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1 Supporting Mathematics 
 
1.1 Special Functions 
 
1.1.1 The Complete Elliptic Integral 
 

The general complete elliptic integral is  
 

∫
++

+
≡

2/

0
22222

22

sincos)sin(cos

)sincos(),,,(
π

ββββ

βββ

c

c
kp

dbabapkcel   (1.1.1.1) 

 
We refer to this definition in a number of places in what follows, for example in Section 
4.2.1.  Some useful relations for cel are: 
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where K and E are Legendre’s standard forms of the complete elliptic integrals of the first 
and second kind.   Some associated elliptic integrals are 
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1.1.2 Code for Computing The Complete Elliptical Integral 
 
package teal.math; 
 
public class SpecialFunctions { 
/** 
     * Elliptic integrals:  
     * This algorithm for the calculation of the complete elliptic 
     * integral (CEI) is presented in papers by Ronald Bulirsch, 
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     * Numerical Calculation of Elliptic Integrals and  
     * Elliptic Functions, Numerische Mathematik 7, 
     * 78-90 (1965) and Ronald Bulirsch: Numerical Calculation  
     * of Elliptic Integrals and Elliptic Functions III, 
     * Numerische Mathematik 13,305-315 (1969).  The definition 
     * of the complete elliptic integral is given in equation (1.1.1.1) 
     * of the document " TEAL Physics and Mathematics Documentation " 
     */ 
 
public static double ellipticIntegral(double kcc, double pp, double aa, double bb, double 
accuracy) { 
        double ca, kc, p, a, b, e, m, f, q, g; 
        ca = accuracy; 
        kc = kcc; 
        p = pp; 
        a = aa; 
        b = bb; 
        if ( kc != 0.0 )  
        { 
         kc = Math.abs(kc); 
         e = kc; 
         m = 1.0; 
         if (p > 0.)  
         { 
          p = Math.sqrt(p); 
          b = b/p; 
         }  
         else  
         { 
          f = Math.pow(kc,2.0); 
          q = 1.-f; 
          g = 1.-p; 
          f = f-p; 
          q = q*(b-a*p); 
          p = Math.sqrt(f/g); 
          a = (a-b)/g; 
          b = -q/(p*Math.pow(g,2.0)) + a*p; 
         } 
         f = a; 
         a = b/p + a; 
         g = e/p; 
         b = 2.0*(f*g + b); 
         p = p + g; 
         g = m; 
         m = m + kc; 
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         while (Math.abs(g - kc) > g*ca)  
         { 
          kc = 2.0*Math.sqrt(e); 
          e = kc*m; 
          f = a; 
          a = b/p + a; 
          g = e/p; 
          b = 2.0*(f*g + b); 
          p = p + g; 
          g = m; 
          m = m + kc; 
         } 
          
         return (Math.PI / 2.)*(a*m + b)/(m*(m + p)); 
          
        } 
         
        else  
        { 
         return 0.0; 
        } 
    } 
 
} 
 
1.2 Geometry 
 
1.2.1 Vector Transformations For An EM Object With An Axis Of Symmetry 
 
 We frequently want to find the coordinates of an observation point in a “primed” 
coordinate system centered on an electromagnetic object that has an axis of symmetry, 
with the z prime axis along the axis of symmetry.  This occurs, for example, when the 
expression for the field of that object takes on an especially simple form in this “primed” 
coordinate system (e.g., the field of a point magnetic dipole). 
 

To get the coordinates of an arbitrary observation point in this primed coordinate 
system, we do the following.  Let M be the symmetry axis of the electromagnetic object 
(for example, the magnetic dipole moment vector).  Let  Xobject be the position of the 
object, and X the position of the observation point.  Define the vectors  
 

M/ˆ MZ =′                    objectX-XR = Z)Z(R-RR ′′⋅= ˆˆ
perp perpperp R/ˆ R=′ρ       (1.2.1.1) 

 
Then if we compute and R⋅′ρ̂ RZ ⋅′ˆ , we have the coordinates of our observation point 
in a frame in which the electromagnetic object is at the origin, the z prime axis is along 
the symmetry axis of the object, and the ρ prime axis is in the plane defined by the 
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symmetry axis M and the direction to the observer R, and perpendicular to the symmetry 
axis.    We then use these coordinates to calculate by means of relatively simple formulas  
the components of the field in this coordinate system, say and .  We then 
reconstruct the field in our “unprimed” original coordinate system using 

ρ′B zB ′

 
ρ′+′= ′′ ˆˆ

ρBBz Z B                                                 (1.2.1.2) 
 

1.2.2 Point-Normal Form for a Line in Two Dimensions 
 

1.2.2.1 Defining Equation 
 

 Given two endpoints A and B (lines do not have endpoints, but this is a typical 
application), it is often useful to have a form of the line based on a perpendicular vector 
called the normal. The normal specifies the "facing" direction of the line or the inside-
outside half spaces of the line created by the spaces on each side of the line. The normal 
is said to be the "front facing" direction of the line or the direction of the "inside" space.  
However, the normal can be facing either direction (there are two direction perpendicular 
to a line in two dimensions) so the "inside direction" or "front-facing" normal is merely a 
convention to be determined by the programmer. The method that follows will be a 
consistent representation for all lines and represents the normal as a 90 degree rotation of 
the line in a counter-clockwise direction.  
 

 

 
Figure 1.2-1:  Point normal form of equation for line 
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The Point-Normal form of a line is ˆ D⋅ =n p , where the vector p locates any point 
on the line.  The normal is simply the direction vector of the line from point A to point B 

 rotated 90 degrees in a counter-clockwise direction.  The equation ( −B A) ˆ D⋅ =n p  is 
the mathematical statement that the dot product of the normal to the line and any point on 
the line equals the distance to the line from the origin along the normal vector (see Figure 
1.2-1).  To find D, we can use the normal n, the point A, and the Point-Normal equation 
to derive the following expression.   
 

ˆ x x yD n A n= ⋅ = +n A yA                                            (1.2.2.1.1) 
 
For clarity, if we expand out the Point-Normal form of the line we will obtain the more 
common line equation in the form    y = a x + b 
 

 ˆ               x
x y

y y

n DD n x n y y x
n n

⎡ ⎤ ⎡
= ⋅ = + ⇒ = − +

⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

n p
⎦

t

                    (1.2.2.1.2) 

 
1.2.2.2  Intersection with a Line 

 
A “ray” is defined parametrically by the equation ( )t = +p s d  p(t) where p(t) is a 

point  on the line at "time" t, s is the starting point, and d is the direction vector of the ray 
(that is d is a unit vector in the direction of the ray).  Thus our “time” t must have 
dimensions of distance.  For example, the line from A to B can be defined  parametrically 

as ( )( )t = +
B - Ap A
B - A

t  where 0 <= t <= B - A  and p(t) are all of the points on the line 

from A to B.  However, if t is allowed to go beyond these boundaries (in a positive 
direction) it will define an infinite ray in the direction from A to B. 
 

We can easily determine the "hit time" t where our general ray intersects a 
particular line by substituting the parametric ray function into the point-normal form of 
the line.  Since p(t) defines a point on the ray at time t and the Point-Normal equation 
defines all points p on the line, substituting this value into the Point-Normal equation 
results in a function of t that can be used to determine the "hit time" t where the ray's 
point satisfies the Point-Normal equation of the line: 

 
( )ˆ ˆ ˆ ˆD t= ⋅ = ⋅ + = ⋅ + ⋅n p n s d n s n d t                          (1.2.2.1.3) 

 
 Therefore the hit time is given by  
 

ˆ
ˆhit

Dt − ⋅
=

⋅
n s

n d
                                                  (1.2.2.1.4) 

 
If  the ray and the line (or plane) do not intersect because the ray and the line (or 
plane, see below) are parallel since the normal n is perpendicular to the ray direction d.  

ˆ 0⋅ =n d
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Also, if the “hit time” t is negative, the ray has intersected a line or plane in the opposite 
direction, which we frequently ignore. 
 
The "hit time" also refers to the distance from the ray's starting point s to the intersection 
point. To see this, we can evaluate the parametric function of the ray at the hit time t: 
 

ˆ
Point of intersection ( )

ˆhit hit
Dt t − ⋅⎡ ⎤= = + = + ⎢ ⎥⋅⎣ ⎦

n sp s d s d
n d

          (1.2.2.1.4) 

ˆ
distance from  to point of intersection ( )

ˆhit hit hit
Dt t t − ⋅⎡ ⎤= − = = = ⎢ ⎥⋅⎣ ⎦

n ss p s d
n d

  (1.2.2.1.5) 

 
 

1.2.2.3 Intersection with a Plane 
 
The point of intersection of a ray with a plane and the distance to the intersection from 
the starting point of the ray is determined exactly the same as with a line.  The only 
difference is that now the Point-Normal form represents a plane instead of a line. That is, 
in the equation ˆ D⋅ =n p , n is the normal to the plane and D is the distance from the 
origin to the plane in the direction along the normal to the plane. 
 

 
1.3    Flux Functions 
 
1.3.1 General Considerations for Axisymmetric Configurations 

 
When studying field lines in the case of an axisymmetric configuration, i.e., when 

the vectors do not depend on the azimuth angle φ   of the cylindrical coordinate system 
(ρ,φ, z), it is useful to consider their associated flux functions.  To this end, consider two 
classes of vectors: poloidal vectors, say V, and toroidal vectors, say  W.  By definition, a 
poloidal vector V lies in the ρ z plane, and thus has two components: Vρ and Vz.  In 
contrast, a toroidal vector W has only one component, Wφ , pointing along the azimuth φ, 
so that its field lines close on themselves.  In other words, W is divergence free.  If we 
assume in addition that the poloidal vector V is also divergence free, then it is easy to 
show that the curl of a toroidal vector generates a poloidal vector (and vice versa), viz.: 
 

zVVWW z ˆˆˆˆ +=×∇+×∇=×∇= ρφφ ρφφWV                           (1.3.1.1) 
where 

z
zW

V
∂

∂
−=

),(ρφ
ρ                [ ]),(1 zWVz ρρ

ρρ φ∂
∂

=                           (1.3.1.2) 

 
We now define the scalar flux function F(ρ,z) of V to be flux of V passing through a 
circle of radius ρ at height z concentric with the z-axis, e.g. 
 



Version 1.1 7/27/2008  11 

( ) dAdAzF
surfacesurfacesurface

zWzVdAV ˆˆ),( ⋅×∇=⋅=⋅= ∫∫∫ρ                           (1.3.1.3) 

 
Using Stokes Theorem, we can transform the surface integral to a line integral, giving 
 

φφ ρπφρρ WdWzF
line

2),( == ∫                                        (1.3.1.4) 

 
A surface on which F is constant is an axially symmetrical shell containing the lines of 
force of V.    Comparing equations (1.3.1.2) and (1.3.1.4) shows that V is related to its 
flux function F by 
 

z
zFV

∂
∂

−=
),(

2
1 ρ
πρρ                

ρ
ρ

πρ ∂
∂

=
),(

2
1 zFVz                           (1.3.1.5) 

 
1.3.2 The Time Dependence of Field Lines In Magneto-quasi-statics 
 

We discuss the concept of field line motion in magneto-quasi-statics, and how to 
define that motion in a physically meaningful, but not unique, way.  Consider the 
following thought experiment.  We have a solenoid carrying current provided by the emf 
of a battery.  The axis of the solenoid is vertical.  We place the entire 9.2ratus on a cart, 
and move the cart horizontally at a constant velocity V.  Our intuition is that the magnetic 
field lines associated with the currents in the solenoid should move with their source, i.e., 
with the cart.   

 
 How do we make this intuition quantitative?  First, we realize that in the 
laboratory frame there will be a "motional" electric field given by BE ×−= V .  We then 
imagine placing a low energy test electric charge in the magnetic field of the solenoid, at 
its center.  The charge will gyrate about the field and the center of gyration will move in 
the laboratory frame because it BE ×  drifts ( ) in the 2/ BBEv ×= B×− V  electric field.  
This  drift velocity is just V.  That is, the test electric charge "hugs" the "moving" 
field line, moving at the velocity our intuition expects.   In the more general case (e.g., 
two sources of field moving at different velocities), the motion we choose has the same 
physical basis.  That is, the motion of a given field line is what we would observe in 
watching the motion of low energy test electric charges spread along that magnetic field 
line.   

BE×

 
We also use this definition of the motion of file lines in situations that are not 

quasistatic, for example dipole radiation in the induction and radiation zones.  In this case 
(but not in the quasistatic cases) the calculated motion of the field lines is non-physical, 
as their speed exceeds that of light in some regions.  However, animations of the field 
line motion using the definition above are still useful.  For example, the direction of the 
direction of field line motion so defined indicates the direction of energy flow.   
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 To calculate field line motion consistent with our definition above, we need to 
insure that our velocity field is flux preserving (Stern, 1966; Vasyliunas, 1972; Rossi and 
Olbert, 1970).  For any general vector field G(x,y,z,t), the rate of change of the flux of 
that field through an open surface S bounded by a contour C which moves with velocity 
v(x,y,z,t) is given by 
 

dlGvdAvGdAGdAG ⋅×−⋅⋅∇+⋅=⋅ ∫∫∫∫ )()(
CSSS tdt

d
∂
∂                    (1.3.2.1) 

If we apply this equation to B(x,y,z,t) and use 0=⋅∇ B  and EB
×−∇=

t∂
∂

, we have 

 

dlBvEdAB ⋅×+−=⋅ ∫∫ )(
CSdt

d                                        (1.3.2.2) 

 
If we then define the motion of our contours so that the magnetic flux through the 

surfaces they bound is constant as a function of time, and consider circular contours and 
fields with azimuthal symmetry, then equation (1.3.2.2) guarantees that their motion 
satisfies , which is the same as , assuming that v and B are 
perpendicular.  We can make this assumption since there is no meaning to the motion of a 
field line parallel to itself).  This is just the drift velocity of low energy test electric 
monopoles that we refer to above.  This definition of field line motion is not unique (see 
Vasyliunas, 1972). 

0=×+ BvE 2/ BBEv ×=

 

 
Figure 1.3-1:  A magnet levitating above a disk with zero resistance. 
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Field Lines Originating From A Singularity:  In the situation that our field lines 
originate from a singularity, constructing their time dependence is straightforward.  
Consider the motion of the field lines of a magnet levitating above a disk with zero 
resistance (Figure 1.3-1).  The magnet is constrained to move only on the axis of the disk, 
and the dipole moment of the magnet is also constrained to be parallel to that axis.  Eddy 
currents in the disk will repel the magnet, and at some point there will be a balance 
between the downward force of gravity and the upward force of repulsion.  We then 
consider small displacements about this equilibrium position, which will be periodic.  
The field lines themselves are given by Davis and Reitz (1971), and have azimuthal 
symmetry.  How do we trace the motion of a field line? 
 
 We do this by starting our integration very close to the magnet at a constant angle 
from the vertical axis, following a given field line out from that point.  To animate a line, 
we use the same starting angle at every point in the oscillation.  The field line traced out 
will be different when the magnet is at different distances from the disk.  But consider the 
flux inside any open surface whose bounding contour is defined by the intersection of a 
horizontal plane and the field line when rotated azimuthally.  This open surface will have 
constant flux inside it, since 0=⋅∇ B . Since we always start from close to the singularity 
at the same angle, this constant flux will be the same for every instant of time.  Since the 
left hand side of (1.3.2.2) is zero by construction, the right hand side must also be zero, 
and by symmetry the integrand must be zero as well.  Therefore our field line motion as 
we have constructed it reflects the drift motion of low energy test electric charges spread 
along it.   

 
Field Lines Not Originating From A Singularity:  In this case the construction of 

the time evolution of the field lines is more complicated, and we use the flux functions 
defined above.  Our flux function for the magnetic field 

 

∫ ⋅=
surface

tztzF dAB ),,(),,( ρρ                                      (1.3.2.3) 

(cf.  1.3.1.3) is now time-dependent.  If we choose successive field lines as time evolves 
such that they have the same (constant) value of the flux function, then (1.3.2.2) is again 
satisfied, and again in symmetric situations the field line motion so defined is such that 

, or equivalently, .  Another way of stating this is that if we 
look at isocontours of the flux function 

0=×+ BvE 2/ BBEv ×=
),,( tzF ρ , then these isocontours trace out the 

time-dependent motion of the field lines.   
 

Although the derivation that we have sketched above is elegant, it is perhaps also 
reassuring to do this in a manner that shows the same thing in more detail, although in a 
much clumsier way.  We construct such a proof in Appendix 8.2.    

 
 As an example of this process, consider the time dependence of a field line when 
we have two rings of current (Figure 1.3-2) separated by a vertical distance of 10.  The 
radius of the bottom ring is 10, with a dipole moment vector of 1.0 , and the radius of 
the top ring is 5, with a dipole moment that varies in time.  The innermost field line in 

ẑ
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Figure 1.3-2 corresponds to a dipole moment vector of the top ring of 0.1 , at a flux 
function value of 0.5.  The middle field line corresponds to the same flux function value 
of 0.5, but for a dipole moment vector of the top ring of 0.5 .  The outermost field line 
is again at the same value of the flux function, but for a dipole moment of the top ring of 
1.0 z .  The sequence of field lines is what we expect for the time evolution of this field 
line as the dipole moment vector of the top ring grows in time from 0.1  to 1.0 .  That 
is, this would be the path traced out by low energy charged particles spread along the 
field line as the dipole moment of the top ring grows in time. 

ẑ

ẑ

ˆ
ẑ ẑ

 

 
Figure 1.3-2:  Isocontour levels of the flux functions of two rings 

 
 
1.4 Rotational Dynamics (N. Derby) 
 
How do we do the dynamics when an object can rotate?  Here is an overview.   
 
1.4.1 Choosing a Coordinate System and Specifying the State 
 

Pick a coordinate system fixed in the body with origin at the Center of Mass 
(COM):   .   Specify the inertia tensor BBB zyx ,, BI in these coordinates.  Pick coordinates 

so that it is easy to calculate .  If you choose properly, BI BI  can be diagonal.  Compute 

and store its inverse .   1
B
−I

When dealing with a body that can rotate, we specify state of the object by specifying: 

x   position of COM in world coordinates (vector) 
p   linear momentum (vector) 
Q  orientation in world coordinates (quaternion) 
L   angular momentum (vector)  
 

1.4.2 Orientation of the Body 
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Three numbers are needed to specify the orientation of a body. There are a variety of 

ways to express these. 

a) These can be three Euler angles, which are convenient for many purposes, but 
awkward to describe to the uninitiated.  

b) Alternatively, we can describe an orientation by specifying an axis of rotation (a 
unit vector ) and an angle of rotation A (using the right-hand rule) about this 
axis. This description is redundant since it involves 4 numbers, but only 2 of the 3 
components of the unit vector are independent.  

û

c) Finally, orientation can be specified by a 3-by-3 rotation matrix R defined so that 
a point in the body ( ) has world coordinates: BBB zyx ,,

com

B

B

B

x
z
y
x

R
z
y
x

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
                                                     (1.4.2.1) 

Such a description is redundant since it involves nine quantities, but R is an 
orthogonal matrix so not all its components are independent 

 

Method (b) is usually implemented by specifying the four numbers in a unit 
quaternion Q. For rotation about a world axis (direction specified by unit vector u ) by an 
angle A, Q is defined as: 

ˆ

vˆ [cos( ), sin( ) u] =[ , ]  [ , , , ]2 2 o o x y
A A Q Q Q Q Q Q= =Q z                 (1.4.2.2) 

Once Q is specified, then R can be computed via  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−+−
−−−+
+−−−

=
22

22

22

2212222
2222122
2222221

yxxozyyozx

xozyzxzoyx

yozxzoyxzy

QQQQQQQQQQ
QQQQQQQQQQ
QQQQQQQQQQ

R                    (1.4.2.3) 

 

 
As an example, the quaternion [cos45°, sin45° k ] ≅.707 [1,0,0,1] represents a 90° rotation 
about the z-axis, sending x

ˆ
B into y and yB into –x.   If this Q is used to compute R, we get 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

100
001
010

. 

1.4.3 Quaternion Algebra 
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For a general quaternion Q, we define the following: 
 

• norm of Q  2 2 2 2 2 2
0 v 0 x y zQ Q Q Q Q Q= + = + + +  

• multiplication:  

1 2 1o 2o 1v 2v 1o 2v 2o 1v 1v 2v *   Q  Q  -  Q Q , Q  Q   Q  Q   Q   Q⎡ ⎤= ⋅ + +⎣ ⎦Q Q ×  

The convenient feature of quaternions for describing rotation is that the orientation of a 
body after two successive rotations about two different axes can be specified by a single 
quaternion  . 1 2 *  net =Q Q Q

For our unit rotation quaternion Q, define a “quaternion angular speed”: 

[ ]0,=W ω                                                             (1.4.3.1) 

 

Then, it can then be shown that 

d ˆ ˆ½ * ½ [-   u sin( ), cos( )   + sin( )   u ]2 2 2dt
A A Aω ω= = ⋅ ×

Q W Q ω        (1.4.3.2) 

 

After orientation has been specified we can compute the moment of inertia in world 
coordinates: 

T
B RIRI =    or                                       (1.4.3.3) T

B RIRI 11 −− =

 

An angular velocity is defined by  êωω =  , where e  is a unit vector and ˆ ω  represents the 
rate of rotation about e (sign determined by the right hand rule).  Given an angular 
velocity, the angular momentum is defined by 

ˆ

=L I ω                                          (1.4.3.4) 

 

1.4.4 Equation of Motion 
 
           The state vector  

( )t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

x
p

Y
Q
L

                                                    (1.4.4.1) 

 

evolves according to the equation   
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( )d t
dt

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

v
F

Y
1 W*Q
2

τ

                                               (1.4.4.2) 

 

where  is the torque.   So, starting with the current state Y, we carry out the following 
steps: 

τ

a) compute  / m=v p
b) normalize Q (so that it continues to represent a true rotation); then compute R. 
 

c) compute   1 1 T
B

− −=I R I R
 

d) compute   ,  and then W using (1.4.3.1) 1−=ω I L
 

These quantities, combined with the force F  and torque  τ , specifies the rate of change of 
Y.  Then we use an ODE solver to evolve the state vector. 

 
 
 

2 Electrostatics 
 
2.1 Two Dimensional Electrostatics (and Magnetostatics) 
 
2.1.1 General Considerations 
 

It is well known that in two Cartesian dimensions that solving potential problems 
in electrostatics due to a discrete number of line charges has many correspondences with 
the theory of analytic functions of a complex variable (Morse and Feshbach 1953).  In 
particular, consider the analytic (except for a discrete number of singularities at the 
location of the line charges) function G(Z) of the complex variable Z = x +iy (Z is not the 
spatial z coordinate), where x and y are the Cartesian coordinates of the two-dimensional 
problem.  If we can find an G(Z) whose real part is the electrostatic potential  for the 
problem, then the electric field lines are given by the isocontours of the imaginary part of 
G.   

Φ

 
 For completeness, we sketch why this is true.  Let G(Z)=U(x,y)+i V(x,y), where U 
and V are real functions of x and y.  For G(Z) to be analytic at a point Z, its derivative 
must exist and be the same whether we approach the point Z in the complex plane along 
the x-axis or along the y-axis.  That is, we must have 
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yi
yxGyyxG

x
yxGyxxG

Zd
ZdG

yix Δ
−Δ+

=
Δ

−Δ+
=

→Δ→Δ

),(),(lim),(),(lim
)(
)(

00
           (2.1.1.1) 

Using the definition of G in terms of U and V, and equating real and imaginary parts in 
equation (2.1.1.1), we have 
 

∂U(x,y)
∂x

=
∂V(x, y)

∂y
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ and

∂U (x, y)
∂y

= −
∂V(x, y)

∂x
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥                       (2.1.1.2) 

 
from which it can easily be deduced that both U and V are solutions to Laplace's equation 
in two-dimensions, almost everywhere.   
 
 Now suppose we find an analytic (except for a discrete number of singularities) 
function G(Z) such that the real part of G(Z) is the solution to a two-dimensional 
electrostatic potential problem with discrete sources.  That is, for this G(Z), our potential 
satisfies [ ] φ== UFRe .  The electric field lines due to this potential are given by 
E = −∇φ .  Consider the isocontours of [ ] VF =Im .  Let Y(x) be an isocontour of V(x,y).  
Then the change in V(x,y) when we move along Y(x) must be zero.  That is  
 

0))(,(
=+=

dx
dY

y
V

x
V

dx
xYxdV

∂
∂

∂
∂                                     (2.1.1.3) 

which means that 
 

x

y

E
E

xyx
U

y
U

y
V

x
V

dx
dY

===−=
∂
∂φ

∂
∂φ

∂
∂

∂
∂

∂
∂

∂
∂ ///                              (2.1.1.4) 

 
where we have used equation (2.1.1.2) above to replace the partials of U with partials of 
V, the fact that φ=U  by assumption, and E = −∇φ .  Equation (2.1.1.4) is exactly what 
we require for a curve defining an electric field line.  Thus if the real part of G(Z) is equal 
to the electrostatic potential, then the isocontours of the imaginary part of G(Z) are 
parallel to the electric field lines.   
 

Note that the scalar function )(Im),( ZFyxV =  is in some cases related to the 
flux function we discussed for example in 1.3, as may be seen from the fact that 

 
[ ] [ ]zzE ˆ),(ˆ)(Im yxVZF ×∇=×∇=                                       (2.1.1.5) 

 
For example, when the system is symmetric about the y-axis, the imaginary part of G(Z) 
is one half of the flux of E passing through a rectangle of width 2x in the x-direction, 
located at height y on the y-axis, and centered on that axis, per unit length in the z-
direction.  More importantly, as can be shown by explicit construction, the time evolution 
of the electric field lines in electro-quasi-statics are the same as the time evolution of the 
isocontours of the imaginary part of G(Z).  We now give three useful examples of these 
functions in two-dimensional electrostatics, and one related example in two-dimensional 
magnetostatics.   
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2.1.2 The 2D Electrostatic (or Magnetostatic) Dipole and Line of 2D Dipoles 
 
 Consider a two-dimensional electric dipole, that is a dipole formed by taking a 
line charge + λ  and a line charge - λ  a vector distance d apart, with d pointing from the 
negative to the positive line charge.  We let d go to zero and λ  go to infinity in such a 
way that the product 
 

p = λd                                                    (2.1.2.1) 
                  

 
goes to a constant.  The quantity p is the two-dimensional electric dipole vector.  The 
electric potential for a two dimensional electric dipole, assuming the dipole is at the 
origin, is  
 

⎥
⎦

⎤
⎢
⎣

⎡
+
+

=
+
⋅

=Φ
)(2

1
)(2

1
2222 yx
ypxp

yx
yx

oo πεπε
Xp

                                    (2.1.2.2) 

 
 

where .  We can write the potential in equation (2.1.2.2) as  jiX yx +=
 

⎥
⎦

⎤
⎢
⎣

⎡
+

−
=Φ 22

)(
2

1Re
yx

Zipp yx

oπε
                                              (2.1.2.3) 

 
Therefore our electric field lines for this problem are isocontours of 
 

[ ]
222222 2

1
2

1)(
2

1Im),(
yxyx

xpyp
yx

Zipp
yxV z

o

yx

o

yx

o +
×

=
+
−

=⎥
⎦

⎤
⎢
⎣

⎡
+

−
=

Xp
πεπεπε

         (2.1.2.4) 

 
These expressions also holds for a two dimensional magnetic dipole.   
 
 These expressions can be generalized to a line of 2D dipoles with a given 
orientation.  Consider the following configuration.  A line of dipoles extends along the x-
axis from –d/2 to d/2.   Along this line there is a line of two 2D dipoles with dipole 

moment per unit length ˆ ˆ
x yp p= +p i j .  The electric potential for this situation can be 

derived by integration of (2.1.2.2) to yield 
 

2 2

2 2 2 2 2

1 ( / 2)( , ) ln arctan
2 ( / 2) /x y

x d y dyx y p p
x d y x y d

⎡ ⎤
4

⎡ ⎤− +
Φ = − +⎢ ⎥ ⎢ ⎥+ + + −⎣ ⎦⎣ ⎦

          (2.1.2.5) 
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and the electric field components can be computed by taking the negative gradient of this 
function. The field lines for this configuration are isocontours of the following function, 
by integration of (2.1.2.4). 
 

2 2

2 2 2 2 2

1 ( / 2)( , ) arctan ln
/ 4 2 ( / 2)x y

dy x d yV x y p p
x y d x d y

⎡ ⎤⎡ ⎤ − +
= + ⎢ ⎥⎢ ⎥+ − + +⎣ ⎦ ⎣ ⎦

         (2.1.2.6) 

 
2.1.3 Constant Electric Field 
 

As a second example, consider the electric field lines of a constant field .  The 
electrostatic potential in this case is  

oE

 
( )[ ] ( )[ ]ZiEEyExE yxyx

ooooo XE −−=+−=⋅−=Φ ReRe                     (2.1.3.1) 
 

where again , so that the field lines are given by the isocontours of  jiX yx +=
 

( ) z
o

yxyx xEyEZiEEyxV ][]Im[),( EXoooo ×=+−=−−=                     (2.1.3.2) 

 
If we want to find the field lines of a two-dimensional dipole in a constant field, we 
simply add the two functions above appropriate to the two potentials to get the 
appropriate function for this case.   
 
 
2.1.4 Line of Charge  
 
 Finally, for our third example, consider the electric field lines of a line charge.  
The electrostatic potential for this case is  
 

⎥
⎦

⎤
⎢
⎣

⎡
−=+−=Φ )ln(

2
Re)ln(

2
22 Zyx

oo επ
λ

επ
λ

                             (2.1.4.1) 

 
so that the field lines are isocontours of  
 

θ
επ

λ
επ

λ

oo 2
)ln(

2
Im),( −=⎥

⎦

⎤
⎢
⎣

⎡
−= ZyxV                             (2.1.4.2) 

 
When there are two or more line charges present, one has to be careful using the function 
in equation (2.1.4.2) because of the branch cut in θ as θ runs from 0 to π2 . 
 
2.1.5 Line of Current 
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Although strictly speaking we are only considering electrostatics in this section, we point 
out that we can do much the same thing in magneto-quasi-statics in two dimensions.  If 
the current density J is zero except at discrete locations (that is, we have a finite number 
of line currents running in the z-direction), then ∇ × B = 0 almost everywhere, and we can 
write for regions away from the discrete sources that 
 

BΦ−∇=B                                                       (2.1.5.1) 
 

where Bφ is the magneto-quasi-static potential.  Since ∇ ⋅ B = 0 , we have 
 

02 =Φ∇ B                                                       (2.1.5.2) 
 

In two dimensions, finding the magnetic field lines in magnetostatic problems with a 
discrete number of line currents can be aided by using the theory of complex variables, as 
above.  In particular, consider the analytic (except for a discrete number of singularities at 
the sources) function G(Z) of the complex variable Z = x +iy , where x and y are the 
cartesian coordinates of the two-dimensional problem.  Just as above, and for the same 
reasons, if we can find an G(Z) whose real part is the magnetostatic potential Bφ  for the 
problem, then the magnetic field lines are given by the isocontours of the imaginary part 
of G(Z).   
 
 For example, consider the magnetic field of a line current at the origin.  The 
magnetostatic potential for this case is  

⎥
⎦

⎤
⎢
⎣

⎡
=−=Φ )ln(

2
Re

2
ZIiI

B π
μθ

π
μ oo                                        (2.1.5.3) 

since  
 

ρπ
μθ

∂θ
∂

π
μ

2
ˆ1

2
ˆ

22

I
yx

I
B

oo θθB =
+

=Φ−∇=                               (2.1.5.4) 

where θ is the unit vector in the azimuthal direction, right-handed about the z axis.  Thus 
the field lines are given by the isocontours of  

ˆ

 

)ln(
2

)ln(
2

Im),( rIZIiyxV
π

μ
π

μ oo =⎥
⎦

⎤
⎢
⎣

⎡
=                                    (2.1.5.5) 

 
2.2 Three Dimensional Electrostatics 

 
2.2.1 Point Charge in a Uniform Electric Field 
 

Suppose we have a point charge at the origin of a spherical polar coordinate system.  
The electric field of this point charge everywhere except at the location of the charge can 
be written as   
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( )
⎭
⎬
⎫

⎩
⎨
⎧ −

∇= φ
θ

θ
επ

ˆ1
sin

cos1
4

),(
r

qt
o

point xrE
                                  (2.2.1.1) 

 
We want to write this expression in a coordinate independent form.   To begin with let us 
move the point charge up the z-axis by a distance zp.   Then  
 
 

( )
2 2 2

ˆ cos
ˆcos

ˆ ( )
p p

p p

z r z
z x y z z

θ
− Θ −

= ⋅ =
− + + −

r z
z

r z
                                  (2.2.1.2) 

 

and since 

ˆˆˆ
sin

ϕ ×
=

Θ
z r

 the expression (2.2.1.1) becomes  
 

( )
2 2 2

1 cos 1 ˆ( , )
4 sin ( )

point
o p

qt
x y z z

θ
ϕ

π ε θ

⎧ ⎫−⎪ ⎪= ∇ ⎨ ⎬
+ + −⎪ ⎪⎩ ⎭

E r x

                  (2.2.1.3) 
 

 
The constant electric field in the z-direction can be written as  
 

( )
⎭
⎬
⎫

⎩
⎨
⎧∇−= φθ ˆsin

2
1),( rEt o xrE

                                      (2.2.1.4) 
 

The electrostatic flux function (cf equation (1.3.1.4)) can therefore be written as  
 

( ) ( 2
arg sincos1

2
),( chargeechocharge

o

rEqrF θπθ
ε

θ −−= )

)

                        (2.2.1.5) 

 
2.2.2 Point Charge Being Charged By a Line Current 
 

We consider the situation where we have a point charge at rest at the origin of our 
coordinate system with a charge Q(t) which is varying with time.  The increasing charge 
is being supplied with current by a line current which is arranged along the –z axis, 
carrying current I = dQ/dt.   In the quasi-electro-static approximation, if  is the 
spherical polar unit vector, the electric field is given by  

r̂

 

( 2 2

( )ˆ( , , )
4 o

Q tz t
z

ρ
π ε ρ

=
+

E r                                  (2.2.2.1) 

and the magnetic field is given by 
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( )1/ 22 2
ˆ( , , ) 1

4
oI zz t

z

μρ φ
π ρ ρ

⎡ ⎤
⎢ ⎥= −
⎢ ⎥+⎣ ⎦

B                             (2.2.2.2) 

 
We can derive the expression for B given above by considering the line integral of B 
around a circle of radius ρ centered on the z-axis a distance z up that axis, and applying 
Ampere’s Law including the displacement current term.   
 
 The ExB magnetic monopole drift velocity in these crossed E and B fields is 
given by (θ is the spherical polar angle) 
 

2
, 2

1 cosˆ( , , )
sind B

r dQz t c
E Q dt

θρ
θ

⎡ ⎤× −
= = − ⎢ ⎥

⎣ ⎦

E BV θ              (2.2.2.3) 

 
The field lines are radial, and since the velocity of the field lines are given by the 
equation above, we can write for the θ dependence of a given field line that  
 

1 cos
sin

d r dQr
dt Q dt
θ θ

θ
⎡ ⎤−

= − ⎢ ⎥
⎣ ⎦

                                 (2.2.2.4) 

 
This equation can be integrated to show that the time dependence of the angle θ  denoting 
a particular radial field line is given by 
 

( )( ) 1 cos ( )Q t t constθ− =                                  (2.2.2.5) 
 

This is not surprising given the flux function in (2.2.1.3) for the point charge. 
 
 
2.2.3 Flux of a Point Charge through a Loop (following N. Derby) 
 

2.2.3.1 Flux through the Loop 
 
 A circular loop of radius a lies in the x-y plane with is center at the origin. A 
point charge with charge q  is located in the x-z plane at position  
 

( ) ˆ ˆ ˆ ˆ( sin cos )P P Pt x z d α α= + = +x x z x z                             (2.2.3.1) 
 
with charge q.  The field point is located by the vector r.  Let the angles ( , )θ ϕ  be the 
usual spherical polar angles for the field point, and ( , )p pθ ϕ the usual spherical polar 
angles in a coordinate system centered on the point charge,  The vector potential for the 
point charge is given by (see 2.2.1.1) 
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( )1 cos 1 ˆ( , )
4 sin

p
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o p p

qt
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ϕ
πε θ
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E r x x

r x ⎪⎭
A

                         (2.2.3.2) 
 

 
Figure 2.2-1: The orientation of the circle with respect to the point charge 

 
By Stokes’ theorem, the magnetic flux of the field of the point charge through the 

loop can be expressed as a line integral 
 

( )∫ ⋅=Φ lxA d                                      (2.2.3.3) 
 

where the integration is around the loop and  
 

[ ]ˆ ˆ ˆsin cosd a d a dϕ ϕ φ= = − +l φ x y φ                                 (2.2.3.4) 

In the plane of the loop on its circumference the field point can be written as 
 

[ ]ˆ ˆcos sina φ φ= +r x y                                           (2.2.3.5) 

 
and thus  

 

( ) [ ]ˆ ˆ( cos sin ) sin cosP t a d a dˆφ α φ− = − + −r x x y z α               (2.2.3.6) 

( ) 2 2 2 2 2 2 2 2( cos sin ) sin cos 2 cos sinP t a d a d a d adφ α φ α φ− = − + + = + −r x α (2.2.3.7) 

and  
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2 cos sin

P
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t d
t a d ad
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− + −

z r x
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              (2.2.3.8) 

 
Moreover,  

( )( )
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P
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    (2.2.3.9) 

 

[ ]
2 2 2

ˆ ˆ( cos sin ) sinˆ
sin 2 sin cos

p

a d a

a d ad

φ α φ

α α φ

− −
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+ −

y x
φ                          (2.2.3.10) 
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p
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⎧ ⎫−⎪ ⎪Φ = ⋅ = ⋅ − +⎨ ⎬−⎪ ⎪⎩ ⎭
∫ ∫A x l x ]xy

r x
   (2.2.3.11) 

( ) [ ] [ ]
2 2 2

1 cos ˆ ˆ( cos sin ) sin1 ˆ ˆsin cos
4 sin sin 2 sin cos

p

o p p

a d aq a d
a d ad

θ φ α φ
φ φ φ

π ε θ α α φ

⎧ ⎫− − −⎪ ⎪Φ = ⋅ − +⎨ ⎬
− + −⎪ ⎪⎩ ⎭

∫
y x

x y
r x

 
(2.2.3.12) 
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( )
( )

( )
( )

2 2

2 2

2 cos sin cos1 cos

1 cos 2 cos sin cos
p

p

a d ad d

a d ad d

φ α αθ

θ φ α α

+ − +−
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+ + − −
                    (2.2.3.15) 

 
The expression in brackets in (2.2.3.14) is  
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(2.2.3.16) 

 
 

To check some limits before proceeding, take the case where α = 0, and the point charge 
is thus on the z axis and a distance d away from the origin.  In this limit the integral 
(2.2.3.14) becomes 
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2 22 2 2

2 22 2
0 4 2o o

a d dq a qd
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φ
π ε ε

⎧ ⎫+ +⎪ ⎪ a d d+ +
Φ = =⎨ ⎬

++ −⎪ ⎪
⎩ ⎭

∫         (2.2.3.17) 

 
 
In order to put the integral into cel form (see 1.1.1), we introduce a different angular 
variable: βπφ 2−≡ . Then, using  andββφ 22 cossincos −= ββφ cossin2sin = , we 
write the previous expression as 
 

 ( )[ ] ( )[ ] ββμμμβμμβ cossin2cossin 22
DyDzDxDzDx zxazxaz +++−+−+      (4.2.1.7) 

Similarly,  
 
 ( )[ ] ( )[ ]2222222222 cossincos2 DDDDDDDD zaxzaxaxazx ++++−=−++=− ββφxx . 

(4.2.1.8) 

After defining the quantities 

( ) 222
DD zaxR +±≡±      and     12

2
2 ≤≡

+

−

R
Rkc                  (4.2.1.9) 

the flux through the ring can be written as 
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2 23222
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       (4.2.1.10) 

The last term vanishes because of anti-symmetry and the remaining dimensionless 
constants are 

 ( )
a

axzc DzDx

μ
μμ ++−

=+      and     ( )
a

xazc DzDx

μ
μμ −+

=−       (4.2.1.11) 

Thus, the flux integral is 



Version 1.1 7/27/2008  27 

 

[ ] β
ββ

ββμ
π
μ π

d
k

cc
R
a

c

o ∫
+

+
⎟
⎠
⎞

⎜
⎝
⎛=Φ −+

+

2

0 23222

22

3

2

sincos
sincos              (4.2.1.12) 

Comparing this integral to the definition of the cel function (1.1.1.1), we see that  
 

( )−+
+

⎟
⎠
⎞

⎜
⎝
⎛=Φ cckkcel

R
a

cc
o ,,, 2

3

2μ
π
μ                          (4.2.1.13) 

The flux thus depends only on the components of vectors lying in the x-z plane as shown 
in the figure. All quantities can be interpreted geometrically (see Figure 4.2-2).  In 
equation (4.2.1.13) we define the quantities 
 

( ) zxxxR ˆˆˆ DDD zaxa +±=±=±                               (4.2.1.14) 

+

−≡
R
Rkc                                                    (4.2.1.15) 

a
c

μ
yRμ ˆ⋅×

= ±
±                                              (4.2.1.16) 

 

 
Figure 2.2-2 

 

3 Magnetostatics 
 
3.1 Magnetic Field Lines of a Point 3D Dipole 
 
 The potential and field of a single 3D dipole at the origin with dipole moment m 
is given by  
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3.1.1 The Vector Potential in Cylindrical Coordinates 
 

 
Figure 3.1-1:  A 3D magnetic dipole 

 
 For a point 3D dipole with dipole moment M, the vector potential A is given by 
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3.1.2 Components of the Magnetic Field in Cylindrical Coordinates 
 

[ ]φρρ ˆ),(),( zAz ×∇=B                                               (3.1.2.1) 
So 
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               (3.1.2.2) 

and  
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ρ
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3.1.3 The Flux Function in Cylindrical Coordinates 

 
The flux function for a magnetic dipole (cf. 1.3.1.4 and 3.1.1.1) is 
  

( ) 2/322

22
4

),(
ρ

ρπ
π

μ
ρ

+
=

z
MzF o              (3.1.3.1) 

 
3.2 Magnetic Field Lines of A Circular Loop Of Current  
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3.2.1 The Vector Potential in Cylindrical Coordinates 
 

Consider a loop with radius a carrying current I, with magnetic dipole moment  
M = π a2 I.  The vector magnetic potential A can be written as (Jackson, Pgs. 178 - 
179) 

 

∫
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==
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φρρ

φφ
π

μ
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2

0
222

0

cos2

cos
4

ˆ),(ˆ),(
aza
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zAzA

           (3.2.1.1) 

 
Figure 3.2-1:  Loop of current 

where φ is the azimuthal angle about the axis of the loop, and ρ and z are cylindrical 
coordinates.  If we change variables using φ = 2 β + π, and define the normalized 
distances and azz /≡′ a/ρρ ≡′ , then this equation becomes  
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                 (3.2.1.2) 
 

which (using ) can be written as βββ 22 sincos2cos −=
 

∫
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where 

22

22
2

)1(
)1(

ρ
ρ

′++′
′−+′

≡
z
zkc

                      (3.2.1.4) 
For future use, we also define  
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With this definition, and using the definition of cel given in (1.1.1.1), we have 
 

)1,1,1,(2
4

),( 2/12
0 −

′
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a
MzA

ρππ
μρ

                             (3.2.1.6) 
 
To show the correspondence between this expression and the expression above in 
(3.1.1.1) for a point dipole, we take the limit that we are far from the ring, which 
corresponds to the limit that k2 << 1.  In this limit,  
 

 
2

16
)1,1,1,( kkcel c

π
=−

                          (3.2.1.7) 
 

and using this expression it can be shown that (3.2.1.6) reduces to (3.1.1.1). 
 
3.2.2 Components of the Magnetic Field and the Electric Field  
 

The components of the magnetic field are given by  
  

[ ]φρρ ˆ),(),( zAz ×∇=B                                               (3.2.2.1) 
 

The radial component is thus (using (3.2.1.1)) 
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which after some manipulation can be written as 
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Using our definition of cel in (1.1.1.1) and (3.2.1.4), and M = π a2 I, we can write this as 
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Now, the z component of B is given by  
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which after some manipulation can be written as  
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To show the correspondence between these expressions and the expressions above in 
(3.1.1), we need to take the limit that we are far from the ring, which corresponds to the 
limit that k2 << 1.  In this limit, (3.2.1.7) is true, and we also have in this limit that 
 

        
22

16
3)1,1,,( kkkcel cc
π

=−
                               (3.2.2.7) 

 
Using these limiting expressions it can be shown that our components in (II.B.2.4) and 
(II.B.2.6) reduce to those of a 3D point dipole given in (II.A.2) far from the loop.   
 

A useful limiting form for A(ρ,z) when k2 is small is 
 

424
),(

2

222
0 k

aza
IazA

ρρπ
μρ

+++
=               (3.2.2.8) 

 
 In a situation where we have a ring of current moving with velocity v and/or with 
a time changing current in the ring, the non-relativistic expressions for the magnetic field 
are just those given above, and the electric field is given by the motional electric field and 
the induced electric field, e.g. 

 
2
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2 2 2

ˆ
4 42

dI a k
t dt a z a

μ φ
π ρ ρ

∂
= − × − = − × −

∂ + + +

AE v B v B               (3.2.2.9) 

 
3.2.3 The Flux Function in Cylindrical Coordinates 

 
The flux function for a circular loop of wire is just (see 1.3.1.4 and 3.2.1.6) 
 

( )1/ 21/ 20
0

4( , ) ( ,1, 1,1) ( ,1, 1,1)
4 c c

M kF z cel k k I a cel k
a

μρ ρ μ ρ
π

′= − = −          (3.2.3.1) 

and if we use (3.2.1.5) and (3.2.1.7) we see that the above equation reduces to (3.1.3.1) 
for a point dipole when we are far from the loop.  It is instructive to plot this function in 
the plane of the loop, from the center of the loop to close to its radius.     
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Figure 3.2-2:  Loop flux function for r < a 

Figure 3.2-2 gives such a plot, for a dipole moment vector of unity and a radius of unity.  
The values of the flux function scale inversely as loop radius for a fixed value of M.  
That is, as the radius increases, the value of the flux function decreases in proportion, at a 
given value of r/a.   

 
 We also show in Figure 3.2-3 the dependence of the flux function on radius in the 
plane of the loop for r > a.   Figure 3.2-4 shows the field line with a flux function value 
of 2.0, for a loop with unit dipole moment and unit radius.  This field line crosses the 
plane of the loop at r = 0.531 and also at r = 3.26, as we would expect given the flux 
curves in Figures 3.2-2 and 3.2-3.   
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Figure 3.2-3:   Loop flux function for r > a. 
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Figure 3.2-4:  Field line for a loop with a flux function value of 2.0. 
 

 
3.3 Magnetic Field of a Line of 3D Magnetic Dipoles 
 
3.3.1 The Potential of a 3D Dipole 
 
 The potential and field of a single 3D dipole at the origin with dipole moment m 
is given by  
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3.3.2 The Potential of a Line of 3D Dipoles 
 
 We assume the line starts at the origin and lies along the x-axis, ending at x = L.  

We have (dropping the 
4

oμ
π
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So inserting (3.3.2.9) and (3.3.2.3) into (3.3.2.2) 
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To check limits, let L go to zero.  Then  
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In the limit that L goes to infinity, we have 

( )
( )

( )1/ 2 2 2 2 2 22 2 2
1y zx

M

m y m zm x
y z x y zx y z

⎡ ⎤ ⎡ ⎤+
⎢ ⎥Φ = − + +⎢ ⎥
⎢ ⎥ + ⎢ + + ⎥+ + ⎣ ⎦⎣ ⎦

                 (3.3.2.13) 

 
We can generalize this to arbitrary orientations of the line.  If t is the unit vector along the 
direction of the line, and the line begins at the origin, then  
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3.3.3 The Field of a Line of 3D Dipoles along the x-axis 
 
 We go back to the expression given in (3.3.2.13) to get the components of the 
field.   
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Or all together  
 

( )
( ) ( )

( )

( )
( ) ( )

( )

3

2 2
23 32 22 2

2 2
23 32 22 2

11 2

11 2

x

y zx
y y z

y zx
z z y

B
r

m y m zm y x x yB m z y m zy
r r ry zy z

m y m zm z x x zB m y z m yz
r r ry zy z

⋅
= −

+⎡ ⎤ ⎡ ⎤= − − + − − +⎢ ⎥ ⎣ ⎦ +⎣ ⎦ +

+⎡ ⎤ ⎡ ⎤= − − + − − +⎢ ⎥ ⎣ ⎦ +⎣ ⎦ +

m r

        (3.3.3.6) 

 
To put this in coordinate independent form, define 
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where we have dropped the 4
oμ
π  factor.   

 
3.4 Two Magnetic Dipoles Interacting 
 

Two magnetic dipoles interact.  The torque on a dipole 1 sitting in the magnetic field 
BB

2

2 due to dipole 2 is 
 

1 1= ×τ m B                                                              (3.4.1) 
 

and similarly for the torque on 2 due to the field of 1.   The force on dipole 1 sitting in the 
magnetic field BB2 due to dipole 2 is   

( )1 1= ⋅∇F m B2                                                           (3.4.2) 

which in component form is 

1 1 2
jj i

i
i

F m B
x
∂⎛ ⎞

= ⋅⎜ ⎟∂⎝ ⎠
∑ , ,i x y z,   = ,   , ,j x y z=                                   (3.4.3) 

 

The field B at a point X due to a dipole m1 located at X1 is given by  

 

3

ˆ3( )
4

o

r
ˆμ

π
⋅ −

=
n m m nB      where 1= −r X X       ˆ

r
=

rn                        (3.4.4) 

and the tensor gradient of B is given by  
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⎡ ⎤∇ = ⋅ + + − ⋅⎣ ⎦B m n I mn nm m n nn                             (3.4.5) 

 
For two interacting dipoles, equation (2) then becomes 
 

( ) ( ) ( ) ( )( ){ }1 2 2 1 1 2 1 24

3 5
4

o

r
μ
π

⎡ ⎤= ⋅ + ⋅ + ⋅ − ⋅ ⋅⎣ ⎦F m n m m n m m m m n m n n       (3.4.6) 

 
The force on dipole 2 sitting in the magnetic field BB1 due to dipole 1 is opposite and equal 
to the force given above, because of the direction of the normal n reverses when the 
index changes.   
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4 Faraday’s Law 
 
4.1 The Falling Ring 
 
4.1.1 The Equation of Motion 
 

 

 
Figure 4.1-1:  Geometry of the falling ring 

 
We have a 3D dipole with dipole moment ẑμμ = .  It moves on the axis of a 

circular loop of radius a, resistance R, inductance L, with inductive time constant L/R.  It 
moves downward under the influence of gravity.  The equation of motion is  
 

dz
dB

mg
dt

zdm zμ+−=2

2

                                       (4.1.1.1) 

 
where Bz is the field due the current I in the ring (positive in the direction show in Figure 
4.1-1)1.  The expression for Bz is 
 

2/322

2

)(2 za
IaB o

z +
=

μ
                                                 (4.1.1.2) 

 
 

so that equation (4.1.1.1) is  
 

2/322

2

2

2

)(
1

2 zadz
dIamg

dt
zdm o

+
+−=

μμ
                        (4.1.1.3) 

or 

                                                 
 
1This is the appropriate equation for both the situation of the ring at rest and the magnet moving, or the 
magnet at rest and the ring moving--the mass m switches from the mass of the magnet to the mass of the 
ring, depending on the situation.   
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                      (4.1.1.4) 

 
 

4.1.2 Determining an Equation for I from Faraday's Law 
 
 Faraday's Law is 
 

dt
dIL

dt
d

dt
d

dipole −⋅−=⋅−=⋅ ∫∫∫ dABdABdlE                      (4.1.2.1) 

 
and if JE ρ= , then  
 

∫∫∫ ==⋅=⋅ IRAdlI /ρρ dlJdlE , with  ∫= AdlR /ρ               (4.1.2.2) 
 
so that 
 

∫ ⋅−−= dABdipoledt
d

dt
dILRI                                       (4.1.2.3) 

 
We need to determine the magnetic flux through the ring due to the dipole field.  To do 

this we calculate the flux through a spherical cap of radius 22 za +   with an opening 

angle given θ given by 22/sin zaa +=θ  (this is the same as the flux through the ring 
because ).   0=⋅∇ B
 

 

Figure 4.1-2:  Dipole flux through a polar cap 
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The flux through a spherical cap only involves the radial component of the dipole field, 
given by 
 

3

cos
2 r

B o
z

θμ
π

μ
=                                            (4.1.2.4) 

 
Our expression for the flux is thus 
 

∫∫ =⋅ θθπθμ
π

μ dr
r

o
dipole sin2cos

2
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3dAB   

 

which can be integrated to give  
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(4.1.2.5) 

 
Inserting (4.1.2.5) into (4.1.2.2) yields 
 

( ) 2/322
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a

dt
d
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dILIR o

+
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μμ                                     (4.1.2.6) 

 
We assume that μ is constant, with oM=μ , so that (4.1.2.6) becomes 

 

( ) dt
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za
zMa

dt
dILIR oo
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  (4.1.2.7) 

 
Equations (4.1.1.4) and (4.1.2.7) are our coupled ordinary differential equations which 
determine the dynamics of the situation.   
 
4.1.3 Dimensionless Form of the Equations 
 
 We now put these equations into dimensionless form.  We measure all distances 
in terms of the distance a, and all times in terms of the time ga / .  Let  
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o

o M
agmIwhere

I
II

ga
tt

a
zz
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2

,
/

==′=′=′                  (4.1.3.1) 
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The time ga /  is roughly the time it would take the magnet to fall under the influence 
of gravity through a distance a starting from rest.  The current Io is roughly the current in 
the ring that is required to produce a force sufficient to offset gravity when the magnet is 
a distance a above the ring.  In terms of these variables, our equations (4.1.1.4) and 
(4.1.2.6) are  
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We introduce the four dimensionless parameters 
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and we define the reduced flux rate function F(z') as  
 

2/52 )1(2
3)(
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zzF
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=′                                           (4.1.3.5) 

 
Note that we can write the reference current Io as 
 

βλμ
1

2

42
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                                      (4.1.3.6) 

 
The parameters have the following physical meanings.  The quantity α is the ratio of the 
free fall time to the inductive time constant--if α is very large, inductive effects are 
negligible.  The quantity β is roughly the ratio of the current due to induction alone, 

assuming the resistance is zero ( Ldipole /Φ  with 
a
M oo

dipole
μ

≈Φ ), to the reference current 

Io.  With these definitions, our equations become 
 

IzF
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                                       (4.1.3.7) 
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 If we define the speed tdzdv ′′=′ / , then we can write three coupled first-order 
ordinary differential equations for the triplet ),,( vIz ′′′ , as 
 

vtdzd ′=′′ /                                                      (4.1.3.9) 
 

td
zdzFI

td
Id

′
′

′+′−=
′
′

)(βα                                          (4.1.3.10) 

 

   IzF
td
vd ′′−−=
′
′

)(1                                            (4.1.3.11) 

 
4.1.4 Conservation of Energy  

 We assume that μ is constant.  If we multiply (4.1.1.4) by 
dt
dzv =  and (4.1.2.7) by 

I, after some algebra, we find that 
 

[ RIILmgzmv
dt
d 22

2
12

2
1 −=++ ]                                    (4.1.4.1) 

 
which expresses conservation of energy for the falling magnet plus the magnetic field of 
the ring.  The dimensionless form of this equation is  
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                               (4.1.4.2) 

 
 Suppose the resistance of the ring (the superconducting case) is zero (i.e., α = 0).  
In this case, (4.1.4.2) becomes, with one integration  
 

( ) 2/321 z
CI

′+
−=′ β                                              (4.1.4.3) 

 
If we impose boundary conditions that I' = 0 when t' = 0, with z'=zo'  and v' = vo'  at t' = 
0, then this is 
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Using this equation, (4.1.4.2) for the conservation of energy becomes  
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4.1.5 Numerical Solutions 
 
 A magnet falls through a copper ring.  At the ring, the speed of the magnet 
decreases.  When the magnet is through the ring, the magnet resumes free fall.  We show 
a numerical solution to equations (4.1.3.9) through (4.1.3.11) above, appropriate to this 
case.  The initial conditions ),,( vIz ′′′  for the solution plotted below are (2,0,0).  The 
values of ),( βα  are (10,100).  Below we plot position as a function of time and current 
as a function of time (using our dimensionless parameters).   
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Figure 4.1-3:  Numerical Solutions for the Falling Ring Equations 
 The behavior of these solutions is what we expect.  When the magnet reaches a 
distance of about a from the ring, it slows down, because of the increasing current in the 
ring, which repels the magnet.  As the magnet passes through the ring, the current 
reverses direction, now attracting the magnet from above, which also slows the magnet.  
Finally the magnet falls far enough that the current in the ring goes to zero, and the 
magnet is again in free fall.  
 
 These are approximate solutions only, using an Excel spreadsheet with an Euler 
integration scheme.  In the final animations, we a fourth order Runge-Kutta scheme to 
integrate the equations with high accuracy.   
 
4.1.6 The Topology of The Field 
 
 How do we plot the field configuration given solutions for z´ and I'?  The absolute 
current is given by (cf. equations (4.1.3.3) and (4.1.3.4)) 
 

I
a
M

III o
o ′=′= 2
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λβ

                                           (4.1.6.1) 
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How much freedom do we have in choosing the absolute value of the current once we 
have solved our dimensionless equations?  And in particular how does that freedom 
affect the topology of the magnetic field?  One measure of the shape of the total field is 
the ratio of the field at the center of the ring due to the ring to the field at the center of the 
ring due to the magnet when the magnet is a distance a above the ring, i.e.,   
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μ

μ
π

= ≈                (4.1.6.2) 

 
where we are dropping numerical factors.  Clearly when this ratio varies the overall shape 
of the total field must vary.  If we use (4.1.6.1) in (4.1.6.2) we have 
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The meaning of equation (4.1.6.3) is that the overall shape of the magnetic field topology 
is totally determined once we make the one remaining choice of the dimensionless 
constant λ, defined in equation (4.1.3.4) which up to this point we have not chosen (we 
have only picked values of α and β to solve our dimensionless equation).  Once that 
choice is made, we have no additional freedom to affect the field topology.   
 
4.2 Magnetic Dipole Moving Near a Circular Conducting Loop (N. Derby) 
 
4.2.1 Flux through the Loop 
 
 A circular loop of radius a lies in the x-y plane with origin center at the origin. 
A dipole is located at position ( ) zxx ˆˆ DDD zxt +=  with magnetic moment ( )tμ  with 
arbitrary orientation. The vector potential for the dipole is given by (see 3.1.1.1) 
 

( ) ( )
34 D

Do

xx
xxμxA

−
−×

⎟
⎠
⎞

⎜
⎝
⎛=

π
μ                                (4.2.1.1) 
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Figure 4.2-1:  The geometry of the ring and dipole for the flux calculation 

 
By Stokes’ theorem, the magnetic flux of the dipole field through the loop can be 

expressed as a line integral 
 

( )∫ ⋅=Φ lxA d                                      (4.2.1.2) 
 

where the integration is around the loop.  For integration purposes, express the integrand 
in cylindrical coordinates. The unit vectors are: 
 

yxρ ˆsinˆcosˆ φφ +=           yxφ ˆcosˆsinˆ φφ +−=                   (4.2.1.3) 

φρx ˆsinˆcosˆ φφ −=           φρy ˆcosˆsinˆ φφ +=                     (4.2.1.4) 

 

The magnetic moment is zφρμ ˆˆˆ zμμμ φρ ++= , where φμφμμρ sincos yx +=  and 
φμφμμφ cossin yx +−= .  In the plane of the loop 

 
ρx ˆa=     and     φl ˆφdad =                                        (4.2.1.5) 

In the numerator of the flux integrand we have 
 

( ) ( ) ( )[ ] φzφρρμφzxρμφxxμ ˆˆˆsinˆcosˆˆˆˆˆˆ ⋅−−−×=⋅−−×=⋅−× DDDDD zxazxa φφ  

= ( ) ( ) φμμφμμφμμρ sincoscos DyzDzDxDzD zaxzxaz ++−=−+     (4.2.1.6) 
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In order to put the integral into cel form (see 1.1.1), we introduce a different angular 
variable: βπφ 2−≡ . Then, using  andββφ 22 cossincos −= ββφ cossin2sin = , we 
write the previous expression as 
 

 ( )[ ] ( )[ ] ββμμμβμμβ cossin2cossin 22
DyDzDxDzDx zxazxaz +++−+−+      (4.2.1.7) 

Similarly,  
 
 ( )[ ] ( )[ ]2222222222 cossincos2 DDDDDDDD zaxzaxaxazx ++++−=−++=− ββφxx . 

(4.2.1.8) 

After defining the quantities 
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the flux through the ring can be written as 
 

 [ ] β
ββ

ββββμ
π

μφ
π

π

π

φ d
k

ccc
R
aadA

c

o ∫∫ −

−+

+ +

++
⎟
⎠
⎞

⎜
⎝
⎛==Φ

2

2 23222

3
22

3

22

0 sincos

cossinsincos2
4

       (4.2.1.10) 

The last term vanishes because of anti-symmetry and the remaining dimensionless 
constants are 

 ( )
a

axzc DzDx

μ
μμ ++−

=+      and     ( )
a
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Thus, the flux integral is 
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Comparing this integral to the definition of the cel function (1.1.1.1), we see that  
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π
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The flux thus depends only on the components of vectors lying in the x-z plane as shown 
in the figure. All quantities can be interpreted geometrically (see Figure 4.2-2).  In 
equation (4.2.1.13) we define the quantities 
 

( ) zxxxR ˆˆˆ DDD zaxa +±=±=±                               (4.2.1.14) 
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−≡
R
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= ±
±                                              (4.2.1.16) 
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Figure 4.2-2:  Geometric interpretation of R+ and R- 

 
 
4.2.2 Limits 
 

For a dipole on and aligned with the z-axis, kc =1 and 1=±c , so the expression for 
the flux reduces to  

( ) 2322
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⎟
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⎜
⎝
⎛=Φ

μμ                                     (4.2.2.1) 

 
This expression agrees with previous results (see 3.1.3.1). 
 
4.2.3 Equations of Motion 
 

If the initial orientation of the dipole is such that its velocity vector and magnetic 
moment lie in the x-z plane, then the force on it will also lie in the x-z plane and the 
torque on it will be in the y direction. Thus, the dipole will remain in the x-z plane as it 
translates and rotates (assuming that this is a stable situation). In this case the equations 
of motion are relatively simple. We must specify as parameters for the dipole its mass 
mD, its moment of inertia ID; and the magnitude of its magnetic moment μ. For the loop 
we must also specify a resistance R and self-inductance L. 
 

The state of the magnet and coil can be specified by ( )LDD I,,,, ωαvx , where α is 
the rotation angle of the dipole about the y-axis and ω its angular velocity, and IL.is the 
current in the loop. In terms of α, the magnetic moment is zxμ ˆcosˆsin αα += . Then 
the state’s evolution is determined by the following equations: 
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Kinematics:  D
D v

dt
d

=
x ,    ωα

=
dt
d                (4.2.3.1) 

Force equation: ( )
D
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+=              (4.2.3.2) 

Torque equation: 
I
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Faraday’s law:  ( )
L

DL I
L
R

dt
d

Ldt
dI

−
Φ−

=
x1               (4.2.3.4) 

 
where Φ the flux through the loop due to the dipole, IL the current in the loop, BBL the 
magnetic field of the loop. Expressions for BLB  in terms of IL have already been obtained, 
so the derivatives indicated above can be explicitly calculated. 
 

In order to describe more general motion, a more complicated state vector is 
required. The moment of inertia must be replaced by an inertia tensor ID specified in a 
coordinate system attached to the dipole; the orientation of the dipole can be specified by 
a unit quaternion Q; and the angular momentum DL  must be treated as a vector. Initial 

orientation of the dipole is written as ]Q,Q,Q,[Q  ]ˆ )2
Asin( ),2

A[cos(  Q zyxo== u , where 

A = angle of rotation of the dipole body coordinates about u . The state of the magnet and 
coil is thus (  and the evolution of this state is determined by the 
following equations: 
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Rotation matrix:  
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Angular velocity:  DI Lω 1−= ,  W=[0, ω ]             (4.2.3.10) 
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where Φ the flux through the loop due to the dipole, BBL the magnetic field of the loop, Q 
the orientation of the dipole, ID the body-centered inertia tensor of the dipole, I the dipole 
moment of inertia in world coordinates. 
 

Expressing the constants in cylindrical coordinates, 
 

( ) ( )
a

za
a

za
c DDzDDzz

μ
μρμ

μ
μρμμ ρρ ∓±

=
−±

=±              (4.2.3.13) 

 
 
 

5 Circuits 
 
Under construction.   
 

6 The Displacement Current 
 
 
Under construction.   
 
 
 
 
 
 
 
 

7 Radiation 
 
7.1 Electric Dipole Radiation 

 
7.1.1  The Electric and Magnetic Fields  
 

The electric field of a time-varying electric dipole p(t) is given by 
 

[ ] [ ]

radiation      induction      dipole static-quasi        
4

ˆ)ˆ(
4

)ˆ(ˆ3  
4

)ˆ(ˆ3),( 223 rcrcr
t

ooo επεπεπ
nnppnpnpnpnrE ××

+
−⋅

+
−⋅

=

   

                (7.1.1.1) 

 
where the “dot” above a variable indicates differentiation with respect to time, and the 
electric dipole moment vector and its time derivative are evaluated at the retarded time 

.   With some algebraic effort, it can be shown that this expression can be 
written as  

crttret /−=
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⎭
⎬
⎫

⎩
⎨
⎧

×⎥⎦
⎤

⎢⎣
⎡ +×∇= npprE ˆ

4
1),( 2rcr

t
oεπ

              (7.1.1.2) 

 
Now when we are not at the origin we are in vacuum, so that we have  
 

2

1 ( ,( , ) tt
c t

)∂
∇ × =

∂
E rB r               (7.1.1.3) 

 
But if we take the time derivative of (7.1.1.2) and multiply by 1/c2, we easily have 

 

2 2

1 ( , ) 1 1 ˆ
4 o

t
c t c cr rπ ε 2

⎧ ⎫∂ ⎡ ⎤= ∇ × + ×⎨ ⎬⎢ ⎥∂ ⎣ ⎦⎩ ⎭

E r p p n               (7.1.1.4) 

 
Comparing the two equations above, we see that we must have 
 

2
ˆ( , )

4
ot

cr r
μ
π

⎡ ⎤= + ×⎢ ⎥⎣ ⎦
p pB r n                 (7.1.1.4) 

 
7.1.2 The Flux Function for a Dipole Oriented Along The Z-Axis 
 

If the dipole moment p is always in the z-direction, we can write the electric field 
as 
 

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −

+
−

×∇= φθ
επ

ˆsin)/()/(
4

1),( 2r
crtp

cr
crtpt

o

rE
         

   (7.1.2.1) 

 
Equation (7.1.2.1) and the development in 1.3 above imply that the electric field lines of 
a simple radiating electric dipole system in this case are given by the isocontours of  
 

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −

+
−

== θ
επ

θπθθπθ sin)/()/(
4

1sin2),,(sin2),,( 2r
crtp

cr
crtprtrArtrF

o
(7.1.2.2) 

or   

θπ
επ

θ 2sin2)/()/(
4

1),,( ⎥⎦
⎤

⎢⎣
⎡ −

+
−

=
r

crtp
c

crtptrF
o

   (7.1.2.3) 

 
and this is the flux function for such a dipole, in the sense defined in 1.3.  If we define the 
dimensionless variables  
 

   
T
tt =′         

cT
rr =′                                        (7.1.2.4) 

we can rewrite (7.1.2.3) as 
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θπ
επ

θ 2sin2)()(1
4

1),,( ⎥⎦
⎤

⎢⎣
⎡

′
′−′

+′−′=
r

rtprtp
cT

trF
o

   (7.1.2.5) 

 
where now the “dot” above a variable indicates differentiation with respect to the 
dimensionless time variable. 
 
7.1.3 An Oscillating Electric Dipole 
 

Let us consider a particular case of the situation above.  Suppose the dipole moment 
is a constant plus a sinusoidally varying function of time, with period T.  That is, 

  

⎥⎦
⎤

⎢⎣
⎡ += )2cos()( 1 T

tpptp o
π

                     (7.1.3.1) 

in which case (7.1.2.3) becomes 
 

θπ
επ

θ 2
11
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)/(2cos)/(2sin2

4
1),,(

⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎢
⎢

⎣

⎡
⎟⎟
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⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
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+
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⎟
⎠
⎞

⎜
⎝
⎛ −ππ

−
=

r
T

crtpp

c
T

crtp
TtrF

o

o
 

(7.1.3.2) 
or in terms of our dimensionless variables 
 

( ) ( )( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

′
′−′π+

+′−′ππ−=′′ θπ
επ

θ 21
1 sin)(2cos)(2sin22

4
1),,(

r
rtpprtp

cT
trF o

o

  

(7.1.3.3) 
 

Figure 7.1-1 below shows the field lines for at t = 0 as defined by (7.1.3.3), for two 
values of the flux function, -3 and +3. 
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Figure 7.1-1:  Field lines and flux function of an oscillating electric dipole. 

 
7.1.4 A Rotating Electric Dipole 
 
 Let is look at the electric and magnetic fields of a rotating electric dipole which is 
oriented perpendicular to its axis of rotation.  We have 
 

[ ]ˆ ˆ( ) cos sinot p t tω ω= +p x y                                (7.1.4.1) 

 

[ ]ˆ( ) sin cosot p t tω ω ω= − +p x ŷ                                (7.1.4.2) 

 

[ ]2 ˆ( ) cos sinot p t tω ω ω= − +p x ŷ

ˆ

                               (7.1.4.3) 

 
 We are going to look at the fields only in the xy plane at z = 0.  Thus  
 

ˆ ˆcos sinφ φ= +n x y                                (7.1.4.4) 

 
Using the expressions for p and n above, we easily have that  
 

[ ] [ ]ˆ ˆ ˆ ˆcos sin cos sin cos( )o op t t p tω ω φ φ φ⋅ = + ⋅ + = −p n x y x y ω                 (7.1.4.5) 
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[ ] [ ]ˆ ˆ ˆ ˆsin cos cos sin sin( )o op t t p tω ω ω φ φ ω φ⋅ = − + ⋅ + = −p n x y x y ω              (7.1.4.6) 

 
[ ] [ ]ˆ ˆ ˆ ˆ ˆsin cos cos sin cos( )o op t t p tω ω ω φ φ ω φ× = − + × + = − −p n x y x y z ω       (7.1.4.7) 

 
[ ] [ ]2 2ˆ ˆ ˆ ˆ ˆcos sin cos sin sin( )o op t t p tω ω ω φ φ ω φ× = − + × + = − −p n x y x y z ω       (7.1.4.8) 

 
[ ] ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ3 ( ) 3 cos( ) cos sin cos sino op t p t tφ ω φ φ ω ω⋅ − = − + − +⎡ ⎤⎣ ⎦n p n p x y x y       (7.1.4.9) 

 
[ ] [ ] [ ]ˆ ˆ ˆ ˆ3 ( ) 3cos( )cos cos 3cos( )sin sino op t t p t tφ ω φ ω φ ω φ ω⋅ − = − − + − −n p n p x y  

(7.1.4.10) 
 

[ ] ( ) [ ]ˆ ˆ ˆ ˆ ˆ3 ( ) sin( ) cos sin sin coso op t p t tω φ ω φ φ ω ω ω⎡ ⎤⋅ − = − + − − +⎣ ⎦n p n p x y x ŷ  (7.1.4.11) 
 

[ ] [ ] [ ]ˆ ˆ ˆ3 ( ) 3sin( )cos sin 3sin( )sin coso op t t p t tω φ ω φ ω ω φ ω φ ω⋅ − = − + + − −n p n p x y  
(7.1.4.12) 

 
[ ] ( )2ˆ ˆ ˆ ˆ( ) sin( ) cos sinop tω φ ω φ φ× × = − − × + ˆ⎡ ⎤⎣ ⎦p n n z x y               (7.1.4.13) 

 
[ ] [ ]2ˆ ˆ ˆ( ) sin( ) sin cosop t ˆω φ ω φ φ× × = − −p n n x y               (7.1.4.14) 

 
So we have for the electric field  
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π ε
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π ε
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E r
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x y               

(7.1.4.15) 
 

2

sin( ) cos( )ˆ( , )
4

o
o

tt p
cr r

μ ω φ ω φ ωω
π

− − t⎡ ⎤= − +⎢ ⎥⎣ ⎦
B r z   (7.1.4.16) 

 
 
 

7.2 Linear Antenna (S. Olbert and N. Derby) 
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7.2.1  Notations, Definitions, Basics 
 
 Following common conventions let E, B, A, φ, ρc and j stand, respectively, for 
electric field, magnetic field, vector potential, scalar potential, charge density and electric 
current density. Let us also introduce D and H such that 
 

 
oμε BHED o ==  (7.2.1.1) 

Recall that the speed of light c is related to εo and μo by  

 
o

c
μεo

1
=  

With these notations Maxwell Equations acquire the compact form 
 
 0=⋅∇=⋅∇ BD cρ  (7.2.1.2) 

 jDHBE +=×∇−=×∇
tt ∂

∂
∂
∂  (7.2.1.3) 

Let’s define vector and scalar potentials A and φ such that 
 

 φ
∂
∂

∇−−=
t
AE  (7.1.1.4) 

 AB ×∇=  (7.1.1.5) 

 
With the auxiliary condition  

 0=+⋅∇
to ∂
φ∂μεoA  (7.1.1.6) 

imposed, one can then readily show that Maxwell’s Equations lead to 

 
o

o ε
ρ

∂
φ∂μεφ c

o t
−=−∇ 2

2
2  (7.1.1.7) 

 io
i

oi j
t
AA μ

∂
∂με −=−∇ 2

2
2

o  (7.1.1.8) 

where the subscript i indicates one of the Cartesian components of A or j. To prove the 
above, one needs the identity 
  (7.1.1.9)  AAA 2)()( ∇≡×∇×∇−⋅∇∇

By virtue of equations (7.1.1.2), (7.1.1.3), (7.1.1.4) and (7.1.1.9), one has 

 2

2
2 )(

t
c

t ∂
∂

∂
∂ AAE

−⋅∇∇=  (7.1.1.10) 
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In order to find the electric field for a given current system it is mathematically more 
expedient to solve first equation (7.1.1.5) for A and then use equation (7.1.1.10) to work 
out the expression of E. In fact, the general solution of equation (7.1.1.5) is known to be 
 

 ( ) ( ret
o ttttdxd −′

′−
)′′

′′= ∫ ∫ δ
π

μ
||

,
4

3

xx
xjA  (7.1.1.11) 

 
where 

 cttret
|| xx ′−

−=  (7.1.1.12) 

is the retarded time. 
 

Center-fed Linear Antenna:  Vector Potential  
 
Lay a linear antenna of length l along the z-axis with its center at the origin of a Cartesian 
coordinate system. Let the charge be fed through center harmonically so that we can put 
for the current density in the antenna 

 
( ) ( ) ti

z

yx

eyxzkklIj

jj

ωδδ −′′⎟
⎠
⎞

⎜
⎝
⎛ ′−=

==

||
2
1sin

0
 (7.2.1.13) 

where ω is the circular frequency and k is the wave number so that 

 ck ω
=  (7.2.1.14) 

We choose the phase of the physical current density so that it is the imaginary part of 
(7.2.1.13). 
 
Inserting equation (7.2.1.13) into equation (7.2.1.11) yields 
 

 ( )
||

exp||
2
1sin

4

0
2/

2/ xx ′−
−

⎟
⎠
⎞

⎜
⎝
⎛ ′−′=

==

∫
+

−

ret
l

l

o
z

yx

tizkklzdIA

AA

ω
π

μ  (7.2.1.15) 

To simplify notation it is convenient to replace time and space variables, t and x, by 
corresponding dimensionless quantities, to wit: 

 lka 2
1

=   (7.2.1.16) 

 xxxx ′→′→→ kktt ;;ω  . 

With the dimensionless cylindrical coordinates ρ and φ such that 
 
 ( ) ( )cos sinx yρ φ ρ= = φ  



Version 1.1 7/27/2008  57 

 
we then have for our geometrical setup 
 

 ∫
+

− ′−+

−′−′=
a

a

reto
z

zz
tizazdIA

22 )(
)exp(|)|sin(

4 ρπ
μ  (7.2.1.17) 

Because of the mirror symmetry about the (x′y′)-plane, we can convert the integration in 
equation (7.2.1.17) to the positive half above this plane, (z′ ≥ 0). With proper adjustments 
of signs we thus can replace equation (7.2.1.17) by 
 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+′−′=

−

−

+

+∫ R
iR

R
iRzazdIeA

a

o

ito
z

)exp()exp(sin
4π
μ  (7.2.1.18) 

 

where we have put for short 
 

 ( ) 22222 ; yxzzR +=′±+=± ρρ  (7.2.1.19) 

 
Center-fed Linear Antenna:  Cylindrical Components of E 

 
We are now ready to work out explicit expressions of Ez and Eρ . 
 
Using equations (7.2.1.18) and (7.2.1.10) and taking advantage of axial symmetry, (Eφ   = 
0), we get 

 2

2

z
AAiE z

z
z

∂
∂

ω
−−=  (7.2.1.20) 

 
∂ρ∂

∂
ω

ρ

z
AiE z

2

−=   (7.2.1.21) 

 
Consider some function K containing in its argument (z ± z′); clearly, differentiating with 
respect to z can be exchanged with that with respect to z′, viz., 
 

 
z

zzK
z

zzK
′

′±
±=

′±
∂

∂
∂

∂ )()(  (7.2.1.22) 

 
With this in mind, one can show that differentiating an integral expression of the form 
 

  (7.2.1.23) ( ) [ )()()sin( zzKzzKzazdzF
a

o

′−+′+′−′= ∫ ]

leads to the following results 
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 [∫ ′−−′+′−′=
a

o

zzKzzKzazd
z
F )()()cos(

∂
∂ ]  (7.2.1.24) 

 ( )zKaazKazK
z
FF cos2)()(2

2

−−++=+
∂
∂  (7.2.1.25) 

Applying this to equation (7.2.1.20) we find, with some surprise, that the z-component of 
E reduces to the elementary form 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
+

−
=

−

−

+

+−

r
a

D
rDi

D
rDieEiE i

oz
cos2)](exp[)](exp[τ  (7.2.1.26) 

where 
 

( ) 2222 ;;;
4

zrazDrtIE o
o +=±+=−== ± ρρτ

π
ωμ  (7.2.1.27) 

Unfortunately, the ρ-component of E is not reducible to an elementary expression. 
 
Carrying out the differentiation in equation (7.2.1.21) first with respect to z, then making 
use of relation (7.2.1.24) and the fact that 
 

 
±

± =
R

R ρ
ρ∂

∂  

we find the following integral expression for Eρ 
 

  (7.2.1.28) ( )[∫ −+
− −′−′=

a

o

it
o RGRGzazdeiEE )()(cosρρ ]

where we have put for short 

 ( ) ( 1)exp(
3 −= ξ

ξ
)ξξ iiG  (7.2.1.29) 

In practical applications we need only the real (or imaginary) parts of equations (7.2.1.26) 
and (7.2.1.28).  Doing the necessary algebra, we arrive at desired answer 

 

 ( ) ( )ττττ sincoscossin 2121 QQiEQQEE ooz ++−=  (7.2.1.30) 

( ) ( )ττττρ sincoscossin 2121 PPiEPPEE oo −−+−=                (7.2.1.31) 

where 

   (7.2.1.32) [∫ −+ −′−′=
a

o
rRgrRgzazdP ),(),()cos( 111 ρ ]
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with 

 31
)cos()sin(),(

ξ
ξξξξ rrrg −+−

=  (7.2.1.33) 

and  

  (7.2.1.34) [∫ −+ −′−′=
a

o
rRgrRgzazdP ),(),()cos( 222 ρ ]

with 

 32
)sin()cos(),(

ξ
ξξξξ rrrg −−−

=  (7.2.1.35)  

 

Note in passing that ( ) ( )
r

rgrg
∂

∂
=

,, 2
1

ξξ  and ( ) ( )
r

rgrg
∂

∂−
=

,, 1
2

ξξ .  Finally 
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rD
D

rDQ cos2)cos()cos(
1 −

−
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−
=
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+

+  (7.2.1.36) 

 

 
−

−

+

+ −
+

−
=

D
rD

D
rDQ )sin()sin(

2  (7.2.1.37) 

 
Center-fed Linear Antenna:  Asymptotic Expressions 

 
It is of some interest to work out asymptotic expressions for equations (7.2.1.30) and 
(7.2.1.31).  We have for 
 
 ;cos,cos: θθ aDzrRr ±≈′±≈−∞→ ±±  

where 

 
rr

z ρθθ == sin;cos . 

 
Retaining only the leading term in powers of (1/r) we find  
 

 1 20

2sin cos( ) sin( cos ) 0 .
a

P dz a z z P
r

θ θ′ ′ ′≈ −∫ ≈  

The integral is elementary; integrating by parts one gets  

 [ ]∫ −=′′−′
a

aazzazd
0 2 cos)coscos(sin

cos)cossin()cos( θ
θ
θθ    

 
Next, we find that 
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 [ ] 0;cos)coscos(2
21 ≈−≈ Qaa

r
Q θ  

and, therefore, 

 [ ]
r

rtaaEEEE ozz
)sin(cos)coscos(2;cot −

−=−= θθρ   . 

We can convert these results to spherical coordinates r and θ.  The components of E-field 
in these coordinates are related to those given in cylindrical coordinates by 
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ρθ

ρ
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EEE

EEE
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+=
 

so that 

 0)sin(
sin

cos)coscos(
2 =

−
⎥⎦
⎤

⎢⎣
⎡ −

−= ro Er
rtaa

EE
θ

θ
θ , 

which agrees with formulas found in the literature (see, e.g., J. D. Jackson, page 402). 
 

7.2.2 Flux Function for Linear Antenna 
  
Recall that one of the Maxwell equations in a current-free region is 

 BEBE
∫×∇=×∇= dtcorc

t
22

∂
∂  (7.2.2.1) 

Axial symmetry of the antenna makes B a toroidal vector; hence, according to 
equation(1.3.1.4), the flux of the E-field, F, is 

 ),,(2),,( 2 tzBdtctzF ρρπρ φ∫=  (7.2.2.2) 

Furthermore, recalling that the B-field is derivable from the vector potential A 

 AB ×∇=  

and that for a linear antenna  

 zA zA=  

we have 

 0z
z

AB Bϕ Bρ
∂
∂ρ

= − = =  (7.2.2.3) 

where, in terms of reduced (dimensionless) variables defined in (7.2.1.16),  
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)exp()exp(sin
4π
μ  (7.2.2.4) 

Introducing Hertz’s Superpotential Z  defined by 
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 ),,(),,(),,( tzAitzAdttzZ zz ρρρ −=−= ∫  (7.2.2.5) 

we thus have for the flux of the electric field of the antenna 

 
ρ∂

∂πρ ZcF 22=  (7.2.2.6) 

and for the components of the electric field 

 
z

FcE
πρ∂
∂

ρ 2
2−=  (7.2.2.7) 

 
πρ∂ρ
∂

2
2 FcEz =  (7.2.2.8) 

Note that 

 0=∇⋅ FE  

 

which shows that the lines of the E-field are defined by the equation 

 

 F(ρ,z,t) = constant.  

 

7.2.3 Singular Points of E-Field of Linear Antenna  
 
Using cylindrical coordinates and dimensionless variables (ρ, z) with the antenna along 
the z-axis, we have for the z-component of the electric field 
 
 ττ sincos 21 QQEz +=  (7.2.3.1) 

where 
 22; zrrt +=−= ρτ  (7.2.3.2) 
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+  (7.2.3.3) 
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rDQ )sin()sin(

2  (7.2.3.4) 

 ( )22 azD ±+=± ρ    (7.2.3.5) 

and again ⎟
⎠
⎞

⎜
⎝
⎛×=

2
2 lengthantennaa
λ
π .  In the equatorial plane of the antenna, (z = 0), 
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ρ
ρ

ρ
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−
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=
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2
1

coscos
2
1

2

1

 (7.2.3.6) 

where 22 aD += ρ .  (7.2.3.7) 

 

Note that Ez may be re-written as  
 

 ( ) ( δττδτδ ++=++= sinsincoscossin 2
2

2
1

2
2

2
1 QQQQEz )  (7.2.3.8) 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1arctan
Q
Qδ .  (7.2.3.9) 

In the equatorial plane, z = 0, vanishes everywhere, so singular points occur at values 

of ρ for which E

ρE

z = 0 since 
0
0

⇒
ρE

Ez  there. The condition Ez = 0 occurs when the phase 

of Ez is a multiple of π, that is, when πδτ n=+  for any integer n.  Thus, the locations of 
the of the singular points satisfy the equation 

 

πρ n
Q
Qt +⎟⎟

⎠

⎞
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Typical graphs of t (for n=0) as a function of ρ for values of a between 0 and π/2 are 
shown in Figure 7.2-1. Note that in general, t has one maximum and one minimum. Since 
t depends only on the ratio of Q1 to Q2, the Qi’s can be replaced by ii UQQ = , where U is 

any non-zero function of ρ. We choose 
2
DU ρ

=  so that 
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The resonant antenna (a=π/2) deserves special attention. Since cos a = 0, we have 
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  (7.2.3.12) 

so that  
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or inverting this to get ρ as a function of t, 
 ( )πρ += tt  (7.2.3.14) 

where πntt −≡ . So, at t = 0, the singular points are at ρ = 0, π2 , etc. 
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Figure 7.2-1    t vs ρ (a= .001, π/4, π /2) 
 

Computing the phase velocity 
 

Consider some constant value of the phase ( )δτ + . Then, 

 ( ) 0=+ δτ
ρd
d  (7.2.3.15) 

yields the expression for the phase velocity. In detail, we have 
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and its total derivative with respect to t: 
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or 
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For the special case of the resonant antenna (a=π/2) we can resort to the formula 
( )πρ += tt  which yields 
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Note that in general when   
 2

2
2

1211221 ),( QQQQQQQQW +=−≡ ′′  (7.2.3.20) 

the phase velocity   (or dt/dρ = 0). This happens at a well-defined place ρ = ρ∞→phasev c 
and time t = tc. In Figure 7.2-1, the graph of t reaches its minimum value tc at ρ = ρc.  
 
The sign of vphase can be used to define two regions, an outer region (ρ > ρc) where vphase 
is positive and an inner region (ρ < ρc) where vphase is negative (so that points of constant 
phase move toward the antenna). The topology of the electric field near the singular 
points in the inner region (ρ < ρc) is different from the outside region (ρ > ρc). By 
analyzing the “slope” equation of a singular point, viz. 
 

 
0
0

sincos
sincos

21

21 →
+−

+
==

ττ
ττ

ρρ PP
QQ

d
dz

E
Ez  (7.2.3.21) 

one can show with the help of L’Hospital’s rule that the singular points in the inner 
region are X-points and those in the outer region are O-points. 
 

General Discussion of Singular Points 
 
The field line equation for a two-variable case is 

 ( )
( )zE

zE
d
dz z

,
,

ρ
ρ

ρ ρ

=  (7.2.3.22) 

Assume that there are points S in the ( )z,ρ  ‘plane’ where both Ez and Eρ vanish at the 
same time making equation (7.2.3.22) an indeterminate form. To ascertain the shape of 
the field lines near these singular points, expand Ez and Eρ in power series in dρ and dz 
about a given singular point ( )ss zS ,ρ= . The increments  

 
s
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 (7.2.3.23) 

are taken to be of the first order.  Thus, 
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so to first order 
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where, for brevity,  
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Solving (7.2.3.25) for 
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Assuming that all the derivatives of E are well-behaved, then, if the discriminant 
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is positive, the singular point S is called an X-point since the field lines appear to cross 
each other in the limit of small dρ and dz; otherwise it is called an O-point since the lines 
form infinitesimal loops (or possibly spirals) encircling the point S. 
 

Singular Points of the Linear Antenna 
 
The above discussion is quite general for a two-variable (two-‘dimensional’) topology. 
Turning to the specific case of a linear antenna, we immediately realize that there are an 
infinite series of singular points, both along the z-axis (the polar axis of the antenna) and 
along the ρ-axis (the equatorial plane of the antenna). 
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Along the Polar (z) Axis of the Antenna 
 

Inspection of the expression for Eρ shows that Eρ is an odd function in both ρ and z, so 
that we may put 
 
 ( )tzzE ,,ρρρ Ψ=  (7.2.3.30) 

where Ψ is even in both ρ and z and is well-behaved everywhere outside the antenna. 
More explicitly, we have  
 
 ( ) ( ) ( ) τρτρρ sin,cos,,, 21 zztz Ψ+Ψ=Ψ    (7.2.3.31) 

Moreover, inspection of Ez shows that it is an even function of both ρ and z  

 τρτρ sin),(cos),( 21 zQzQEz +=      (7.2.3.32) 

Now, along the z-axis, for 0⇒ρE 0⇒ρ . Thus, wherever Ez=0, that is, at all values of z 
for which 

 ( ) ( )
( )zQ

zQzt
,0
,0tan

2

1−
=−  (7.2.3.33) 

there is a singular point.  
 
Examine (7.2.3.28) near such a singular point on the z-axis. That is, let ρ =ε where ε is 
assumed to be of second order so that ε << dρ. Since Eρ is even in ρ, Ez,ρ goes to zero as 
ρ goes to zero. Furthermore, 
 
 ( )tzE sz ,,0, Ψ= ερ  (7.2.3.34) 

 

so that  in equation (7.2.3.29) is of second order compared to  ρρ ,, zz EE
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provided η is finite and well-behaved as 0⇒ρ . This is so for the linear antenna. 
Thus, equation (7.2.3.29) reduces to 
 

 ( )tz
z

,,0Ψ
±

=′
ε

ηη
  (7.2.3.36) 

which implies that in the limit 0⇒ε , ∞⇒′ or0z . In other words, the singular points 
along the z-axis are X-points with two separatrix lines crossing at 90°, one line horizontal 
and the other vertical. 
 

Along the Equatorial Plane (z = 0) 
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For finite values of ρ, as ,  so, whenever E0⇒z 0⇒ρE z = 0, there is a singular point. 
This will happen whenever 
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Now, for , and  (because E0⇒z 0, ⇒ρρE 0, ⇒zzE z is even in z). Therefore, equation 
(7.2.3.28) reduces to 
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It remains to work out in detail the two derivatives at z = 0. 
 
Using equation (7.2.3.32) we have for constant t: 
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with 
0=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

≡′

z

i
i

QQ
ρ

. 

Since 1=
∂
∂
ρ
r  and, by virtue of equation (7.2.3.37), 
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equation (7.2.3.39) becomes 

 2
2

2
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2
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2121
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=ρ   .  (7.2.3.41) 

Numerical calculations show that for small ρ,  is negative and becomes positive for 
ρ >  ρ

ρ,zE

c, where ρc is determined from the condition = 0. Moreover, one finds that  
is negative for all ρ <  ρ

ρ,zE zE ,ρ

c and beyond. Thus, equation (7.2.3.41) implies that for all 
ρ <  ρc, the singular points in the equatorial plane of the antenna are of the X-type and 
become O-points for ρ >  ρc. 

 
Figure 7.2-2 shows these two classes of singular points for the resonant antenna case.   
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Figure 7.2-2:  Singular points for the resonant antenna. 
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8 Appendices 

 
8.1 What is new in Version 1.1 compared to Version 1.0? 
 
 We have added an extensive discussion of the mathematics of the linear antenna, 
see Section 7.2.   
 
8.2 Time Evolution of Field Lines Using Flux Functions 
 
 This appendix extends considerations in 1.3.2 above.  We use spherical 
coordinates here, instead of cylindrical coordinates as in the main text, with no loss of 
generality.  Suppose that we have a scalar function ),,( trA θ  such that the components of 
the magnetic field are given at all times t by  
 

)ˆ),,((),,( φθθ trAtr ×∇=B                                               (9.2.1) 
 

or 

[ ] [ ),(1),(),(sin
sin
1),( θ

∂
]∂θθθ

∂θ
∂

θ
θ θ rAr

rr
rBandrA

r
rBr −==         (9.2.2) 

 
If we define the flux function ),,(sin2),,( trArtrF θθπθ =  (cf. 1.3.1.4), then 
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We want to determine the time evolution of field lines in this case.  That is, how does one 
make the correspondence between a field line at one time and the "same" field line at a 
different time?  
 

First of all, suppose that the curve ),( otR θ  at time to  satisfies 

ooo FttRF =),),,(( θθ .  Then we can show that ),( otR θ  is a field line at that time, as 
follows.   If we look at the variation in the flux function as we vary the spatial values at a 
given time, we have 
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If ),( otR θ  is such that it exhibits constant flux levels at time to along its length, we must 
have that 
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but this is simply 
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This is the equation defining a field line, so that at to  ),( otR θ  is a field line.   
 

Now, let that field line evolve in time in the manner we have defined in 1.3.2.  We 
then assert that at time t this "same" field line is given by ),( tR θ , where ),( tR θ  satisfies 
the equation oFttRF =),),,(( θθ .  That is, the evolution of the field line in time can be 
traced by solving oFttRF =),),,(( θθ , where the same constant Fo characterizes the 
"same" field line at all times t. 
 

To show this, we first review how we define the motion of field lines. For 
magnetic field lines, we follow the evolution of a field line by following the motion of a 
low energy particle gyrating about the field line as time progresses.  Physically, we trace 
our field lines by tracing the motion of particles attached to the field lines.  We know that 
this motion is given by the  drift.   That is, low energy particles of either sign will 
move in a time-changing magnetic field at a velocity given by . 

BE ×
2/ BBEv ×=

  
 To calculate this drift velocity, we need E.  How do we calculate E in this 
situation?  Faraday's Law and (9.2.1) tell us that 
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so that we have 
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and therefore, using (9.2.8) in , we have 2/ BBEv ×=
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or, using (9.2.3) 
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\ 
Now we know what our drift velocity is in terms of the flux function.  We can thus define 
the way a given point (x,y) on a field line “drifts” or evolves in time.  Let rδ  be the 
distance a point (x,y) on a given field line moves in time tδ .  Then we want (using 

),,(sin2),,( trArtrF θθπθ = ) 
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Note that Br ⋅δ  is zero, meaning that a field line moves perpendicular to itself in time.  
This is not a problem, since there is no physical meaning to a field line moving parallel to 
itself, so that we may take any parallel motion to be zero.   
 
 Now, we want to show that as we follow a field line in time using (9.2.11), then 
that field line always has the same value of the flux function ),),,(( ttRF θθ .  Let Fo be 
the value of F at ),,( tr θ .  Then at ),,( ttrr δδθθδ +++ , we have   
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which means that for those points ),,( ttrr δδθθδ +++  that preserve Fo,  
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With no loss of generality, we can assume that our displacement ˆˆr rδ δ δθ= +r r θ  is 
perpendicular to the field (see above), which means that  
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where we have used (9.2.3).  Now, (9.2.13) and (9.2.14) can be considered as two 
equations for the two unknowns δr and δθ.  Solving for these gives 
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But this equation, which preserves the value of Fo as the field line evolves in time, is the 
same as equation (9.2.11) above, which describes the BE×  drift of the field line.  
Therefore, the  drift of the field line points also conserves the value of the flux 
function, as was to be demonstrated. 

BE×
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