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BLACK-BODY RADIATION AND

THE EARLY HISTORY OF THE UNIVERSE

INTRODUCTION:

In Lecture Notes 4 and 5 we discussed the dynamics of Newtonian cosmology
under the assumption that mass is conserved as the universe expands. In that
case, since the physical volume is proportional to R3(t), the mass density ρ(t) is
proportional to 1/R3(t).

According to special relativity, mass and energy are equivalent, with the con-
version of units given by the famous formula,

E = mc2 . (7.1)

When one says that mass and energy are equivalent, one is saying that they are just
two different ways of expressing precisely the same thing. The important quantity
is the energy-momentum four-vector pµ, the zeroth component of which is E/c.
The value of E in the rest frame (i.e. the fame in which 
p = 0) is given by mc2.
Thus, any form of energy shows up in the mass of the object which possesses that
energy. For example, a hydrogen atom is made from a proton and an electron, but
the mass of a hydrogen atom is less than the combined masses of the particles in
isolation. If the two particles are started at infinite distance from each other, then
as they are brought together they attract. They are therefore brought to a state
of lower potential energy, and some energy ∆E is given off. This energy is called
the binding energy of the hydrogen, and has a value of 13.6 eV. (Note: 1 eV = 1
electron volt = 1.602× 10−12 erg.) The energy is most commonly given off in the
form of photons. In any case, the mass mH of the resulting hydrogen atom is given
by

mH = mp +me −∆E/c2 , (7.2)

where mp is the mass of the proton, andme is the mass of the electron. The negative
potential energy of the system shows up as a (negative) contribution to its mass.

We are perhaps not used to thinking of electromagnetic radiation as having
mass, but it is well-known that radiation has an energy density. If the energy
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density is denoted by u, then special relativity implies that the electromagnetic
radiation has a mass density ρ given by

ρ = u/c2 . (7.3)

To my knowledge nobody has every actually “weighed” electromagnetic radiation
in any way, but the theoretical evidence in favor of Eq. (7.3) is overwhelming —
light does have mass. (Nonetheless, the photon has zero rest mass, meaning that it
cannot be brought to rest. The general relation for the square of the four-momentum
reads p2 = −(mc)2, and for the photon this becomes p2 = 0. Writing out the square
of the four-momentum leads to the following relation for photons:

|
p |2 − E2/c2 = 0 , or E = c|
p | . (7.4)

In this set of notes we will examine the role which the mass of electromagnetic
radiation plays in the early stages of the universe.

RADIATION IN AN EXPANDING UNIVERSE

As the universe expands the number of photons is conserved, and thus the
number density n is proportional to 1/R3(t). However, we learned in Lecture Notes 3
that the frequency of each photon is redshifted as the universe expands, and that
the ratio of the period at the time t0 to the period at the time te is given by the
redshift factor

1 + z =
R(t0)
R(te)

. (7.5)

Thus the frequency of each photon (frequency = 1/period) varies as 1/R(t) as the
universe expands. According to elementary quantum mechanics, the energy of the
photon is given by

E = hν , (7.6)

where ν (Greek letter “nu”) is the frequency and h is Planck’s constant (h =
4.136 × 10−15 eV-sec). Thus the energy of the photon decreases as 1/R(t) as the
universe expands. The energy density uγ of the radiation is the number density
n times Eγ, the mean energy per photon. (Note the Greek letter γ (“gamma”) is
often used to denote the photon.) Thus

uγ ∝ ργ ∝ 1/R4(t) . (7.7)

(Although I have justified this relation with quantum mechanical arguments, it can
also be derived from classical electromagnetic theory. However, in this case the
quantum argument is simpler.)
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THE RADIATION–DOMINATED ERA

Today the energy density in the cosmic background radiation is given approx-
imately by

ur = 7.01× 10−13 erg/cm3
. (7.8)

(Here I have included the energy density of both the photons and the expected
density of neutrinos — we’ll talk about that later.) To find the corresponding mass
density, use

ρr =
u

c2
=

7.01× 10−13
(
gm-cm2-sec−2

)
cm−3

(3× 1010 cm-sec−1)2

= 7.80× 10−34 gm-cm−3 .

(7.9)

This can be compared with the critical mass density ρc, which was calculated in
Eq. (4.26). One finds that the fraction of closure density in radiation (Ωr ≡ ρr/ρc)
is given by

Ωr =
7.80× 10−34 gm-cm−3

1.88h2
0 × 10−29 gm-cm−3

= 4.15× 10−5 h−2
0 , (7.10)

where
H0 = 100h0km-sec−1-Mpc−1 .

For h0 = 0.72, one finds Ωr = 8.0× 10−5. This is only a very small fraction, but Ωr

was larger in the past. Since ρr ∝ 1/R4, while the mass density ρm of nonrelativistic
matter behaves as 1/R3, it follows that

ρr/ρm ∝ 1/R(t) . (7.11)

If we assume for now that we live in an Ωm = 0.33 universe, then today ρr/ρm ≈
8.0× 10−5/0.33 ≈ 2.4× 10−4. The constant of proportionality in Eq. (7.11) is then
determined, giving

ρr(t)
ρm(t)

=
R(t0)
R(t)

× 2.4× 10−4 . (7.12)

Since R(t) → 0 as t → 0, the right-hand-side approaches infinity in this limit. Thus
there was a time at which the value of the right-hand-side went through one, and this
time is denoted by teq, the time of radiation-matter equality. We will assume that
the universe is flat, and that for t > teq we can make the crude approximation that
the universe can be treated as if it were dominated by nonrelativistic matter. This
approximation ignores the effect of radiation for times shortly after teq, and it also
ignores the effect of dark energy (and the consequent acceleration) during the past



BLACK-BODY RADIATION AND THE EARLY HISTORY OF THE UNIVERSE, p. 4

8.286 LECTURE NOTES 7, FALL 2005

5 billion years or so. As discussed in Lecture Notes 4, during the matter-dominated
era the scale factor behaves as R(t) ∝ t2/3. Thus, setting ρr(teq)/ρm(teq) = 1 gives

R(teq)
R(t0)

=
(
teq

t0

)2/3

= 2.4× 10−4 . (7.13)

So teq = 3.6×10−6 t0, so for t0 = 13.7 Gyr, teq ≈ 52, 000 years. Our approximations
have been crude, but Barbara Ryden quotes a more precise numerical calculation
(on p. 97), where she finds teq ≈ 47, 000 years.

DYNAMICS OF THE RADIATION–DOMINATED ERA

In order to understand the dynamics of the radiation-dominated era, one must
understand the gravitational field created by the radiation. Since the radiation
is highly relativistic, this problem is outside the scope of Newtonian dynamics.
However, when the calculation is carried out using general relativity, one finds that
Eq. (4.24) remains valid without any modifications. Repeating the equation here:

[
1
R

(
dR

dt

)]2

=
8π
3

Gρ− kc2

R2
, (7.14)

where ρ is the mass density. As you will show on Problem Set 4, Eq. (4.17) must
then be modified, resulting in the equation

d2R

dt2
= −4π

3
G

(
ρ+

3p
c2

)
R , (7.15)

where p denotes the pressure. We will see later that the addition of the pressure
term leads to dramatic consequences in the context of the inflationary universe
model.

As a simple (but important) special case, consider the evolution of a radiation-
dominated universe with k = 0. From Eqs. (7.7) and (7.14), one has

1
R2

(
dR

dt

)2

=
const
R4

, (7.16)

which leads to
dR

dt
=

√
const
R

. (7.17)
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This equation can be solved by rewriting it as

RdR =
√
const dt (7.18)

and then integrating both sides to obtain

1
2
R2 =

√
const t+ const′ . (7.19)

The convention is to choose the zero of time so that R(t) = 0 for t = 0, which
implies that const′ = 0. Thus, the final result can be written as

R(t) ∝ √
t (radiation-dominated) . (7.20)

The Hubble “constant” H(t) is given by Eq. (3.7), which says that

H(t) = Ṙ/R . (7.21)

Combining this equation with Eq. (7.20), one has immediately that

H(t) =
1
2t

(radiation-dominated) . (7.22)

The age of a radiation-dominated universe is therefore related to the Hubble con-
stant by t = 1

2H
−1. (Recall for comparison that for a matter-dominated flat universe

with R(t) ∝ t2/3, the age is 2
3H

−1.) The horizon distance is given by Eq. (5.7), and
the result here is

�p,horizon(t) = R(t)
∫ t

0

c

R(t′)
dt′

= 2ct (radiation-dominated) .

(7.23)

(Recall that this answer is to be compared with 3ct for the matter-dominated uni-
verse.) If one inserts Eq. (7.22) into Eq. (7.14) (with k = 0, still), one obtains a
relation for the mass density as a function of time:

ρ =
3

32πGt2
. (7.24)
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BLACK–BODY RADIATION

If a cavity is carved out of any material, and the walls of the cavity are kept
at a uniform temperature T , then the cavity will fill with radiation. Assuming that
the walls are thick enough so that no radiation can get through them, then the
energy density (and also the entire spectrum of the radiation) is determined solely
by the temperature T — the composition of the material is entirely irrelevant. The
material is serving solely to keep the radiation at a uniform temperature. Radiation
of this type is generally called either thermal radiation or black-body radiation.

The motivation for the name “black-body radiation” stems from the fact that a
black body in empty space can be shown to emit radiation of exactly this intensity
and spectrum. To see this, imagine a material inside the cavity which is genuinely
black, in the sense that all light hitting it is absorbed. Since thermal equilibrium has
been established, one concludes that the black body at temperature T must emit
radiation which precisely matches the radiation which it is absorbing— otherwise it
would either heat up or cool down, and that would violate the assumption of thermal
equilibrium. Not only must the energy densities match, but the entire spectrum
must match — otherwise one could imagine introducing a frequency selecting filter
that would cause the black body to heat or cool. Note that the radiation emitted
by the black body is not a reflection— we assumed that there was no reflection
when we assumed that the body was black. Thus, the emitted radiation has to be
attributed solely to thermal emission. Even if the black-body is removed from the
cavity, it will continue to emit radiation of precisely this thermal spectrum.

The energy density and other properties of the radiation can be derived us-
ing the standard principles of statistical mechanics, but the derivation will not be
included in this course. However, I will make a few comments about the under-
lying physics, and then I will state the results. The rule of thumb for classical
statistical mechanics is the “equipartition theorem,” which says that under certain
circumstances (which I will not specify), each degree of freedom of a system at tem-
perature T acquires a mean thermal energy of 1

2kT . For example, in a gas of point
particles each particle acquires a mean thermal energy of 3

2kT , since motion in the
x, y and z directions constitutes three degrees of freedom. For the system of radia-
tion inside a cavity, each possible standing wave pattern corresponds to one degree
of freedom. In a rectangular cavity, for example, a standing wave can be described
in terms of a polarization, which has two linearly independent values, and a wave
vector 
k, with the wave amplitude proportional to Re{ei�k·�x}. For the standing wave
to exist, each component of 
k must satisfy the condition that the wave amplitude
must vary either an integral or half-integral number of cycles from one side of the
cavity to the other. Thus a standing wave pattern exists only for a discrete set of
frequencies. The discrete set of frequencies is, however, infinite, since there is no
upper limit to the frequency of a standing wave. The number of degrees of freedom
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is therefore infinite, and the equipartition theorem cannot be applied. This problem
is known as the “Jeans catastrophe,” and represents an important failure of classical
physics. The implications can be stated as follows: if classical physics were correct,
then a region of electromagnetic field could never come into thermal equilibrium —
instead it would continue indefinitely to absorb energy from its surroundings, and
the energy absorbed would be used to excite higher and higher frequency standing
waves of the field. The electromagnetic field would be an infinite heat sink, draining
away all thermal energy.

Of course the electromagnetic field does not drain away all thermal energy, and
the reason comes from quantum theory. Classically it would be possible to excite
a standing wave by an arbitrary amount, but quantum theory requires that the
excitations occur only by the addition of discrete photons, each with an energy hν,
where ν is the frequency of the standing wave. For cases in which hν � kT , the
classical answer is not changed — such standing waves acquire a mean energy of
1
2kT for each polarization. However, for those standing waves with hν � kT , the
minimum excitation is much larger than the energy which is classically expected.
These modes are then only rarely excited, and the total energy is convergent.

When the calculation is done quantum mechanically, one finds that black-body
electromagnetic radiation has an energy density given by

u = g
π2

30
(kT )4

(h̄c)3
, (7.25)

where

k = Boltzmann’s constant = 1.381× 10−16 erg/K

= 8.617× 10−5 eV/K , (7.26)

h̄ =
h

2π
= 1.055× 10−27 erg-sec

= 6.582× 10−16 eV-sec ,

and
g = 2 (for photons) . (7.27)

The factor of g is introduced to prepare for the discussion below of black body
radiation of particles other than photons. g is taken as 2 for photons because the
photon has two possible polarization states.
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One also finds that the radiation has a pressure, given by

p =
1
3
u . (7.28)

The number density of photons is found to be

n = g∗
ζ(3)
π2

(kT )3

(h̄c)3
, (7.29)

where
ζ(3) =

1
13

+
1
23

+
1
33

+ · · · ≈ 1.202 (7.30)

is the Riemann zeta function evaluated at 3, and

g∗ = 2 (for photons) . (7.31)

Finally, the radiation has an entropy density given by

s = g
2π2

45
k4T 3

(h̄c)3
. (7.32)

We will not need to know the precise meaning of entropy, but it will suffice to say
that the entropy is a measure of the degree of disorder (or uncertainty) in the sta-
tistical system. Entropy is conserved if the system remains in thermal equilibrium,
and this assumption appears to be quite accurate for most processes in the early
universe. (The inflationary process, to be discussed later, is a colossal exception.)
When departures from thermal equilibrium occur, the entropy is monotonically
increasing.

In the laboratory the only kind of thermal radiation that can be achieved is that
of photons. The radiation in the early universe, on the other hand, is believed to
have also contained neutrinos. These neutrinos have zero rest mass like the photon,
and they behave in many ways like photons (for example, they always travel at the
speed of light). In thermal equilibrium they necessarily contribute to the radiation.

Neutrinos differ from photons, however, in one very important respect. The
photon belongs to a class of particles called bosons, and these particles have the
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property that there is no limit to the number of particles that can exist simulta-
neously in a given quantum state. It is precisely because of this property that the
photon can give rise to a classical electromagnetic field. The field behaves classi-
cally because it is composed of huge numbers of photons. The neutrino, on the
other hand, belongs to a class of particles called fermions. For these particles it is
impossible to have more than one particle in a given quantum state at one time. An
electron is also a fermion, and the principle of one electron for a quantum state is
sometimes called the “Pauli Exclusion principle.”* Since fermions obey this exclu-
sion principle, fewer of them are produced in thermal equilibrium — g is multiplied
by 7/8, and g∗ is multiplied by 3/4. Neutrinos exist as particles and antiparticles,
which contributes a factor of 2 to both g and g∗. They appear to have only one
spin state, so the factor of two that occurs for photons has no analogue for neutri-
nos. Neutrinos, on the other hand, are believed to exist as three different species of
massless particles: the electron neutrino, the muon neutrino, and the tau neutrino.
There is, however, considerable uncertainty — other species may also exist, and the
known species may not really be massless.

[One might wonder why neutrinos are not produced when a piece of metal is
heated until is glows. The answer is that neutrinos interact very weakly at these
low energies, and their production rate is totally negligible. Thermal equilibrium
neutrino radiation can in principle be seen at any temperature, but it is very difficult
to produce. The radiation would reach thermal equilibrium only if it were confined
to a box opaque to neutrinos, which means that the walls of the box would have to
be much thicker than the diameter of the earth. In the early universe, however, the
temperatures were much hotter. Neutrino interaction rates increase with energy,
so in the early universe they interacted rapidly with the other particles, and were
quickly brought to thermal equilibrium.]

As the temperature is increased, more and more types of particles contribute
to the thermal radiation. Any particle with mc2 � kT will contribute in essentially
the same way as a massless particle. In particular, when kT is much larger than the
value of mc2 for an electron (0.511 MeV), then electron-positron pairs contribute to
the thermal radiation. Electrons and positrons each have two spin states, resulting
in a factor of 4. They are again fermions, so

g =
7
8
× 4 =

7
2

g∗ =
3
4
× 4 = 3 .

(for e+-e− pairs) (7.33)

* I recollect that some chemistry books talk about two electrons in each quantum
state, one with its spin up and the other with its spin down. In the language of
most physicists, however, this would be counted as two quantum states.
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Including photons, three species of neutrinos, and the electron-positron pairs, the
total value of g is given by gtot = 10 3

4 . This value is appropriate for values of kT
which are larger than 0.511 MeV, but smaller than 106 MeV (where muons begin
to be produced).

THERMAL HISTORY OF THE UNIVERSE

We now have all the ingredients necessary to calculate the temperature of the
universe as a function of time. Eq. (7.24) gives the mass density as a function of
time, and Eq. (7.25) relates the energy density to the temperature. Recalling the
relationship of Eq. (7.3) between the energy and mass densities, one can solve for
the temperature as a function of time:

kT =
(

45h̄3c5

16π3gG

)1/4
1√
t
. (7.34)

To find the temperature at 1 sec after the big bang, we now need only plug in
numbers:

kT =

[
45

(
1.055× 10−27

)3
erg3-sec3

(
3× 1010

)5
cm5-sec−5

16π3(10.75) (6.67× 10−8) cm3-gm−1-sec−2

]1/4

× 1

(1 sec)1/2
×

(
1 erg

gm-cm2-sec−2

)1/4

= 1.378× 10−6 erg .

Using 1 eV = 1.602× 10−12 erg, one can convert this result if one wishes to

kT = 0.860 MeV .

Since one knows that T ∝ t−1/2, one can write down a general expression for the
time-temperature relation, for 0.511 MeV � kT � 106 MeV, as

kT =
0.860 MeV√

t (in sec)
, (7.35a)

or equivalently

T =
9.98× 109 K√

t (in sec)
. (7.35b)
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As an example one can use Eq. (7.35b) to calculate the temperature of the
universe at the end of the first seven days. (Here we are making a minor error,
since the value gtot = 10 3

4 is not appropriate when kT falls below 0.5 MeV.) One
finds T ≈ 1.3 × 107 K, which is roughly the temperature which is believed to exist
in the core of a bright star.

RELATIONSHIP BETWEEN R AND T

When a gas of black-body radiation expands in thermal equilibrium, there is
a simple relationship between the scale factor R and the temperature T . We have
already seen that the energy density ρ ∝ 1/R4, and that ρ ∝ T 4. It follows that
the product RT remains constant as the universe expands. The constancy of RT is
actually a direct consequence of statistical mechanics, and has nothing to do with
the dynamics of the expanding universe. RT remains a constant provided that the
expansion occurs slowly enough for the system to remain in thermal equilibrium,
and provided that the effective value of g goes not change. When kT falls below
0.5 MeV and the electron-positron pairs disappear from the thermal equilibrium
mix, it can be shown by using conservation of entropy that RT increases by a factor
of (11/4)1/3 = 1.40.

RECOMBINATION AND DECOUPLING

The observed universe is about 80% hydrogen by mass. One can use statistical
mechanics to understand the behavior of this hydrogen under the conditions preva-
lent in the early universe, but I will not attempt such a calculation in this course.
As one might guess, hydrogen will ionize (i.e. break up into separate protons and
electrons) if the temperature is hot enough. The temperature necessary to cause
ionization depends on the density, but for the history of our universe one can say
that the hydrogen is ionized when T is greater than about 4, 000K.

Thus, when the temperature falls below 4, 000K, the ionized hydrogen coalesces
into neutral atoms. The process is usually called “recombination,” although I am at
a loss to explain the significance of the prefix “re-”. When recombination occurs, the
universe becomes essentially transparent to photons. The photons cease to interact
with the other particles, and this process is called “decoupling”. Decoupling occurs
slightly later than recombination, at a temperature of about 3, 000K, since even a
small residual density of free electrons is enough to keep the photons coupled to
the other particles. The photons which we observe today in the cosmic background
radiation are photons which for the most part have last scattered at the time of
decoupling.

We can estimate the time of decoupling by using the constancy of RT . It is very
accurate to assume that RT has remained constant from the time of decoupling to
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the present, since the effective value of g has not changed during this interval. Here
T is interpreted as the temperature of the black-body photons, which in the early
universe was identical to the temperature of the hydrogen. Using the subscript d
to denote quantities evaluated at the time of decoupling, and subscript 0 to denote
quantities evaluated at the present time, one has

RdTd = R0T0 , (7.36)

from which one has immediately that

Rd

R0
=

T0

Td
. (7.37)

Assuming that the universe is flat, and making the crude approximation that it can
be treated as matter-dominated from td to the present, one has R(t) ∝ t2/3 and

(
td
t0

)2/3

=
T0

Td
. (7.38)

Solving, one has

td =
(
T0

Td

)3/2

t0

≈
(

2.7K
3000K

)3/2

× (
13.7× 109 yr

) ≈ 370, 000 yr .

(7.39)

On p. 159, Ryden quotes a more accurate numerical calculation, giving td ≈ 350, 000
yr.

THE SPECTRUM OF THE COSMIC BACKGROUND RADIATION

The cosmic background radiation was first discovered by Penzias and Wilson in
1965. They measured at one frequency only, but found that the radiation appeared
to be coming uniformly from all directions in space. This radiation was quickly
identified by Dicke, Peebles, Roll, and Wilkinson as the remnant radiation from
the big bang. Since then the measurement of the cosmic background radiation has
become a minor industry, and much data has been obtained about the spectrum of
the radiation and about its angular distribution in the sky.

The prediction from big bang cosmology is that the spectrum should be ther-
mal, corresponding to black-body radiation that has been redshifted from its ini-
tially very high temperature. It is a peculiar feature of the black-body spectrum
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that it maintains its thermal equilibrium form under uniform redshift, even though
the photons in the radiation are noninteracting. That is, if each photon in the
black-body probability distribution is redshifted by the same factor, the net effect
is to produce a new probability distribution which is again of the black-body form,
except that the temperature is modified by a factor of the redshift. Thus, the red-
shift reduces the temperature, but does not lead to departures from the thermal
equilibrium spectrum.

The ideal Planck spectrum for such radiation has an energy density ρ(ν)dν, for
radiation in the wavelength interval between ν and ν + dν, given by

ρ(ν)dν =
16π2h̄ν3

c3
1

e2πh̄ν/kT − 1
dν . (7.40)

(As with the other statistical mechanics results in this set of Lecture Notes, we
will use Eq. (7.40) without derivation.) Observers usually do not directly measure
the energy density, however, but instead measure the intensity of the radiation. It
can be shown that the power hitting a detector per frequency interval per area of
aperature per solid angle of aperture is given by

Iν(ν) =
c

4π
ρν(ν) =

4πh̄ν3

c2
1

e2πh̄ν/kT − 1
. (7.41)

The data on the spectrum available in 1975 is summarized on the two graphs
on the following page. The graphs show measurements of the energy density in the
cosmic background radiation at different frequencies (or wavelengths). The lower
horizontal axis shows the frequency in gigahertz (109 cycles per second), and the
upper horizontal axis shows the corresponding wavelength. The solid line is the
expected blackbody distribution, shown for the best current determination of the
temperature, 2.726K. Part (a) shows the low frequency measurements, including
those of Penzias & Wilson and Roll & Wilkinson (which was published about 6
months after the Penzias & Wilson result). Part (b) includes the full range of
interesting frequencies. The circles show the results of each measurement, and
the bars indicate the range of the estimated uncertainty. The measurements with
small uncertainties are shown with dark shading. A high-frequency broad-band
measurement is shown on part (b), labeled “1974 Balloon”—the measured energy
density is shown as a solid line, and the estimated uncertainty is indicated by gray
shading. The 1971 balloon measurements were taken by the MIT team of Dirk
Muehlner and Rainer Weiss. (The energy density on both graphs is measured in
electron volts per cubic meter per gigahertz.)

The earth’s atmosphere poses a serious problem for measuring the high fre-
quency side of the curve, so the best measurements must be done from balloons,
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rockets, or satellites. In 1987 a rocket probe was launched by a collaboration be-
tween the University of California at Berkeley, and Nagoya University in Japan.
The group consisted of T. Matsumoto, S. Hayakawa, H. Matsuo, H. Murakami, S.
Sato, A.E. Lange, and P.L. Richards. Their paper, published in The Astrophysical
Journal, vol. 329, pp. 567-571 (1988), includes a graph of the following remarkable
data:

Note that the points labeled 2 and 3 are much higher than the black body spectrum
predicts. Fitting these points individually to a temperature, the authors find:

Point 2: T = 2.955± 0.017K
Point 3: T = 3.175± 0.027K

These numbers correspond to discrepancies of 12 and 16 standard deviations, re-
spectively, from the temperature of T = 2.74K that fits the lower frequency points.
In terms of energy, the excess intensity seen at high frequencies in this experiment
amounts to about 10% of the total energy in the cosmic background radiation. Cos-
mologists were stunned by the extremely significant disagreement with predictions.
Some tried to develop theories to explain the radiation, without much success, while
others banked on the theory that it would go away. The experiment looked like a
very careful one, however, so it was difficult to dismiss. The most likely source of
error in an experiment of this type is the possibility that the detectors were influ-
enced by heat from the exhaust of the launch vehicle— but the experimenters very
carefully tracked how the observed radiation varied with time as the detector moved
away from the launch rocket, and it seemed clear that the rocket was not a factor.
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The same group tried to check their results with a second flight a year later,
but the rocket failed and no useful data was obtained.

In the fall of 1989 NASA launched the Cosmic Background Explorer, known as
COBE (pronounced “koh-bee”). This marked the first time that a satellite was used
to probe the background radiation. Within months, the COBE group announced
their first results at a meeting of the American Astronomical Society in Washington,
D.C., January 1990. The detailed preprint, with a cover sheet showing a sketch of
the satellite, was released the same day.

The data showed a perfect fit to the blackbody spectrum, with a temperature
of 2.735 ± 0.06K, with no evidence whatever for the “submillimeter excess” that
had been seen by Matsumoto et al. The data was shown with estimated error bars
of 1% of the peak intensity, which the group regarded as very conservative. The
graph is reproduced below.

Once again, the vertical axis is calibrated in electron volts per cubic meter per
gigahertz.

Since the COBE instrument is far more precise and has more internal consis-
tency checks, there has been no doubt in the scientific community that the COBE
result supercedes the previous one. Despite the 16σ discrepancy of 1988, the cosmic
background radiation is now once again believed to have a nearly perfect black-body
spectrum.
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In January 1993, the COBE team released their final data on the cosmic back-
ground radiation spectrum. The first graph had come from just 9 minutes of data,
but now the team had analyzed the data from the entire mission. The error boxes
were shrunk beyond visibility to only 0.03%, and the background spectrum was
still perfectly blackbody, just as the big bang theory predicted. The new value for
the temperature was just a little colder, 2.726K, with an uncertainty of less than
0.01K.

The perfection of the spectrum means that the big bang must have been very
simple. The COBE team estimated that no more than 0.03% of the energy in the
background radiation could have been released anytime after the first year, since
energy released after one year would not have had time to reach such a perfect
state of thermal equilibrium. Theories that predict energy release from the decay
of turbulent motions or exotic elementary particles, from a generation of exploding
or massive stars preceding those already known, or from dozens of other interesting
hypothetical objects, were all excluded at once.

Although a few advocates of the steady state universe have not yet given up,
the COBE team announced that the theory is ruled out. A nearly perfect blackbody
spectrum can be achieved in the steady state theory only by a thick fog of objects
that could absorb and re-emit the microwave radiation, allowing the radiation to
come to a uniform temperature. Steady state proponents have in the past suggested
that interstellar space might be filled by a thin dust of iron whiskers that could create
such a fog. However, a fog that is thick enough to explain the new data would be
so opaque that distant sources would not be visible.

In this chapter we have discussed mainly the spectrum of the cosmic microwave
background (CMB). Starting in 1992, however, with some preliminary results from
the COBE satellite, astronomers have also been able to measure the anisotropies
of the CMB. This is quite a tour de force, since the radiation is isotropic to an
accuracy of about 1 part in 105. Since the photons of the CMB have been travelling
essentially on straight lines since the time of decoupling, these anisotropies are
interpreted as a direct measure of the degree of nonuniformity of the matter in the
universe at the time of decoupling. These non-uniformities are crucially important,
because they give us clues about how the universe originated, and because they are
believed to be the seeds which led to the formation of the complicated structure
that the universe has today. If all goes well, we will have one lecture at the end of
the course devoted to these issues.


