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Electric Potential

3.1 Potential and Potential Energy

In the introductory mechanics course, we have seen that gravitational force from the
Earth on a particle of mass m located at a distance » from Earth’s center has an inverse-
square form:

P (3.1.1)

where G=6.67x10"""N-m?’/kg’ is the gravitational constant and Fis a unit vector

pointing radially outward. The Earth is assumed to be a uniform sphere of mass M. The
corresponding gravitational field g, defined as the gravitational force per unit mass, is

given by

_ oMy (3.1.2)

Notice that g only depends on M, the mass which creates the field, and 7, the distance
from M.

Figure 3.1.1

Consider moving a particle of mass m under the influence of gravity (Figure 3.1.1). The
work done by gravity in moving m from 4 to B is

) GMm |
W, =[F,-ds=["[ -2 \ar= " —omm| 1oL (313
& & z r r, T,
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A

The result shows that W, is independent of the path taken; it depends only on the

endpoints 4 and B. It is important to draw distinction between I, , the work done by the



field and W

ext?

negative sign: W, =W,

ext *

the work done by an external agent such as you. They simply differ by a

Near Earth’s surface, the gravitational field g is approximately constant, with a
magnitude g=GM /r,° ~9.8m/s’, where r, is the radius of Earth. The work done by
gravity in moving an object from height y, to y, (Figure 3.1.2) is

- B B VB
W, =ng -ds =L mg cos @ ds =—L mg cos @ ds =—LA mgdy=-mg(y,—y,) (3.1.4)

y
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Figure 3.1.2 Moving a mass m from 4 to B.

The result again is independent of the path, and is only a function of the change in
vertical height y, —y,.

In the examples above, if the path forms a closed loop, so that the object moves around
and then returns to where it starts off, the net work done by the gravitational field would

be zero, and we say that the gravitational force is conservative. More generally, a force F
is said to be conservative if its line integral around a closed loop vanishes:

$F-ds=0 (3.1.5)

When dealing with a conservative force, it is often convenient to introduce the concept of
potential energy U. The change in potential energy associated with a conservative force

F acting on an object as it moves from 4 to B is defined as:

AU:UB—UA:—ij-d§=—W (3.1.6)

where W is the work done by the force on the object. In the case of gravity, W =W, and
from Eq. (3.1.3), the potential energy can be written as

M
u, =-SMm (3.1.7)

r
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where U, 1s an arbitrary constant which depends on a reference point. It is often
convenient to choose a reference point where U, is equal to zero. In the gravitational
case, we choose infinity to be the reference point, withU,(r =) =0. Since U, depends
on the reference point chosen, it is only the potential energy difference AU, that has

physical importance. Near Earth’s surface where the gravitational field g is

approximately constant, as an object moves from the ground to a height 4, the change in
potential energy is AU, =+mgh, and the work done by gravity is W, = —mgh .

A concept which is closely related to potential energy is “potential.” From AU , the
gravitational potential can be obtained as

AUg B - _ B
AV, = =—jA(Fg/m)-ds=—Lg-ds (3.1.8)

£ m

Physically AV, represents the negative of the work done per unit mass by gravity to

move a particle from 4 to B.

Our treatment of electrostatics is remarkably similar to gravitation. The electrostatic force
F. given by Coulomb’s law also has an inverse-square form. In addition, it is also

conservative. In the presence of an electric field E, in analogy to the gravitational field
g , we define the electric potential difference between two points 4 and B as

B ~ B -
AV:—L (Fe/qo)-ds:—IAE-ds (3.1.9)

where ¢, is a test charge. The potential difference AV represents the amount of work
done per unit charge to move a test charge ¢, from point 4 to B, without changing its

kinetic energy. Again, electric potential should not be confused with electric potential
energy. The two quantities are related by

AU = q,AV (3.1.10)

The SI unit of electric potential is volt (V):

Ivolt =1 joule/coulomb (1 V=1 J/C) (3.1.11)

When dealing with systems at the atomic or molecular scale, a joule (J) often turns out to
be too large as an energy unit. A more useful scale is electron volt (eV), which is defined
as the energy an electron acquires (or loses) when moving through a potential difference
of one volt:



1eV=(1.6x10""C)(1V)=1.6x10"1] (3.1.12)

3.2 Electric Potential in a Uniform Field

Consider a charge +¢ moving in the direction of a uniform electric field E = E, (—j) , as
shown in Figure 3.2.1(a).

s, — A
- d
4 _irm
BH—+ BQ—
E

LN

Figure 3.2.1 (a) A charge ¢ which moves in the direction of a constant electric field E.
(b) A mass m that moves in the direction of a constant gravitational field g .

Since the path taken is parallel to E, the potential difference between points 4 and B is
given by

B — B
AV =V, ~V,=~[ E-d§=—E,| ds=—-Ed <0 (3.2.1)

implying that point B is at a lower potential compared to 4. In fact, electric field lines
always point from higher potential to lower. The change in potential energy is
AU=U,-U,=—qE, . Since g >0,we have AU <0, which implies that the potential

energy of a positive charge decreases as it moves along the direction of the electric field.
The corresponding gravitational analogy, depicted in Figure 3.2.1(b), is that a mass m
loses potential energy (AU =-mgd ) as it moves in the direction of the gravitational
field g.

Figure 3.2.2 Potential difference due to a uniform electric field

What happens if the path from 4 to B is not parallel toE, but instead at an angle 6, as
shown in Figure 3.2.27 In that case, the potential difference becomes
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AV:VB_VA:_J'j]T:.dgz—]Tji:—EoscosH:— o (3.2.2)

Note that y increase downward in Figure 3.2.2. Here we see once more that moving along

the direction of the electric field E leads to a lower electric potential. What would the
change in potential be if the path were 4 — C — B ? In this case, the potential difference
consists of two contributions, one for each segment of the path:

AV = AV, + AV, (3.2.3)

When moving from 4 to C, the change in potential is AV, =—E;y. On the other hand,

when going from C to B, AV, = 0since the path is perpendicular to the direction of E.
Thus, the same result is obtained irrespective of the path taken, consistent with the fact
that E is conservative.

Notice that for the path 4 - C — B, work is done by the field only along the segment
AC which is parallel to the field lines. Points B and C are at the same electric potential,
ie.,V, =V.. Since AU =qAV , this means that no work is required in moving a charge

from B to C. In fact, all points along the straight line connecting B and C are on the same
“equipotential line.” A more complete discussion of equipotential will be given in
Section 3.5.

3.3 Electric Potential due to Point Charges

Next, let’s compute the potential difference between two points 4 and B due to a charge
+(Q. The electric field produced by Q is E =(Q/4re,r*)F , where T is a unit vector
pointing toward the field point.

Figure 3.3.1 Potential difference between two points due to a point charge Q.

From Figure 3.3.1, we see that r-ds = dscos@ = dr , which gives

AV =V, ~V, = Z Pds=-[ © 4-Y (i—ij (3.3.1)

1 Arer’ 1 dre’ dre,
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Once again, the potential difference AV depends only on the endpoints, independent of
the choice of path taken.

As in the case of gravity, only the difference in electrical potential is physically
meaningful, and one may choose a reference point and set the potential there to be zero.
In practice, it is often convenient to choose the reference point to be at infinity, so that the
electric potential at a point P becomes

v,=—{"E-ds (3.3.2)

With this reference, the electric potential at a distance » away from a point charge Q
becomes

Vr)= 4;9 % (3.3.3)

When more than one point charge is present, by applying the superposition principle, the
total electric potential is simply the sum of potentials due to individual charges:

| | |
V(r)= Z%:keZ% (3.3.4)

dre,

A summary of comparison between gravitation and electrostatics is tabulated below:

Gravitation Electrostatics
Mass m Charge ¢
Gravitational force Fg = —G%f‘ Coulomb force F, =k, %f‘
Gravitational field g = Fg /m Electric field E = l:“e /q

Potential energy change AU = —J.j F . 'ds | Potential energy change AU =— Jj 13‘6 -ds

Gravitational potential V, = —Ij g-ds Electric Potential V' = —Ij E-ds
M
Fora source M: V, =— G For a source Q: V =k, Q
r r
|AU, |[=mgd (constant g) |AU |=gEd (constant E )
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3.3.1 Potential Energy in a System of Charges

If a system of charges is assembled by an external agent, then AU = -W =+W__, . That is,

the change in potential energy of the system is the work that must be put in by an external
agent to assemble the configuration. A simple example is lifting a mass m through a
height 4. The work done by an external agent you, is +mgh (The gravitational field

does work —mgh). The charges are brought in from infinity without acceleration i.e. they
are at rest at the end of the process. Let’s start with just two charges g, and ¢,. Let the

potential due to ¢, at a point Pbe V| (Figure 3.3.2).

q1

Figure 3.3.2 Two point charges separated by a distance 7, .

The work W, done by an agent in bringing the second charge g, from infinity to P is
then W, =¢q,V,. (No work is required to set up the first charge and #, =0 ). Since

V. =q,/4rs,n,, where r, is the distance measured from ¢, to P, we have

1
U, =W, :4—M (3.3.5)
&y o

If g, and g, have the same sign, positive work must be done to overcome the electrostatic
repulsion and the potential energy of the system is positive, U,, > 0. On the other hand, if

the signs are opposite, then U,, <0 due to the attractive force between the charges.

q1

Figure 3.3.3 A system of three point charges.

To add a third charge g3 to the system (Figure 3.3.3), the work required is
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W,=q,(V,+V,)=-B- [ﬂﬂ—zj (3.3.6)

drey\ sy T

The potential energy of this configuration is then

1
U=W,+W,= (‘MZ + 4% D j:U12+U13+U23 (33.7)
dre,\ ny  hy o Ty

The equation shows that the total potential energy is simply the sum of the contributions
from distinct pairs. Generalizing to a system of N charges, we have

ZN:ZN: 99 (3.3.8)

where the constraint j>i is placed to avoid double counting each pair. Alternatively,
one may count each pair twice and divide the result by 2. This leads to

qu’q’ Zl lzz{ Zq,V(r) (33.9)

87[80 i=1 7

where V' (r,), the quantity in the parenthesis, is the potential at r, (location of g;) due to all
the other charges.

3.4 Continuous Charge Distribution

If the charge distribution is continuous, the potential at a point P can be found by
summing over the contributions from individual differential elements of charge dg .

Agq

\i'
\\
.

Pe

AE

Figure 3.4.1 Continuous charge distribution
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Consider the charge distribution shown in Figure 3.4.1. Taking infinity as our reference
point with zero potential, the electric potential at P due to dgq is

L dg

dV = (3.4.1)
dre, r
Summing over contributions from all differential elements, we have
1 ¢d
y=—- [ (3.4.2)
dre,* r

3.5 Deriving Electric Field from the Electric Potential

In Eq. (3.1.9) we established the relation between E and V. If we consider two points
which are separated by a small distance ds , the following differential form is obtained:

dV =-E-ds (3.5.1)
In Cartesian coordinates, E = Exi + Eyj +Ekand ds = dxi+dyj+dzk, we have
dv :(Exi+Eyj+Ezﬁ)-(dxi+dyj+dzf(): Edx+Edy+Edz  (352)

which implies

g =9 OV g9V (3.5.3)

o’ T oy

By introducing a differential quantity called the “del (gradient) operator”

vzi°+ij+£f< (3.5.4)
ox 0Oy 0z
the electric field can be written as
E-gi+EjrEk=— i+ 50 j o L5+ L5 Sk [ =—vy
g ox Oy 0z ox 0y Oz
E=-VV (3.5.5)

Notice that V operates on a scalar quantity (electric potential) and results in a vector

quantity (electric field). Mathematically, we can think of E as the negative of the
gradient of the electric potential V' . Physically, the negative sign implies that if
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V increases as a positive charge moves along some direction, say x, with 0V /ox >0,
then there is a non-vanishing component of E in the opposite direction (—£, #0). In the

case of gravity, if the gravitational potential increases when a mass is lifted a distance #4,
the gravitational force must be downward.

If the charge distribution possesses spherical symmetry, then the resulting electric field is
a function of the radial distance r, i.e., E =FEr. In this case, dV =—E dr. If V(r)is

known, then E may be obtained as

E:Erf*:—(d—ij' (3.5.6)
dr

For example, the electric potential due to a point charge g is V' (r) = q/4xe,r . Using the

above formula, the electric field is simply E = (g/ drer)F.

3.5.1 Gradient and Equipotentials

Suppose a system in two dimensions has an electric potential V'(x,y) . The curves
characterized by constant V'(x,y) are called equipotential curves. Examples of
equipotential curves are depicted in Figure 3.5.1 below.

y

o
Figure 3.5.1 Equipotential curves

In three dimensions we have equipotential surfaces and they are described by
V(x,y,z) =constant. Since E=-V V, we can show that the direction of E is always

perpendicular to the equipotential through the point. Below we give a proof in two
dimensions. Generalization to three dimensions is straightforward.

Proof:

Referring to Figure 3.5.2, let the potential at a point P(x,y)be V(x,y). How much is
V' changed at a neighboring point P(x + dx, y +dy)? Let the difference be written as



dV =V(x+dx,y+dy)-V(x,y)

3.5.7
= V(x,y)+a—de+a—de+~- —V(x,y)za—de+a—de ( )
Ox oy Ox oy

dy [ tangent

line

o

Figure 3.5.2 Change in ¥ when moving from one equipotential curve to another

With the displacement vector given by d s = dxi+ dyj , We can rewrite dV as

av = 25,975 -(dxi+dyj)=(VV)-ds=—E-d§ (3.5.8)
ox oy

If the displacement ds is along the tangent to the equipotential curve through P(x,y),
then dV =0 because V' is constant everywhere on the curve. This implies that E Lds

along the equipotential curve. That is, E is perpendicular to the equipotential. In Figure
3.5.3 we illustrate some examples of equipotential curves. In three dimensions they
become equipotential surfaces. From Eq. (3.5.8), we also see that the change in potential
dV attains a maximum when the gradientV V is parallel to d's :

dv
—_ =V S.
max(dsj a4 (3.5.9)

Physically, this means that V J" always points in the direction of maximum rate of change
of V with respect to the displacement s.

\\\\\\\\
\\\\\\\\
\\\\\\\\
\\\\\\\\
\\\\\\\\
\\\\\\\\

\\\\\\\\
\\\\\\\\
\\\\\\\\
\\\\\\\\
\\\\\\\\
\\\\\\\\
\\\\\\\\

Figure 3.5.3 Equipotential curves and electric field lines for (a) a constant E field, (b) a
point charge, and (c¢) an electric dipole.
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The properties of equipotential surfaces can be summarized as follows:

(i)

(i)

(iii)

(iv)

The electric field lines are perpendicular to the equipotentials and point from
higher to lower potentials.

By symmetry, the equipotential surfaces produced by a point charge form a family
of concentric spheres, and for constant electric field, a family of planes
perpendicular to the field lines.

The tangential component of the electric field along the equipotential surface is
zero, otherwise non-vanishing work would be done to move a charge from one

point on the surface to the other.

No work is required to move a particle along an equipotential surface.

A useful analogy for equipotential curves is a topographic map (Figure 3.5.4). Each
contour line on the map represents a fixed elevation above sea level. Mathematically it is
expressed as z = f(x,y)=constant. Since the gravitational potential near the surface of

Earth is V, = gz, these curves correspond to gravitational equipotentials.

e 84
lllllll :‘\‘\ \‘ @!
K17
s <
— ,‘:47 y
x P(x,y)

Figure 3.5.4 A topographic map

Example 3.1: Uniformly Charged Rod

Consider a non-conducting rod of length ¢ having a uniform charge density A . Find the
electric potential at P, a perpendicular distance y above the midpoint of the rod.

Figure 3.5.5 A non-conducting rod of length ¢ and uniform charge density 4 .
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Solution:

Consider a differential element of length dx" which carries a charge dg = Adx’, as shown
in Figure 3.5.5. The source element is located at(x’,0), while the field point P is located

on the y-axis at(0, ) . The distance from dx’ to P is r = (x"* +y*)"*. Its contribution to

the potential is given by

JV - 1 dg _ 1 Q/ldxz
drey, r  Ame, (X +y7)

1/2

Taking V' to be zero at infinity, the total potential due to the entire rod is

.
4re,

) \/xr2+y2 dre,

P 1{ (012) (11 2) + 57 }

C4me, | —(0/2) (0127 + )

/2

—0/2

(3.5.10)

where we have used the integration formula

A plotof V(y)/V,, where V, = A/4x¢,, as a function of y/¢ is shown in Figure 3.5.6

Vo),

i

4 =9 2 4

Figure 3.5.6 Electric potential along the axis that passes through the midpoint of a non-
conducting rod.

In the limit /> y, the potential becomes
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A ln_(€/2)+€/2w/l+(2y/€)2 4 [ asfireyy?
Ame, | (012 + 0121+ @2y 0 | 478y | 141+ (2p/ 1)
2
~— I 22 == 2 in f—z (3.5.11)
4rs, 2y° /¢ 4rs, v

A 1
= In| —
2re, y

The corresponding electric field can be obtained as

v (/2

E =——=
0y 2mEy (012 +y?

in complete agreement with the result obtained in Eq. (2.10.9).

Example 3.2: Uniformly Charged Ring

Consider a uniformly charged ring of radius R and charge density A (Figure 3.5.7). What
is the electric potential at a distance z from the central axis?

z

Figure 3.5.7 A non-conducting ring of radius R with uniform charge density A .

Solution:

Consider a small differential element d/=Rd¢" on the ring. The element carries a
charge dg=Adl(=ARd¢', and its contribution to the electric potential at P is

1 dg_ 1 R4y

dV = =
dre, v 4re, \/R2+zz

The electric potential at P due to the entire ring is
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2R 1 O (3.5.12)

\/R2+z CJS 6o R 120 478, R + 2

where we have substituted Q =27 RA for the total charge on the ring. In the limit z > R,

V:jdV_

the potential approaches its “point-charge” limit:

Y

4re, z

V =

From Eq. (3.5.12), the z-component of the electric field may be obtained as

v 0 1 0 1 Oz
R = o | 3.5.13
T oz oz ( 4rey R +2° ] 4re, (R*+2°)" ( )

in agreement with Eq. (2.10.14).

Example 3.3: Uniformly Charged Disk

Consider a uniformly charged disk of radius R and charge density o lying in the xy-
plane. What is the electric potential at a distance z from the central axis?

Figure 3.4.3 A non-conducting disk of radius R and uniform charge density o.
Solution:

Consider a circular ring of radius 7' and width dr’ . The charge on the ring is
dq'=o0dA' = oc(2zr'dr'). The field point P is located along the z -axis a distance z

from the plane of the disk. From the figure, we also see that the distance from a point on
the ring to P is 7 = (#'* +z*)""*. Therefore, the contribution to the electric potential at P
is

1 dq_ 1 oQar'dr’)

Are, r Ame, F? + 22

dV =
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By summing over all the rings that make up the disk, we have

zzi[\/R2+zz—|z|} (3.5.14)

0 2N

V— O J‘R 272'1”,611}"’ _ O |: ]/’2+22J
4mey 0 42 28

In the limit |z |> R,
) 1/2 2
VR + 77 :|z|[1+R—2j :|z|(l+R—2+~--J,
z 2z

and the potential simplifies to the point-charge limit:

o R 1 o@xzR)_ 1 0
2¢, 2|z| 4rme, |z| 4re, |z |

As expected, at large distance, the potential due to a non-conducting charged disk is the
same as that of a point charge (. A comparison of the electric potentials of the disk and a
point charge is shown in Figure 3.4.4.

VIV,

/‘ point charge

disk
1

-3 =248 -2 1.5 -1 -0.5 0.5 1 1.5 2 2.5 3

ZIR

Figure 3.4.4 Comparison of the electric potentials of a non-conducting disk and a point
charge. The electric potential is measured in terms of V, = Q /4 R .

Note that the electric potential at the center of the disk (z =0) is finite, and its value is

pooR_Q R__130

= = 3.5.15
° 2¢ 7R 2¢, 4nmg, R ° ( )

This is the amount of work that needs to be done to bring a unit charge from infinity and
place it at the center of the disk.

The corresponding electric field at P can be obtained as:

oV o | :z z
E=-—-2"-°>|=___ = 3.5.16
’ 0z 25([|Z| \/R2+zz} ( :

3-17



which agrees with Eq. (2.10.18). In the limit R>>z, the above equation becomes
E_=o0/2¢,, which is the electric field for an infinitely large non-conducting sheet.

Example 3.4: Calculating Electric Field from Electric Potential

Suppose the electric potential due to a certain charge distribution can be written in
Cartesian Coordinates as

V(x,y,z) = Ax*y* + Bxyz
where A4, B and C are constants. What is the associated electric field?

Solution:

The electric field can be found by using Eq. (3.5.3):

E. :—Ej—Vz—ZAxy2 —Byz
ox
E, :—8—V:—2szy—sz
Y ay
ov
E =——=-Bx
z o Y

Therefore, the electric field is E = (-24xy* — Byz) i- (24x° y + Bxz) j — Bxy k.
3.6 Summary

e A force F is conservative if the line integral of the force around a closed loop
vanishes:

cj}f?-d§=0

e The change in potential energy associated with a conservative force F acting on an
object as it moves from 4 to B is

B" —
AU=U,-U,=-[ F-ds
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The electric potential difference AV between points 4 and B in an electric field E is
given by

AU _J-B~

AV =V, -V, = E-ds
9 4

The quantity represents the amount of work done per unit charge to move a test
charge ¢, from point 4 to B, without changing its kinetic energy.

The electric potential due to a point charge Q at a distance » away from the charge is

y-12

drg, r

For a collection of charges, using the superposition principle, the electric potential is

1
>

47r€0 ;

The potential energy associated with two point charges g, and g, separated by a

distance 7, is

U - 1 ql QZ
4rg, 1,

From the electric potential V', the electric field may be obtained by taking the
gradient of V' :

E=-VV

In Cartesian coordinates, the components may be written as

The electric potential due to a continuous charge distribution is

V= 1 Iﬂ
drg,? r
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3.7 Problem-Solving Strategy: Calculating Electric Potential
In this chapter, we showed how electric potential can be calculated for both the discrete
and continuous charge distributions. Unlike electric field, electric potential is a scalar

quantity. For the discrete distribution, we apply the superposition principle and sum over
individual contributions:

=k >4
i
For the continuous distribution, we must evaluate the integral
d
v=k[
r

In analogy to the case of computing the electric field, we use the following steps to
complete the integration:

(1) Start with d¥ =k, 49

r

(2) Rewrite the charge element dg as

Adl (length)
dg=<0dA (area)
pdV (volume)

depending on whether the charge is distributed over a length, an area, or a volume.
(3) Substitute dg into the expression fordV .

(4) Specify an appropriate coordinate system and express the differential element (dl, dA4
or dV )andr in terms of the coordinates (see Table 2.1.)

(5) Rewrite dV' in terms of the integration variable.

(6) Complete the integration to obtain V.

Using the result obtained for V', one may calculate the electric field by E=-VV .
Furthermore, the accuracy of the result can be readily checked by choosing a point P
which lies sufficiently far away from the charge distribution. In this limit, if the charge
distribution is of finite extent, the field should behave as if the distribution were a point

charge, and falls off as 1/7°.
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Below we illustrate how the above methodologies can be employed to compute the
electric potential for a line of charge, a ring of charge and a uniformly charged disk.

Charged Rod

Charged Ring

Charged disk

Figure

(2) Express dg in

terms of charge dg = Adx' dg=Adl

density

(3) Substitute dg '

into expression for dV =k, Adx dV =k, Adl dV =k, odd
dv r r r
(4) Rewrite » and the ' _ ' _ 1 g
differential element dx dl=Rd¢ dA =2zxr'dr

in terms of the
appropriate

coordinates

r=4x" +y2

r=NR*+z°

2 2
r=~Nr‘+z

. Adx' ARdY 2ror' dr’
(5) Rewrite dV/ WV =k, e dV=kem dV:kem
RA R Fdr
V=k————¢d¢' - 7
V:L 2 dx ‘ (R2 +Z2)1/2 Cﬁ ¢ V_kezm‘[o (7’"2 +Zz)1/2
drey 2 [y 2 (27RA)
= k e————— — 2 —
(6) Integrate to get V' lln{ T 7 N Zkew(\lz +R |Z|)
dmey | H(012)+4(L12) +) 2%
=k 9 = eQ(\/ZZ+R2—|Z|)
R +7° R
g -9
Derive E from V' Y Oy E —— or k, Oz __oV _2%Q(z =
A (/2 T (RP+2) & Rzl J2+R
2zey \J(012) +y
- o k k k
Point-charge  limit E, =~ eZQ p> 0 E ~ 0 > R E ~ 0 > R
for £ % g2 =2
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3.8 Solved Problems
3.8.1 Electric Potential Due to a System of Two Charges

Consider a system of two charges shown in Figure 3.8.1.

Figure 3.8.1 Electric dipole
Find the electric potential at an arbitrary point on the x axis and make a plot.
Solution:

The electric potential can be found by the superposition principle. At a point on the x
axis, we have

V(x):1q+1<—q>_q{1 1}

drey |x—a| 4rme,|x+al| - drey | | x—a| |x+a|
The above expression may be rewritten as

Vix) 1 1
Vo Ix/a-1| |x/a+1]|

where V, = q/4re,a . The plot of the dimensionless electric potential as a function of x/a.
is depicted in Figure 3.8.2.

V) 1V,
40

20

Xla

Figure 3.8.2

3-22



As can be seen from the graph, V' (x) diverges at x/a==%1, where the charges are
located.

3.8.2 Electric Dipole Potential
Consider an electric dipole along the y-axis, as shown in the Figure 3.8.3. Find the

electric potential V' at a point P in the x-y plane, and use V' to derive the corresponding
electric field.

Figure 3.8.3

where ”12 =r? +a’ F2racos@. If we take the limit where > a, then

izl[u(a/r)zJ—rz(a/r)cose]’”z :l{l—l(a/r)z i(a/r)cos(9+--1
v, r r 2

and the dipole potential can be approximated as

y=—14= {l—l(a/r)z+(a/r)cosz9—1+l(a/r)2+(a/r)cos:9+---}
dre,r 2 2
q 2acos@ pcos®  p-r

~

dre,r r dreyr’  Aney’

where p =2agq 3 is the electric dipole moment. In spherical polar coordinates, the gradient
operator is
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Since the potential is now a function of both » and €, the electric field will have
components along the r and 0 directions. Using E=-VV , we have

E =0V _peost -y 1OV _psind
or 2reyr r o6 Areyr

3.8.3 Electric Potential of an Annulus

Consider an annulus of uniform charge density o, as shown in Figure 3.8.4. Find the
electric potential at a point P along the symmetric axis.

Pe

b

:Cl

Figure 3.8.4 An annulus of uniform charge density.
Solution:

Consider a small differential element dA4 at a distance » away from point P. The amount
of charge contained in d4 is given by

dg=ocdA=oc(r'df)dr'
Its contribution to the electric potential at P is

1 dq 1 or'dr'dd
dV = — =
dre, r 4reg, \/r'2+22

Integrating over the entire annulus, we obtain

2 r'dr'd@ 2mo b r'ds o
_ _ b iz g 2}
.[o \/r'2+22 4re, L \/r'2+z2 2¢, [\/ +z \/a +z

o b
V= 4re, L

where we have made used of the integral
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e
S +z

Notice that in the limit a — 0 and b — R, the potential becomes
Vzi[\/R2 +ZZ—|Z|j|
2¢,
which coincides with the result of a non-conducting disk of radius R shown in Eq.
(3.5.14).

3.8.4 Charge Moving Near a Charged Wire

A thin rod extends along the z-axis from z=-d toz=d . The rod carries a positive
charge Q uniformly distributed along its length 2d with charge density A =Q/2d .

(a) Calculate the electric potential at a point z > d along the z-axis.

(b) What is the change in potential energy if an electron moves from z =4d to z=3d ?
(c) If the electron started out at rest at the point z =4d , what is its velocity at z =3d ?
Solutions:

(a) For simplicity, let’s set the potential to be zero at infinity, /' (0)=0. Consider an
infinitesimal charge element dg = Adz' located at a distance z' along the z-axis. Its
contribution to the electric potential at a pointz >d is

A dz'
dre, z—z'

dV =

Integrating over the entire length of the rod, we obtain

V(z)= A jz—d dz' A ln(ZerJ

dre, v z—z" 4Ams, \z—d

(b) Using the result derived in (a), the electrical potential atz =4d is

Viz—ady=2 ln[4d+d]: A ln(é)
dre, \4d-d) 4rs, \3

Similarly, the electrical potential atz = 3d is
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Vi(z=3d)=—2 1n(3d+dj= A 2
dre, \3d-d) A4re,

The electric potential difference between the two points is

AV =V (z=3d)-V(z=4d) = 4’1 ln(§j>0

€y

Using the fact that the electric potential difference AV is equal to the change in potential
energy per unit charge, we have

AU=qAV=—|e|/11n[§)<O
dre, \5

where g =—|e|1is the charge of the electron.

(c) If the electron starts out at rest atz =4d then the change in kinetic energy is

AK = %mvf2

By conservation of energy, the change in kinetic energy is

AKz_Ayzﬂm(ﬁ}o
4re,

Thus, the magnitude of the velocity at z =34 is
2]e| 4 [6)
v, = |[———In| =
' dme, m \ 5
3.9 Conceptual Questions

1. What is the difference between electric potential and electric potential energy?

2. A uniform electric field is parallel to the x-axis. In what direction can a charge be
displaced in this field without any external work being done on the charge?

3. Is it safe to stay in an automobile with a metal body during severe thunderstorm?
Explain.
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4. Why are equipotential surfaces always perpendicular to electric field lines?

5. The electric field inside a hollow, uniformly charged sphere is zero. Does this imply
that the potential is zero inside the sphere?

3.10 Additional Problems

3.10.1 Cube

How much work is done to assemble eight identical point charges, each of magnitude g,
at the corners of a cube of side a?

3.10.2 Three Charges

Three charges with ¢ =3.00x10""" C and ¢, =6x10" C are placed on the x-axis, as
shown in the figure 3.10.1. The distance between ¢ and ¢, is a = 0.600 m.

X

Figure 3.10.1
(a) What is the net force exerted on ¢g by the other two charges ¢;?
(b) What is the electric field at the origin due to the two charges ¢;?

(c) What is the electric potential at the origin due to the two charges ¢;?

3.10.3 Work Done on Charges

Two charges ¢, =3.0uC and ¢, =—4.0xC initially are separated by a distance

1, =2.0cm. An external agent moves the charges until they are r, =5.0cm apart.

(a) How much work is done by the electric field in moving the charges from 7, to r,? Is

the work positive or negative?

(b) How much work is done by the external agent in moving the charges from 7, to r,?

Is the work positive or negative?
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(c) What is the potential energy of the initial state where the charges are 7, =2.0cm
apart?

(d) What is the potential energy of the final state where the charges are r, =5.0cm apart?

(e) What is the change in potential energy from the initial state to the final state?

3.10.4 Calculating E from V

Suppose in some region of space the electric potential is given by

Ea’z

Vix,y,z)=V,—E z+
( Yy ) 0 0 (x2+y2+22)

3/2

where a is a constant with dimensions of length. Find the x, y, and the z-components of
the associated electric field.

3.10.5 Electric Potential of a Rod

A rod of length L lies along the x-axis with its left end at the origin and has a non-
uniform charge density 4 = ax ,where « is a positive constant.

Figure 3.10.2
(a) What are the dimensions of « ?
(b) Calculate the electric potential at A.

(c) Calculate the electric potential at point B that lies along the perpendicular bisector of
the rod a distance b above the x-axis.
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3.10.6 Electric Potential
Suppose that the electric potential in some region of space is given by
V(x,y,z)=V,exp(—=k|z|)coskx.

Find the electric field everywhere. Sketch the electric field lines in the x — z plane.

3.10.7 Calculating Electric Field from the Electric Potential

Suppose that the electric potential varies along the x-axis as shown in Figure 3.10.3
below.

V(volts)
b I
I——— — — @ —i i i i o N R e
R & N A T
PN e
B A RN T A A 4
: i i c d E
I A e
A — —————x(m)
-3 -2 -1 1 2 3
o T s v
O T =" D N
a | | | | :
A - Figure 3.10.3

The potential does not vary in the y- or z -direction. Of the intervals shown (ignore the
behavior at the end points of the intervals), determine the intervals in which £ has

(a) its greatest absolute value. [Ans: 25 V/m in interval ab.]
(b) its least. [Ans: (b) 0 V/m in interval cd.]

(c) Plot E_ as a function of x.

(d) What sort of charge distributions would produce these kinds of changes in the
potential? Where are they located? [Ans: sheets of charge extending in the yz direction
located at points b, ¢, d, etc. along the x-axis. Note again that a sheet of charge with
charge per unit area o will always produce a jump in the normal component of the
electric field of magnitude o/ ¢g,].
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3.10.8 Electric Potential and Electric Potential Energy

A right isosceles triangle of side a has charges ¢, +2q and — arranged on its vertices, as
shown in Figure 3.10.4.

Figure 3.10.4

(a) What is the electric potential at point P, midway between the line connecting the +¢q
and —q charges, assuming that /' = 0 at infinity? [Ans: q/\/E EHa. |

(b) What is the potential energy U of this configuration of three charges? What is the
significance of the sign of your answer? [Ans: —q2/4\/§ meya, the negative sign means

that work was done on the agent who assembled these charges in moving them in from
infinity.]

(c) A fourth charge with charge +3¢ is slowly moved in from infinity to point P. How
much work must be done in this process? What is the significance of the sign of your

answer? [Ans: +3q2/\/§ 7eya, the positive sign means that work was done by the agent
who moved this charge in from infinity.]

3.10.9. Electric Field, Potential and Energy

Three charges, +50, —50, and +3Q are located on the y-axis at y = +4a, y = 0, and
y =—4a , respectively. The point P is on the x-axis at x = 3a.

(a) How much energy did it take to assemble these charges?
(b) What are the x, y, and z components of the electric field E at P?
(c) What is the electric potential V at point P, taking V' = 0 at infinity?

(d) A fourth charge of +Q is brought to P from infinity. What are the x, y, and z
components of the force F that is exerted on it by the other three charges?

(¢) How much work was done (by the external agent) in moving the fourth charge +Q
from infinity to P?
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