arise in microdroplets. The high degree of symmetry

leads to the existence of invariants,16 which are functions that

are constant along streamlines of the flow. Each invariant

defines, inside the volume of droplet, surfaces on which the

flow is effectively two-dimensional. Additional invariants

further reduce the flow dimensionality; e.g., flow with two

invariants is effectively one-dimensional. Since the flow cannot

cross invariant surfaces, the existence of invariants is highly

undesirable in the mixing problem as their presence inhibits

complete stirring of the full microdroplet volume by chaotic

advection. Thus, the key to achieving effective chaotic mixing

in a microdroplet (indeed, in any laminar microflow) is to

ensure that all flow invariants are destroyed.

Theory

To illustrate this, consider a spherical microdroplet immersed

in another liquid and subjected to a temperature gradient,

which induces surface tension gradients (thermocapillary

effect) at the droplet interface. With a uniform temperature

gradient (e.g., dT/dx = k0 = constant), the thermocapillary

effect drives an axially symmetric flow along the surface from

the warm pole to the cold one and a return flow along the axis

of the droplet, which is pushed in the direction of the gradient.

By solving the Stokes equation subject to the corresponding

boundary conditions, the velocity field of this dipole-like flow,

known as Hill’s spherical vortex,17 is obtained,

vx~V
a2{x2{2y2{2z2

a2
, vy~V

xy

a2
, vz~V

xz

a2
, (1)

where V = k0ahTs/(2mo + 3mi), a is the radius of the droplet, s is

the surface tension and mi, mo are the dynamic viscosities of the

liquid inside and outside the droplet.

This flow is effectively one-dimensional (and, therefore,

non-chaotic) because it possesses two invariants

I0 ~
z

y
and J0 ~ z2(a2{x2{y2{z2) (2)

related to the orientation of a plane containing the streamline

and the stream function of the flow in that plane. This steady

dipole flow has extremely poor mixing properties, as our

experimental results (described below) illustrate. To achieve

complete mixing, both invariants must be destroyed. One

generic method to do so is by introducing time-dependence

into the flow.14 For instance, time-periodic switching of the
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temperature gradient’s direction in a plane (chosen to be the

(x,y)-plane in this example) will cause the microdroplet to

move in two dimensions and will lead to the switching of the

axis of the dipole flow. The addition of direction switching

breaks one of the invariants (I0) thus making the dynamics

effectively three-dimensional (two space variables plus time)

and introduces a positive Lyapunov exponent, which indicates

that the time-periodic dipole flow is chaotic.

The presence of chaotic advection however does not

guarantee complete mixing. Indeed, the invariant J0 is

preserved, so that chaotic flow is confined to two-dimensional

surfaces of revolution inside the droplet given by

x2zy2~a2{z2{
J0
z2

(3)

In a typical experiment, dye is used to monitor the mixing

process. The flow (1) will only spread the dye over thin shells

(see Fig. 1A) defined by eqn (3), where J0 varies over the values

corresponding to the initially dyed region of the fluid.18

Viewed from the top, a nearly uniform two-dimensional

projection of the dye distribution in this case would mislead-

ingly suggest thorough mixing. The same conclusion applies if

the axis of the flow is rotated in a plane continuously or

discretely by arbitrary angles at arbitrary times. Both

invariants can, in principle, be destroyed by forcing the axis

of the flow to move on the surface of a cone.19 However, this

requires moving the droplet in three dimensions, which is

much harder to achieve experimentally.

When the thermocapillary-driven droplet is restricted to

move on a two-dimensional plane, a spatially nonuniform

temperature gradient is required to destroy both flow

invariants. Nonuniformity in the temperature gradient is

modeled most simply by adding linear dependence (e.g.,

dT/dx = k0 + k1x); the additional term induces a steady

quadrupole-like flow of the same form as that caused by a

linear axisymmetric extensional flow,18 and can be super-

imposed on the dipole flow because of the linearity of the

Stokes equation. In the time-independent case, the flow is still

axisymmetric and so also possesses two invariants:{

I = I0 and J = (1 + ex/a) J0 (4)

where e = k1a(2mo + 3mi)/k0(5mo + 5mi). With the addition of

time-periodicity induced by switching the direction of the

temperature gradient, both flow invariants are destroyed for

almost all values of I and J; chaotic trajectories of the

combined dipole/quadrupole flow are no longer confined to

two-dimensional surfaces and explore a large fraction of the

droplet volume (Fig. 1B).

A final transport barrier persists, preventing mixing between

the top and bottom hemisphere of the microdroplet (Fig. 1B).

This invariant surface, which is the mid-plane z = 0 and

corresponds to vanishing I and J,{ can be destroyed by

imposing a uniform shear flow in the fluid surrounding the

droplet with vorticity perpendicular to both the direction of

the temperature gradient and the z axis. This shear flow

induces an internal circulation (Taylor flow21) that causes the

streamlines to cross the z = 0 midplane and enables essentially

complete mixing22,23 (Fig. 1C).

Fig. 1 Intersections of a dye particle’s trajectory with the x = 0 mid-plane of a spherical microdroplet illustrate mixing behavior. Unless noted

otherwise, mi/mo = 1 and the flow is made time-periodic by switching the direction of droplet motion in the horizontal plane by 90u every 12 time

units. The quadrupole flow is weak compared to the dipole component, |e| = 0.4 while the magnitude of the Taylor flow is comparable to that of the

dipole flow. (A) Pure dipole flow. (B) Superposition of dipole and quadrupole flow. (C) Superposition of dipole, quadrupole, and Taylor flow. (D)

Superposition of dipole and Taylor flow. (E) Superposition of steady dipole, quadrupole, and Taylor flow. (F) Superposition of steady dipole,

quadrupole, and Taylor flows with mi/mo = 100.

{ The expression (4) for J shows that if the quadrupole component is
sufficiently strong, i.e., |e| . 1. an additional invariant surface x = 2a/e
appears inside the droplet. This transport barrier can be destroyed by
making e time-dependent.20 In this case, however, the invariant I
persists.
{ J also vanishes at the microdroplet’s surface x2 + y2 + z2 = a2,
thereby representing a barrier to transport into or out of the droplet.
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In summary, all of these ingredients (time-dependence in

conjunction with significant dipole, quadrupole and Taylor

flow components) are essential for rapid, complete mixing

throughout the droplet volume18 (Fig. 1). If any of these

ingredients is missing, mixing becomes incomplete. For

instance, the superposition of steady dipole and Taylor

flows alone leads to non-chaotic flow preserving two

invariants24 while the addition of time-dependence destroys

one of the invariants, again leading to chaotic mixing on

two-dimensional surfaces (Fig. 1D). As a second example,

the superposition of steady dipole, quadrupole and Taylor

flows possesses an adiabatic flow invariant which, for small |e|
representative of the experiments described below, is

preserved with a very good precision, confining chaotic

trajectories to two-dimensional toroidal shells of extremely

small thickness (Fig. 1E).

Experiments

To test the theory, we conduct experiments that can naturally

include all ingredients predicted to be necessary for thorough

mixing. Droplets containing glycerol–water mixtures are

suspended at the surface of a 4 mm-deep immiscible liquid

substrate (Fluorinert1 FC-70 with n = 0.14 cm2 s21 and r =

1.9 g cm23). The droplets are driven along the substrate

surface by temperature-induced surface tension gradients

produced by heating from a low-power infrared beam from a

CO2 laser.25 By rapid rastering of the laser beam, surface-

tension gradients may be imposed at will at any location on the

surface of the substrate. In this way, time-dependent switching

of the microdroplet’s motion can be implemented. Since the

heating from the laser beam is localized, the corresponding

temperature gradients are spatially nonuniform and, therefore,

the thermocapillary-driven flow inside the droplet will be a

combination of dipole flow with quadrupole (and, perhaps,

higher-order) corrections. The laser beam also heats the free

surface of the substrate liquid and, thereby, induces a surface-

tension-driven shear flow (with vorticity perpendicular to the

direction of thermal gradient) that gives rise to the Taylor

circulation correction to the flow inside the microdroplet.18

The proximity of the microdroplet to the substrate interface

can lead to additional corrections. However, according to our

analytical and numerical calculations these corrections do not

reduce the symmetry of the flow and hence the number of

invariants, so the essential results of the model described above

should still apply.

All mixing experiments begin by merging a single microlitre-

scale undyed droplet with a single nanolitre-scale droplet

containing 0.5 mm diameter fluorescent microspheres, which

serve as passive tracers. After merger, the microspheres are

initially localized in a small region near the surface of

the combined droplet (Fig. 2A). Without further manipula-

tion, diffusion would govern mixing of the microspheres in

the combined droplet; the timescale required for diffusive

mixing is y100 days (the microspheres’ diffusion coefficient

of 7 6 10210 cm2 s21 is determined from the Stokes–

Einstein equation). To examine the effect of flow on

mixing, the combined droplet is driven along a prescribed

path on the interface with an average characteristic speed of

U # 0.1 cm s21. (Higher droplet speeds of a few cm s21

are possible with this system.) As a result, the microdroplet

flow is characterized by low Reynolds number y0.1 and

high Péclet number y107, placing the system in a laminar

flow regime where mixing is expected to be particularly

difficult.

Controlling both the composition and the path of the

droplet in the experiments permits selective testing of the

qualitative predictions of the model. The dipole, quadrupole

and Taylor flows are predicted to be significant in droplets

whose viscosities are comparable to that of the liquid

substrate.18 If such droplets are subsequently driven in a

single direction (time-independent driving), the dye is only

distributed over a two-dimensional shell inside the droplet

(Fig 2B–D). Such poor mixing is consistent with our

theoretical analysis predicting the existence of an adiabatic

invariant. In contrast, when the driving is made time-

dependent by periodically changing directions using the same

protocol employed in the model, the dye is advected

throughout the entire droplet volume (Fig. 3A and B). For a

small number of direction changes, the droplet is thoroughly

mixed, as predicted by the model. Complete three-dimensional

mixing is verified experimentally by observation of the nearly

uniform microsphere concentration at different planes within

the droplet (Fig. 3C). The microsphere concentration is

visualized by using a 50 mm-thick laser light sheet that is

scanned across the entire droplet interior. As another

independent test of the model, the dipole and quadrupole

flow contributions are turned off experimentally by making the

droplet viscosity much larger than the substrate viscosity. In

Fig. 2 Video images under monochromatic illumination at 488 nm

illustrating optically controlled driving of a low viscosity (kinematic

viscosity 0.12 cm2 s21, corresponding to mi/mo = 0.5) glycerol–

water microdroplet in a single direction. (A) A 1 nanolitre droplet

dyed with fluorescent microspheres is merged with a 14 nanolitre

undyed droplet. The combined droplet is subsequently driven in one

direction and imaged after traveling a distance of (B) 5 droplet

diameters (0.15 cm), (C) 8 diameters (0.24 cm) and (D) 100 diameters

(3.0 cm).
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this regime, experiments suggest that the remaining ingredients

of time-dependence via direction switching and Taylor flow

lead to much poorer chaotic mixing, with the mixed region

confined near the surface of the droplet (Fig. 3D–F), in accord

with theoretical predictions (see Fig. 1F).

Conclusion

The analysis presented above should have broad applicability.

On the most general level, one concludes that the existence and

number of invariants play a crucial role in determining the

mixing properties of the flow. In particular, in order to achieve

full three-dimensional mixing the flow within the droplet

should be designed to destroy all invariant surfaces in the

interior of the droplet. More specifically, the types of flows

that we have considered (dipole, quadrupole, and Taylor flow)

are the most common types of interior flows arising inside

spherical liquid microdroplets, regardless of the nature of

driving forces, so many details of our analysis should be

directly applicable to situations where microflows are driven

by other effects such as external shear, buoyancy, or electrical

fields. Finally, our results suggest that optically controlled

thermocapillary actuation can be used as a general approach

to performing many basic microfluidic operations such as

moving, merging and mixing liquid microdroplets, opening up

the road to a new generation of dynamically reprogrammable

batch microfluidic devices.
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Fig. 3 Video images illustrating optically controlled driving of 200 nanolitre glycerol–water droplets along a closed square path. Mixing of a low

viscosity (mi/mo = 0.4) droplet progresses rapidly as the droplet’s total path length increases from (A) 13 droplet diameters (0.9 cm) to (B)

39 diameters (2.7 cm). Laser light sheet visualization of the droplet’s interior (C) verifies that mixing distributes passive tracers (fluorescent

microspheres) uniformly throughout the droplet. By contrast, mixing of a high viscosity droplet (kinematic viscosity in the range of 2 cm2 s21

corresponding to mi/mo y10) seems to progress well as the droplet’s total path increases from (D) 13 droplet diameters (0.9 cm) to (E) 60 diameters

(4.2 cm); however, laser light sheet illumination demonstrates that passive tracers are well mixed only in a thin 2-D shell (F) near the droplet’s

surface.
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