

24

TEALsim Documentation: The Software
MIT Center for Educational Computer Initiatives
http://ceci.mit.edu/

Version 1.1 May 21, 2006
John Belcher, Andrew Mckinney, Philip Bailey, Michael Danziger

Comments and questions to jbelcher@mit.edu
Supported by the d’Arbeloff Fund for Excellence in MIT Education, the Davis Educational Foundation, iCampus, the MIT School of Science, NSF Grant #9950380, the Helena Foundation, and the Classes of 1951, 1955, and 1960.

(2006 Massachusetts Institute of Technology
To find issues that need to be addressed, look for NTFT (NEEDTOFIXTHIS).

Notes:
1. insert index entry Shift Alt X

MIT TEALsim Software License XE "Software License"
Copyright (c) 2006 The Massachusetts Institute of Technology. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This product includes software developed by the Massachusetts Institute of Technology." Alternately, this acknowledgment may appear in the software itself, if and wherever such third- party acknowledgments normally appear.

4. The names "MIT TEALsim," "MIT," and "Massachusetts Institute of Technology" must not be used to endorse or promote products derived from this software without prior written permission. For written permission, please contact the Director of the MIT News Office.

5. Products derived from this software may not be called "MIT TEALsim", nor may "MIT TEALsim" appear in their name, without prior written permission of the Massachusetts Institute of Technology.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents
(LIVE LINKS)
61
Introduction

72
Quickstart

72.1
Basics

72.1.1
The Integrated Development Environment (IDE)

72.1.2
Instructions for Running a Simulation

92.2
Quickstart Tutorials

92.2.1
Tutorial_02_01: Simple simulation

112.2.2
Tutorial_02_02: Simple simulation with a graph and a damping slider

122.2.3
Tutorial_02_03: 3D objects, native and imported

122.2.4
Tutorial_02_04: Two Interacting Electromagnetic Objects

132.2.5
Tutorial_02_05: Vector Field Grid

132.2.6
Tutorial_02_06: Field Lines

132.2.7
Tutorial_02_07: Line Integral Convolution

142.2.8
Tutorial_02_08: All of the Above

143
TEALsim Overview

143.1
The Simulation (SimWorld, TSimulation) :

153.2
SimPlayer (TFramework) and SimPlayerApp

153.3
SimEngine – the Simulation Engine:

163.4
Viewer and Viewer3D – the Rendering Engine:

163.5
The User Interface:

174
TEALsim Overview in the Context of Tutorial_02_08

174.1
The Simulation (SimWorld, TSimulation) :

174.2
SimPlayer (TFramework) and SimPlayerApp

174.3
SimEngine – the Simulation Engine:

184.4
Viewer and Viewer3D – the Rendering Engine:

184.5
The User Interface:

195
Appendices

195.1
Installing Java 2, Java3D, and Eclipse in a Windows Environment

195.1.1
Downloading and Installing the Java™ 2 SDK, SE 1.4.2

215.1.2
Downloading the Eclipse SDK 3.1.2

215.1.3
Downloading and Installing Java 3D™ API 1.3.1

235.1.4
Downloading the TEALsim code.

245.1.5
Creating A TEALsim Project in Eclipse

245.1.6
Generating JavaDocs for the TEALsim Project in Eclipse

255.2
Creating 3D Objects for Import Into Java3D

255.2.1
Creating Native Java3D Objects

255.2.2
Creating and Importing Autodesk 3ds Max 8 .3DS Scene Files

255.2.3
Importing Wavefront .obj Scene Files

255.2.4
Importing VRML .wrl Scene Files

265.2.5
Importing Lightwave 3D Scene Files

265.3
A Guide to Programming Resources for Java 3D

265.3.1
The Java Language

265.3.2
Java 3D

276
References

287
Index

Figure Captions

7Figure 2‑1: A Frame from Tutorial_02_08

8Figure 2‑2: Starting a simulation

8Figure 2‑3: The Run dialog box

9Figure 2‑4: A falling coil simulation

10Figure 2‑5: Help file for tutorial

11Figure 2‑6: The graph and slider control for the falling coil.

12Figure 2‑7: Imported and Native Objects In Java3D

13Figure 2‑8: Two Electromagnetic Objects Interacting

17Figure 4‑1: Screen Capture of Tutorial_02_08

18Figure 4‑2: Controls for Running Tutorial _02_08

19Figure 6‑1: The Eclipse Home Page

19Figure 6‑2: The Eclipse Download Page

20Figure 6‑3: Java Runtimes

20Figure 6‑4: Sun Download Page

21Figure 6‑5: Sun SDK SE 1.4.2_11 Download Page

22Figure 6‑6: The Sun Developer Network (SDN) Downloads

22Figure 6‑7: Java Technology Downloads

23Figure 6‑8: Java3D Downloads Page

23Figure 6‑9: Final Java3D Downloads Page

24Figure 6‑10: Creating A TEALsim Project in Eclipse

24Figure 6‑11: Specifying the Name of the Project in Eclipse

25Figure 6‑12: Generating Javadocs

1 Introduction
The TEAL simulation system, TEALsim, is designed as a framework for authoring, presenting, and controlling simulations in a variety of domains, beginning with electromagnetism and kinematics, with extensions to biochemistry. The goal of TEALsim is twofold: first, it aims to provide a relatively simple, “API-style” interface, such that non-expert programmers can produce full-featured interactive simulations from the ground up, including all aspects of visualization and user interface, with minimal exposure to the “inner workings” of the system. Second, it offers a flexible framework for more experienced programmers to extend and expand on the functionality of the system to suit their specific needs.

This document is intended as a general guide to building scientific and engineering simulations using the TEALsim simulation environment. The TEALsim environment was developed by the Technology Enabled Active Learning (TEAL) Project
 at MIT. Many examples of the software produced by this project are available on line at
http://web.mit.edu/8.02t/www/802TEAL3D/teal_tour.htm
Our intended audience is undergraduates, graduate students or postdoctoral fellows in science and engineering who have some knowledge of programming but little if any knowledge of 3D graphics and conventions (e.g. scene graphs, branch groups, view platforms, and so on). We have assembled a set of instructions and tutorials that will enable someone with that background to create, package, and post 3D simulations in a short time. We have also provided enough insight into the workings of Java3D for the uninitiated to have a passing knowledge of what goes on, and we have provided references to books and online resources for those interested in expanding that knowledge beyond what we present here.
The organization of this documentation is as follows. We first give “Quick Start” instructions for running the code and building electromagnetic simulations out of standard components in the TEALsim universe, including step by step instructions for downloading and installing both Java 2 SE, Java 3D and an integrated development environment, Eclipse. We then move on to a general description of the TEALsim architecture and discussions of the details of the implementation of that architecture.

Throughout, we have included a number of tutorials for using TEALsim. The source code XE "Tutorials, source code" or snippets of source code for each of the tutorials discussed can be found at this link. The code for the tutorials comes up in a browser window so that you can have both this document and the source code up at the same time, in different windows.
2 Quickstart

We provide basic instructions for running the code base in an integrated development environment. We then present eight tutorials that illustrate how to construct simulations, with no explanation of the underlying architecture of TEALsim. At the end of these tutorials we will have presented the mechanics of how to put together the simulation illustrated in Figure 2-1.
[image: image1.jpg]
Figure 2‑1: A Frame from Tutorial_02_08
2.1 Basics
2.1.1 The Integrated Development Environment (IDE)

We discuss the software in the context of Eclipse (http://www.eclipse.org/), a free, state-of-the-art Java Integrated Development Environment (IDE) XE "Integrated Development Environment" XE "eclipse" . We will assume that you are familiar with the Eclipse IDE XE "IDE" interface. Step by step instructions for downloading and setting up this environment and creating a TEALsim Project in Eclipse are given in Section 5.1 below.
NTFT
2.1.2 Instructions for Running a Simulation

In Eclipse’s Package Explorer, choose SimPlayerApp.java (see Figure 2-2) by left-clicking on it.
[image: image2.jpg]
Figure 2‑2: Starting a simulation
Left-click and choose “Run as > run” from the menu. You will see a dialog box (see Figure 2-3). Left-click on the Arguments tab and in the box labeled Program arguments input -n tealsim.physics.em.Capacitor. Left-click on Run at the bottom of the dialog box. The Capacitor simulation should come up.
[image: image3.jpg]
Figure 2‑3: The Run dialog box
If you have a simulation that requests additional memory XE "memory" , set more memory by typing
“-Xmx512m” (or e.g “-Xmx256m”) in the “VM arguments:” box shown in Figure 2-3. The other electromagnetic simulations that are available in this package can be seen by opening the src/java/simulations/tealsim/physics/em/ folder, and can be run by following the same procedure described above.
2.2 Quickstart Tutorials

We present eight tutorials below to illustrate various features of TEALsim and how to use them to construct simulations. These tutorials correspond to files in the src/java/simulations/tealsim/physics/tutorials folder. To run Tutorial_02_01, follow the instructions above, except enter “-n tealsim.physics.tutorials.Tutorial_02_01” in the Program arguments box, and similarly for the other tutorials.

The source code or snippets of the source code for each of the tutorials discussed below can be found at this link. The code for the tutorials will come up in a browser window so that you can have both this document and the source code up at the same time, in different windows.
2.2.1 Tutorial_02_01: Simple simulation
In this tutorial, we create a simple simulation of a ring of current falling under gravity towards a “wall” with which it collides with perfect elasticity. The tutorial Tutorial_02_01.java extends the basic TEAL class SimWorld. The source code can be reached either by using the general link just above or doing directly here.
[image: image4.jpg]
Figure 2‑4: A falling coil simulation

public Tutorial_02_01(): Lines 29-98
Lines 40-46 set the properties of the SimEngine theModel, i.e., the bounding sphere for the model (43 theModel.setBoundingArea(bs)), the time step for the time integration (44 theModel.setDeltaTime(0.02)), and the damping in the model (45 ((EMModel)theModel).setDamping(0.)). In this world, we have a time integration step for the falling coil of 0.02 time units, and no damping.
Lines 23-24 and 48-59 define the properties of the EMObject in the scene, the floatingCoil, which is a RingOfCurrent object. An EMObject has electromagnetic properties and knows how to interact with other EMObjects in the scene. In this simple simulation we have no other EMObjects and no electromagnetic interactions. When the floatingCoil is added to the scene (75 addElement(floatingCoil)), it appears as a torus whose major radius is ringRad and whose minor (torus) radius is torR. The floatingCoil feels only the force of gravity (downward) and interacts with other objects in the scene only by colliding with the “Wall” in the scene.
Lines 61-76 add a collision controller to the floatingCoil so that it will be recognized as a colliding object when it touches the “Wall”, which we create next. The collision controller in this case is greatly oversimplified because the floatingCoil only moves in the vertical direction. The collision controller SphereCollisionController (in package teal.sim.collision) is a sphere whose radius is torR, placed at the center of the floatingCoil, This has the effect that when the floatingCoil center position comes within torR of the “Wall” it “collides with the “Wall” and the floatingCoil bounces.

Lines 79-83 create a Wall, which is in package teal.sim.physical, and add it to the scene. We set the elasticity of the wall to 1.0, which means the collision is perfectly elastic. The wall appears in the scene as a transparent rectangle.
void addActions()
[image: image24.jpg]public void actionPerformed(): Lines 100-113
We add a Tutorial_02_01 link to the “help” file pull down menu. This brings up a help file XE "help file" for the tutorial which is an .html file stored in the indicated location.
 Figure 2‑5: Help file for tutorial
public void reset()

public void resetCamera(): Lines 115-123
The first method resets the initial conditions when the simulation is stopped and reset. The second method resets the camera. The second method is called when the pull down menu “View” (see Figure 2-5) is left-clicked and “Reset Camera” is selected. Note that the method reset() does not reset the camera
2.2.2 Tutorial_02_02: Simple simulation with a graph and a damping slider
The code is here. This tutorial is the same above except that we add a graph of the vertical position of the coil and a slider that controls the amount of damping in the world. The source code is here. To accomplish this we must import the following additional classes. The first of these (line 19 below) is a class for the panel display (see Figure 2-6). The second two of these (lines 20 and 21 below) are for the damping control. The final two new classes imported (lines 22 and 23 below) are classes for plotting. Lines 29-32 below then instantiate members of these classes and set a damping variable that the slider will control.
19 import teal.ui.control.ControlGroup;
20 import teal.ui.control.PropertyDouble;

21 import java.beans.PropertyChangeEvent;
22 import teal.plot.PlotProperties;

23 import teal.plot.Graph;

29 PropertyDouble frictionSlider = new PropertyDouble();
30
Graph position_graph;
31
PlotProperties position_plot;
32 double friction;
[image: image5.jpg]
Figure 2‑6: The graph and slider control for the falling coil.
Lines 92-99 set the properties of the friction slider. Lines 103-108 create a control group for the slider and add the slider to that control group, and add the control group to the scene. Lines 108-130 sets up the properties of the graph, define the kind of plot to be made and the variable to be plotted. Lines 132-136 create another control group for the graph and add that control group to the scene.
public void propertyChange(PropertyChangeEvent pce): Lines 182-189

This is a new method that listens for changes in the position of the damping slider and when there is a change resets the damping in the world accordingly.
2.2.3 Tutorial_02_03: 3D objects, native and imported
[image: image25.jpg]
Figure 2‑7: Imported and Native Objects In Java3D

This tutorial shows show to create native Java3D objects and add them to the scene, in this case a flat red disk (lines 49-53) and a green sphere (lines 56-59). These lines set the shapes, their dimensions, the RGB color of the shapes, and the positions of the shapes. We also import two .3DS XE ".3DS" files, an orange hemisphere (lines 69-79) and also a tapered black cone (lines 81-90). Finally we import a Wavefront .obj XE ".obj" object, a box covered with tinfoil (lines 94-118). Note that the last object actually requires the importation of three files: the box.obj file, plus a box.mtl file, plus the tinfoil map TinFoil.jpg (whose name is specified in the box.mtl file). These formats are discussed in greater detail in 6.2 below. NTFT
2.2.4 Tutorial_02_04: Two Interacting Electromagnetic Objects

In this tutorial, we create two electromagnetic objects which interact via their magnetostatic magnetic fields. The two objects are a Ring of Current XE "Ring of Current" which is free to move along the vertical axis, and a magnetic dipole XE "magnetic dipole" which is fixed in space. There is no induced current in this visualization (that is, there is no current in the ring induced by the changing flux through it, either due to its own field or to the field of the dipole as it moves with respect to that dipole—i.e. the self inductance of the ring is set to zero).

We can vary the amount of current in the ring to change the height of the ring of current above the dipole. We also have a “wall” at the same position as the magnetic dipole. The ring of current rests on this wall if there is no current in the ring or if the current in the ring is such that the ring cannot levitate above the dipole.

Note that we do not have to tell the two objects how to interact. Because they are electromagnetic objects they know how to interact with the fields of other electromagnetic objects. We discuss where the computation of this interaction dynamics takes place in other sections. The properties of the magnetic dipole are set in lines 69-78 (for example, its dipole moment is set in line 70 using the magDipole.setMu method. The properties of the ring of current are set in lines 80-92.
[image: image6.jpg]
Figure 2‑8: Two Electromagnetic Objects Interacting
2.2.5 Tutorial_02_05: Vector Field Grid

In this tutorial, we add a vector field grid to demonstrate one of three methods we use in visualizing electromagnetic fields. We do not show all of the source code at this link, but rather only that code that is different from Tutorial_02_04.

2.2.6 Tutorial_02_06: Field Lines

In this tutorial, we add a set of field lines to demonstrate the second of three methods we use in visualizing electromagnetic fields. We do not show all of the source code at this link, but rather only that code that is different from Tutorial_02_04.

2.2.7 Tutorial_02_07: Line Integral Convolution
In this tutorial, we add line integral convolution to demonstrate the third of the three methods we use in visualizing electromagnetic fields (see Cabral and Leedom (1993)). TA \l "B. Cabral and C. Leedom, Imaging Vector Fields Using Line Integral Convolution, Proc. SIGGRAPH ’93, pp. 263-270, 1993." \s "B. Cabral and C. Leedom" \c 8 We do not show all of the source code at this link, but rather only that code that is different from Tutorial_02_04.

2.2.8 Tutorial_02_08: All of the Above
In this tutorial, we put everything together, and add an additional .3DS object.

NTFT: Note that there is a problem in the path to get to the .obj file. I have figured out a relative path to get into the /resources/models folder (line 102) to find the box.obj, but I still have to put the box.mtl and TinFoil.jpg files up in the main directory TEALsim_IST. There may be a way to change this using a relative path in the box.obj and box.mtl files themselves, but I have not figured out how to to that.
3 TEALsim Overview
The TEAL simulation system, TEALsim XE "TEALsim" , is designed as a framework for authoring, presenting, and controlling simulations in a variety of domains, beginning with physics, but with extensions to biochemistry and other domains. The goal of TEALsim is twofold: first, it aims to provide a relatively simple, “API-style” interface, such that non-expert programmers can produce full-featured interactive simulations from the ground up, including all aspects of visualization and user interface, with minimal exposure to the “inner workings” of the system. Second, it offers a flexible framework for more experienced programmers to extend and expand on the functionality of the system to suit their specific needs. Finally, it is built in such a way that the user can build simulations in other domains in a straightforward and well defined way.
Architecturally, TEALsim follows a “Model-View-Control XE "Model-View-Control" ” design pattern, with several major modules representing the three components: the simulation (and simulation engine) make up the “model”; the renderer and viewer make up the “view”; and the user interface makes up the “control.” Each component is largely defined by a set of interfaces that suggest the required functionality of that piece, so that the actual implementation details can be customized as necessary (for example, leaving the specific rendering implementation up to the developer). TEALsim is built using Java Standard Edition version 1.4, Swing and Java3D extensions. All major components of the system are JavaBeans. Most classes implement well defined interfaces, the most basic being TElement XE "TElement" .

What follows is a brief description of the basic components. We then examine Tutorial_02_08 from above in the context of this overview, and point out the specific elements of that tutorial as they relate to this overview.
3.1 The Simulation (SimWorld, TSimulation) :

The SimWorld XE "SimWorld" class (source.java.core.teal.sim.simulation) and the TSimulation XE "TSimulation" (source.java.core.teal.sim.simulation) interface represent the basis for a complete interactive simulation, collecting together all of the components that make up the entire user experience. Typically this includes: a simulation engine (source.java.core.teal.sim.simulation.model.SimEngine), a Viewer (source.java.core.teal.render.j3d.Viewer3D), the UI elements, and all of the objects being simulated or otherwise displayed in the Viewer. Additionally, the SimWorld defines the properties of the simulation as a whole, such as the initial spatial configuration of simulation objects, initial conditions of any variables, and any special “wiring” between objects and/or interface components. Essentially, it contains the entire logic specific to a particular simulation. Tutorial_02_08 extends SimWorld, and thus has all these properties. A SimWorld object is then presented to the user using a SimPlayer, as discussed below.
Any simulation object added to a SimWorld must implement the TElement XE "TElement" interface, which provides a standard set of functionalities for all objects in the world. That is, any object which is specified, included or defined within the simulation must implement the TElement interface. This includes physical objects (e.g. a point charge), graphical elements, control objects and simulation viewers. In particular, the functionalities inherent in the TElement interface include support for Routes and PropertyChangeEvents XE "PropertyChangeEvents" . This allows any simulation elements in the world to exchange information with any other element in the world, and in particular with User Interface (UI) XE "User Interface (UI)" components. For example, a UI slider can be wired to a property of a simulation object (for example, the mass of an electric point charge) to directly manipulate that quantity. Or, the SimWorld itself can be wired to a property of a simulation object in order to monitor that property of the object and/or take some action depending on its value.
3.2 SimPlayer (TFramework) and SimPlayerApp
A SimPlayer XE "SimPlayer" “plays” a SimWorld instance—that is it takes as input a SimWorld object and presents that SimWorld to the viewer. It implements the TFramework XE "TFramework" interface, which is the glue that holds all of the components in the SimWorld together. SimPlayer is the application inside which all of the components of the SimWorld are running. The TFramework interface contains methods that allow loaded simulations to customize the SimPlayer application window, including modification of the UI and menu bars.

SimPlayerApp contains the main routine XE "main routine" of the TEALsim package. When we run SimPlayerApp as specified above in 2.1.2, it instantiates a SimPlayer and uses the argument -n tealsim.physics.em.Capacitor to tell the SimPlayer to input and play the Capacitor, which is a SimWorld object.
3.3 SimEngine – the Simulation Engine:

The physics in a TEALsim simulation is contained in the SimEngine XE "SimEngine" object, which represents the simulation engine itself (source.java.core.teal.sim.engine.SimEngine). The simulation engine is responsible for all of the computation involved in the system being simulated. This includes dynamically processing and updating simulation objects (TSimElements) according to the rules of the simulation (including adding and removing them from the “world” when necessary), and performing numerical integration of simulation variables. The exact type of processing and integration will depend on the specific type of simulation being implemented; for example, the “electromagnetism” extension of SimEngine, EMModel XE "EMModel" , computes the total electromagnetic fields created by field-generating simulation objects (EMObjects XE "EMObjects"), as well as the resulting dynamics of the EMObjects (velocity, position, rotation, etc.). It also handles related tasks, such as collision detection and resolution.

In general, the SimEngine runs a continuous loop that performs the following actions:

1) Computes values of dependent simulation variables for the current time step.

2) Updates simulation objects to reflect new values.

3) Informs the renderer of any visual changes to the simulation.

This loop in the SimEngine represents the main application thread XE "thread" for a TEALsim simulation.

3.4 Viewer and Viewer3D – the Rendering Engine:

The Viewer XE "Viewer" (source.java.core.teal.render.viewer) is the window into the simulation space, representing the rendering engine and its output. It is responsible for rendering the visual elements of a simulation to the screen in real-time 3D, and managing user interaction with the rendered image. As such, it is tightly coupled to the SimEngine: The SimEngine must inform the Viewer of (visual) changes to simulation elements, and each visual simulation element must have an associated visual representation that can be drawn by the Viewer. Conversely, the Viewer must report back to the simulation when a user manipulates the visual representation of a simulation object (for example, by clicking and dragging on an object in the Viewer).

While the actual implementation of the Viewer can vary, the interface TViewer XE "TViewer" defines a set of functionality that any Viewer implementation should support. This includes general rendering properties and tasks, such as camera controls, visual effects, maintaining lists of rendered objects, and handling mouse-based “picking” and manipulation of objects in the Viewer. In addition, it should also handle the explicit rendering of the scene.

The current default Viewer implementation is based on Java3D, which is a scene-graph based renderer layered on top of OpenGL XE "OpenGL" or DirectX XE "DirectX" . In this case, the Viewer sets properties on the scene graph, which is then rendered implicitly through Java3D’s rendering thread. A more direct (or “immediate”) rendering implementation (such as rendering directly through OpenGL) should obviously include explicit rendering instructions for all visual elements.

3.5 The User Interface:

The user interface XE "user interface" (source.java.core.teal.ui) is the means by which a user interacts with the application (in addition to user interaction through the Viewer), and through which the user receives feedback about a simulation’s properties. It is responsible for producing the types of controls and read-outs necessary to manipulate a simulation. These can include buttons, sliders, checkboxes, combo-boxes, graphs, text fields, and numerical displays.

4 TEALsim Overview in the Context of Tutorial_02_08

4.1 The Simulation (SimWorld, TSimulation) :

We now examine each of the broad categories discussed above in the context of Tutorial_02_08. This tutorial extends SimWorld. In the tutorial we have a ring of current (the yellow torus in Figure 4-1) interacting with the magnetic field of a fixed magnetic dipole (the red/white/blue cylinder in Figure 4-1). The ring of current is assumed to have negligible inductance and is acted upon by gravity in addition to the field of the dipole.
[image: image7.jpg]
Figure 4‑1: Screen Capture of Tutorial_02_08

4.2 SimPlayer (TFramework) and SimPlayerApp
4.3 SimEngine – the Simulation Engine:

Physically in Tutorial_02_08 we have a ring of current interacting with the magnetic field of a fixed magnetic dipole. The ring of current is assumed to have negligible inductance and is acted upon by gravity. Computing the force on the ring due to the magnetic dipole is straightforward.
4.4 Viewer and Viewer3D – the Rendering Engine:

4.5 The User Interface:

The current in the ring is set by the user using the slider on the upper right as shown in Figure 4-1. Figure 4-2 shows the controls at the bottom of the view window that allow the user to start XE "start" , stop XE "stop" , pause XE "pause" , and reset XE "reset" the simulation, as well as step through the simulation one time step at a time. Once the user presses run, the simulation runs until the user presses pause, stop, or reset. The user can also simply press step, which will advance the simulation one time step. The time step is a basic property of the SimEngine, and is set in this tutorial in line 086 theEngine.setDeltaTime(0.02).

[image: image8.jpg]
Figure 4‑2: Controls for Running Tutorial _02_08

When the simulation begins, the ring of current is about 1.7 meters above the magnetic dipole, which is located at zero, and has a current of -50 amps (positive current is counterclockwise when viewed from above). As the simulation runs, the ring of current oscillates up and down with an average height of around 1.3 meters. The position of the ring as a function of time is plotted in the graph on the right. When the user hits reset, the ring is returned to its initial position but the current remains at the last value it was set to using the slider by the user.

At any time as the simulation runs, the user can change the current in the ring by using the slider or by entering the desired current in the box next to the slider and hitting enter. The various parts of the UI control appear in separate panels on the right. Controls for the various visualization methods for the magnetic field are contained in the panel entitled “Field Visualization”. The user can hide the field lines if desired, change their number and color weighting, and change the number of nodes in the vector field grid. The user can also have the simulation stop at any point and calculate a line integral convolution representation of the field by left-clicking on the “Iron Filings” button; left-clicking on the “Magnetic Potential” button displays a field that is everywhere perpendicular to the magnetic field. The simulation is paused as this calculation is being carried out. To restart the simulation, the user simply left-clicks on run again.

5 Appendices

5.1 Installing Java 2, Java3D, and Eclipse in a Windows Environment XE "eclipse"
5.1.1 Downloading and Installing the Java™ 2 SDK, SE 1.4.2
In this section we describe how to download and install the various components you will need to develop in the TEALsim environment. The screen shots below are current as of April 2006.

First, go to the Eclipse website, http://www.eclipse.org/.
[image: image9.jpg]
Figure 6‑1: The Eclipse Home Page

From this page go to Downloads.
[image: image10.jpg]
Figure 6‑2: The Eclipse Download Page

First you will need to download and install a Java Runtime Environment XE "Java Runtime Environment" (JRE XE "JRE") and other components from Sun. Under the heading “Get Eclipse”, you will see a paragraph that says in part:

... You will need a Java runtime environment (JRE) to use Eclipse. All downloads are provided under the terms and conditions of the Eclipse.org Software User Agreement unless otherwise specified.

Click on the link in the sentence “You will need a Java runtime environment (JRE) ”.
[image: image11.jpg]
Figure 6‑3: Java Runtimes

Go to the row labeled “Sun Windows” and chose Java™ 2 SDK, Standard Edition Version 1.4.2. You will now be at the Sun download page.
[image: image12.jpg]
Figure 6‑4: Sun Download Page

You want the SDK XE "SDK" (Software Development Kit XE "Software Development Kit"), so choose Download J2SE SDK
[image: image13.jpg]
Figure 6‑5: Sun SDK SE 1.4.2_11 Download Page

Download the .exe file from Windows Platform - Java(TM) 2 SDK, Standard Edition 1.4.2_11: Windows Offline Installation, j2sdk-1_4_2_11-windows-i586-p.exe.
Install the package by double clicking on the downloaded .exe file. After the install, do not restart your machine.
5.1.2 Downloading the Eclipse SDK 3.1.2

Go back to the Eclipse download page (cf. Figure 6-2) and click on Eclipse SDK 3.1.2, Windows (103 MB) [torrents].

Choose a mirror site (University of Buffalo CSE Department is a good site for the US) and download the eclipse zip package eclipse-SDK-3.1.2-win32.zip.
There is no installer package for eclipse. Create a folder on your C: drive named Development, and create a folder in that folder named Tools. Unzip the above .zip file into the Development > Tools folder. This will create an eclipse folder C:\Development\Tools\eclipse and the unzip process will put the contents of the IDE there.
5.1.3 Downloading and Installing Java 3D™ API 1.3.1
Go to http://java.sun.com and in the top navigation bar left-click on downloads. If you see a pull down menu chose “See All >>”. You will be at the following page:

[image: image14.jpg]
Figure 6‑6: The Sun Developer Network (SDN) Downloads

[image: image15.jpg]
Figure 6‑7: Java Technology Downloads

From the “Full J2SE Technology Downloads List” pull down menu choose Java3D.

[image: image16.jpg]
Figure 6‑8: Java3D Downloads Page

Chose 1.3.1 API Download. On the next page and the page after that choose “Download” (you do not have to register to download if you do not want to). You will be at the page:
[image: image17.jpg]
Figure 6‑9: Final Java3D Downloads Page

Accept the license agreement and under Windows Platform - Java 3D(TM) API 1.3.1 choose Java 3D for Windows (OpenGL Version) SDK for the JDK (includes Runtime) to download the .exe package java3d-1_3_1-windows-i586-opengl-sdk.exe.
Once the .exe file is downloaded double-click to install. The install will automatically find the directory where you installed the Java2 SDK package and install Java3D there.
Reboot your machine and delete the installers.
5.1.4 Downloading the TEALsim code.

Go to http://web.mit.edu/jbelcher/www/TEALsim_fc_rel and download the file TEALsim_fc_rel_02.zip.
Create a folder in your C:\Development\ drive named Projects. Unzip the above file into your C:\Development\Projects. This will create a folder there TEALsim_fc_rel_02 which contains the TEALsim project code and resources.
5.1.5 Creating A TEALsim Project in Eclipse

Chose “File>New>Project” in the Eclipse menus. Then choose “Java Project”.

[image: image18.jpg]
Figure 6‑10: Creating A TEALsim Project in Eclipse
In the dialog that comes up, enter “TEALsim_fc_rel_02”.
[image: image19.jpg]
Figure 6‑11: Specifying the Name of the Project in Eclipse
Choose “Next>”. The TEALsim_fc_rel_02 Project will be built in Eclipse.
5.1.6 Generating JavaDocs for the TEALsim Project in Eclipse
You will want to generate javadocs XE "generate javadocs" for this project. Do this by making sure Eclipse is in the “Java Browsing perspective” (third icon from the upper right below) and choose “Project > Generate Javadoc”. A set of javadocs XE "javadocs" will be generated in the folder C:\Development\Projects\TEALsim_IST\doc. The html file index.html is the root html file for the javadocs.
[image: image20.jpg]
Figure 6‑12: Generating Javadocs

5.2 Creating 3D Objects for Import Into Java3D

5.2.1 Creating Native Java3D Objects

5.2.2 Creating and Importing Autodesk 3ds Max 8 .3DS Scene Files

The scale conversion from 3ds max to java 3D is as follows. The height of the cone imported below in the max 3ds file is 200 inches. This is for "Customize/Units Setup" US Standard Decimal Inches and for "Customize/Units Setup/System Unit Setup" 1 unit = 1 inch in Autodesk 3ds Max 8. The conversion between max units and Java3D units is under these circumstances 1 Java3D unit = 1 Max inch. Thus when we scale the cone by a factor of 0.01 it has a height of 2 Java units

5.2.3 Importing Wavefront .obj Scene Files

The scale conversion from the .obj file to java 3D is as follows: The height of the box imported below in the .obj file is 100 obj units. We have scaled it by a factor of two, and it then appears in Java 3D as 1 unit high. Thus the conversion is 200 obj units = 1 Java 3D unit, or 1 obj unit = .005 Java 3D unit.

5.2.4 Importing VRML .wrl Scene Files

5.2.5 Importing Lightwave 3D Scene Files

More memory VM -Xmx512m
5.3 A Guide to Programming Resources for Java 3D

5.3.1 The Java Language

5.3.2 Java 3D

TEALsim is based on Java 3D (http://java.sun.com/products/java-media/3D/) .
This document is intended to be used in conjunction with the browser-accessible, javadoc-generated reference for the code base.

6 References

References
B. Cabral and C. Leedom, Imaging Vector Fields Using Line Integral Convolution, Proc. SIGGRAPH ’93, pp. 263-270, 1993.
13

J. Dori and J. Belcher, How does technology-enabled active learning affect student’s understanding of electromagnetism concepts, Journal of the Learning Sciences 14 (2), 2004).
6

7 Index

.
.3DS
12

.obj
12

D
DirectX
16

E
eclipse
7, 19

EMModel
15

EMObjects
15

G
generate javadocs
25

H
help file
10

I
IDE
7

Integrated Development Environment
7

J
Java Runtime Environment
19

javadocs
25

JRE
19

M
magnetic dipole
12

main routine
15

memory
9

Model-View-Control
14

O
OpenGL
16

P
pause
18

PropertyChangeEvents
15

R
reset
18

Ring of Current
12

S
SDK
20

SimEngine
15

SimPlayer
15

SimWorld
14

Software Development Kit
20

Software License
2

start
18

stop
18

T
TEALsim
14

TElement
14, 15

TFramework
15

thread
16

TSimulation
14

Tutorials, source code
6

TViewer
16

U
user interface
16

User Interface (UI)
15

V
Viewer
16

[image: image21][image: image22.png][image: image23]

� The TEAL Project was part of a larger effort at MIT to reinvigorate the teaching of freshman physics using advanced technology and innovative pedagogy. See Dori and Belcher (2004). � TA \l "J. Dori and J. Belcher, How does technology-enabled active learning affect student’s understanding of electromagnetism concepts, Journal of the Learning Sciences 14 (2), 2004)." \s "J. Dori and J. Belcher" \c 8 �

