

Mossbauer Spectroscopy for the Determination of Quadrupole Splitting and Isomer Shift

Kelley Rivoire

**MIT Department of Physics
April 4, 2005**

Outline

1. Introduction, Motivations
2. Theory: Nuclear Resonance, Recoilless Emission, Mossbauer Spectroscopy, Quadrupole Splitting, Isomer Shift
3. Apparatus and Experiment
4. Results & Error Analysis: Calibrations, Comparisons with Known Data
5. Conclusions

Introduction: Why Mossbauer Spectroscopy?

- Interested in observing resonance absorption of nuclear radiation, as previously observed optically
- Recoil of nucleus gives a shift in energy too large to observe resonance absorption
- Mossbauer spectroscopy: recoilless emission allows us to see resonance absorption (1957)
- Can then probe properties of resonance, other effects

Nuclear Absorption and Emission

- For conservation of momentum, nucleus must recoil, has kinetic recoil energy
- Energy of the gamma ray absorbed or emitted has an energy difference of $\frac{E^2}{2mc^2}$, difference between absorbed and emitted is twice this, which is much larger than the linewidth, E is energy of the transition, m is nuclear mass, c is speed of light
- Don't see resonance

Recoilless Emission

- Instead, use a crystal lattice as a substrate
- Only recoil would come from phonons (vibrations of lattice), with quantized energies
- For recoil energy less than lowest phonon energy, $k\Theta_D$, no recoil, k Boltzmann constant, Θ_D Debye temperature
- See resonance absorption

Mossbauer Spectroscopy

- Moving source or emitter creates a Doppler shift $\frac{\Delta E}{E} = \frac{v}{c}$, E energy, v velocity, c speed of light
- By probing a range of velocities, we can shift in and out of the resonance energy

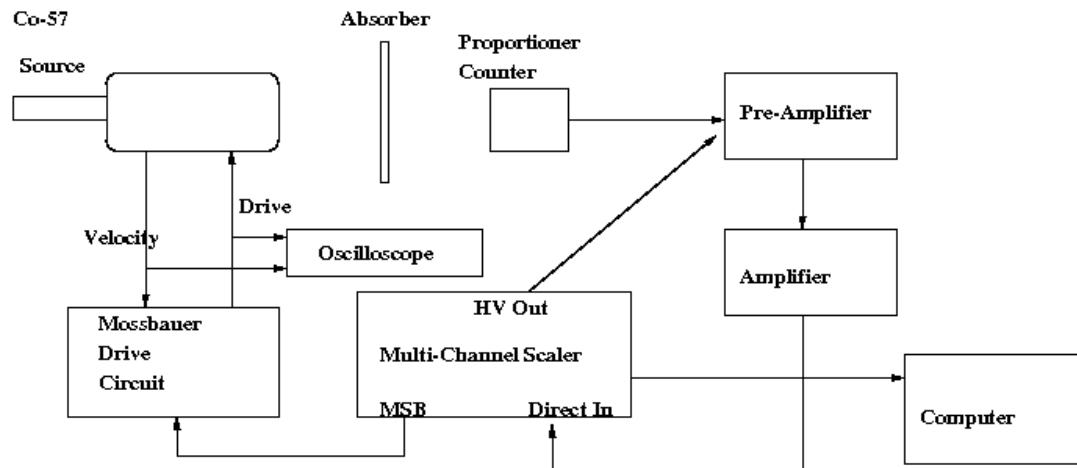
Quadrupole Splitting

- Quadrupole moment comes from a non-spherical nuclear charge distribution
- Quadrupole splitting arises from an internal electric field gradient
- $\Delta E = e \frac{3m_I^2 - I(I+1)}{4I(2I-1)} Q \frac{\partial^2 V}{\partial z^2}$, e is charge of electron, I is angular momentum, m_I magnetic quantum number of nuclear state, Q quadrupole moment, V electric potential
- For Fe-57, ground state, $I=1/2$, $\Delta E = 0$, excited state, $I=3/2$, $\Delta E = \pm \frac{1}{8} Q e \frac{\partial^2 V}{\partial z^2}$

Isomer Shift

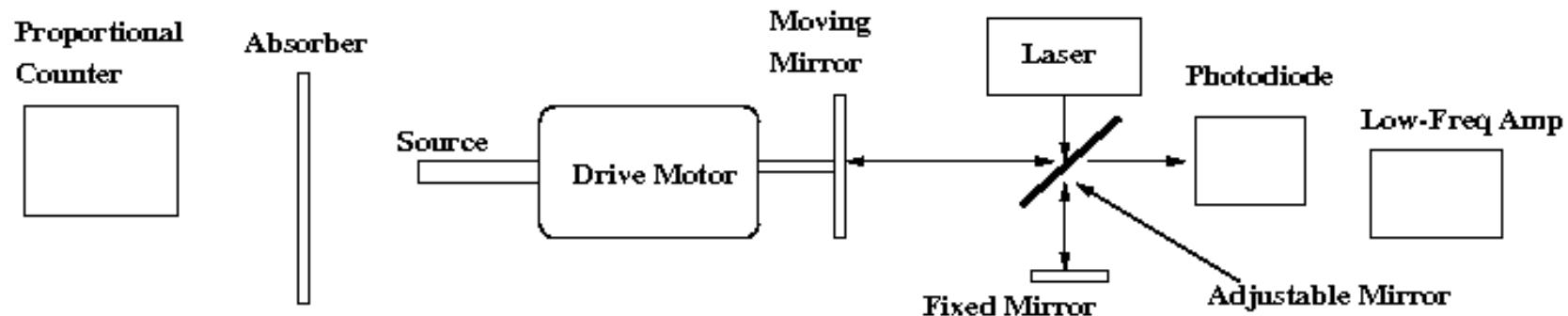
- Arises from changes in chemical environment: s electron wavefunctions overlap with nucleus
- Because nuclear charge is not a point charge, but a distribution, Coulomb potential is altered for different nuclear radii, affects nuclear energy levels
- $\Delta E = \frac{2\pi}{5}Ze^2(R_{is}^2 - R_{gs}^2)(|\psi(0)_a|^2 - |\psi(0)_e|^2)$, Z nuclear charge, R radius, is excited state, gs ground state, $\psi(0)_a$ electron wavefunction of absorber, $\psi(0)_e$ electron wavefunction of emitter at R=0

Apparatus



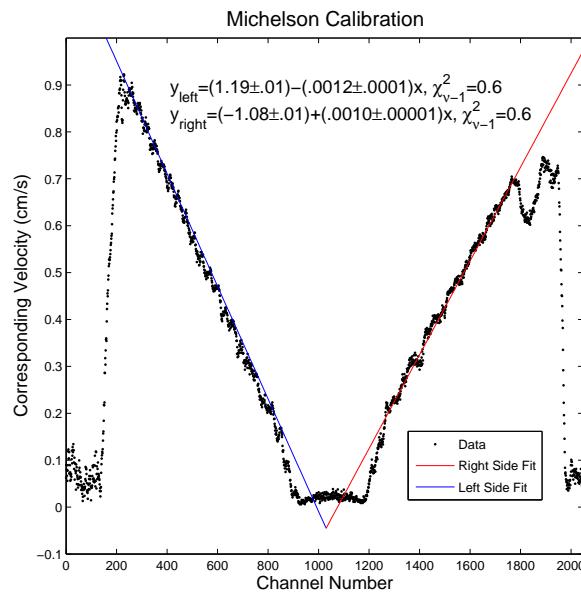
- Co-57 decays into excited Fe-57, emits without recoil, 14.4 keV photon
- Recoilless absorption causes a drop in the number of detector counts
- Sweep over a range of velocities to move in and out of resonance
- Observe a number of nuclear effects using different absorbers

Calibration

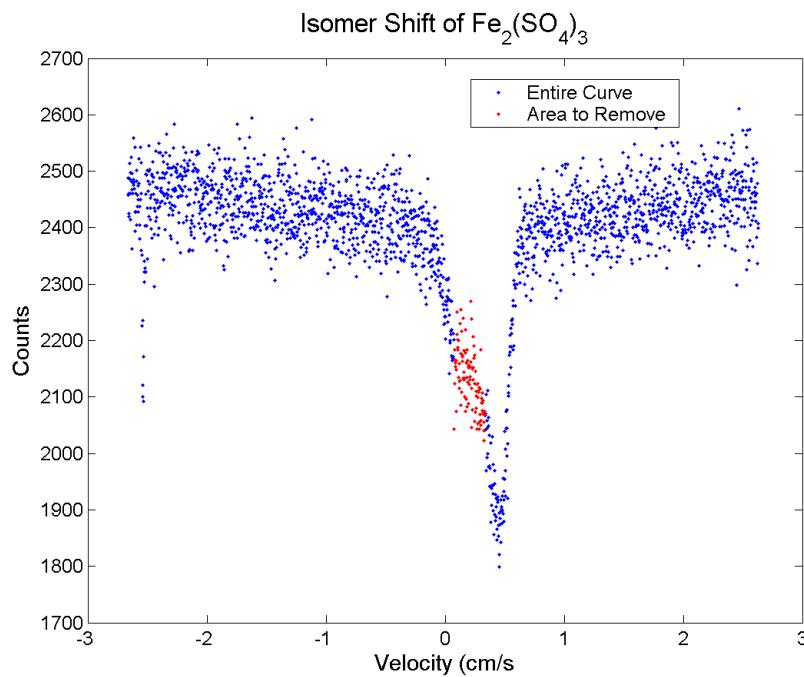


- Need to match channel number to a velocity
- Constructive interference when piston moves distance $\lambda/2$
- In any given channel, $V_i = \frac{C\lambda}{2NT}$, V is velocity, i is channel number, N is number of sweeps, T is dwell time, C is counts

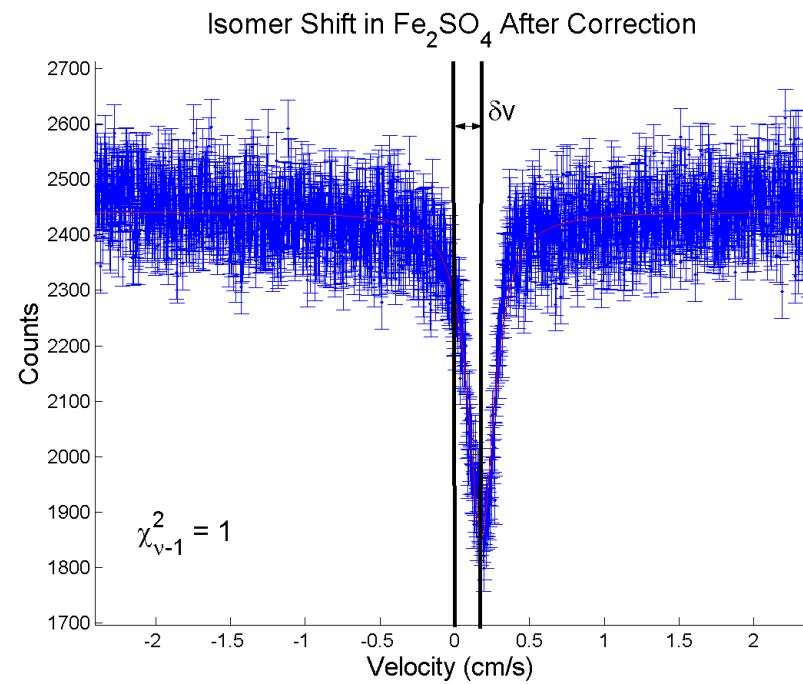
Calibration



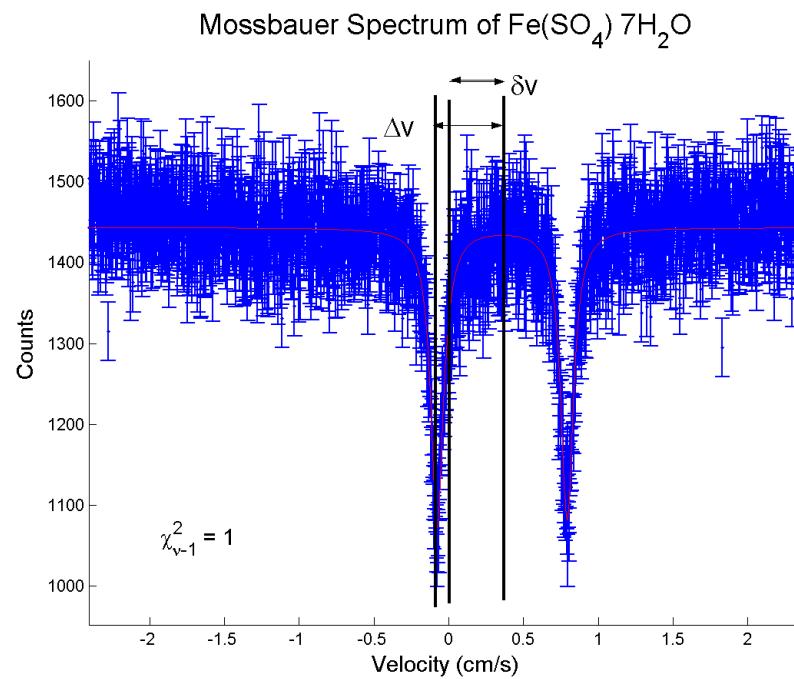
- Fit positive and negative velocities to two lines, don't intersect
- Calibration Equation: $v = (x-a)b$, v = velocity, x = channel number, $a = (1030 \pm 40)$, $b = (0.0011 \pm 0.0001)$
- Use another spectrum as a secondary calibration (Zeeman)



- Resonant peak is not Lorentzian-reflective of bad drive velocity
- To correct, remove area where counts don't change: 100 ± 30 channels
- No quadrupole splitting because no field gradient for Fe^{+++} (it's a $3d^5$ state)



- Fit Lorentzian to resonant peak: perfect χ^2_{v-1}
- Calculate velocity to be $(0.18 \pm 0.13) \text{ cm/s}$, $\delta E = (8 \pm 6) \times 10^{-8} \text{ eV}$
- Very large error comes 99% from uncertainty in calibration coefficient because the peak is near zero velocity



- Fit 2 Lorentzians with same correction: perfect $\chi^2_{\nu-1}$
- Calculate quadrupole splitting from Fe^{++} (3d⁶ state) of $\Delta v = (0.4 \pm 0.1) \text{ cm/s}$, $\Delta E = (2.1 \pm 0.5) \times 10^{-7} \text{ eV}$
- Isomer shift $\delta v = (0.3 \pm 0.1) \text{ cm/s}$, $\delta E = (1.7 \pm 0.5) \times 10^{-7} \text{ eV}$

Error Analysis

- From Michelson, $v = (x-a)*b*c$, v is velocity, a is zero of velocity in channels, x is channel number, c is scaling factor
- $\sigma_v^2 = v^2 \left(\frac{\sigma_x^2 + \sigma_a^2}{(x-a)^2} + \frac{\sigma_b^2}{b^2} + \frac{\sigma_c^2}{c^2} \right)$
- For isomer shifts, a contributes 99% of σ
- For quadrupole shift, a contributes 61% to σ , b and c contribute about 19% each

Results and Interpretation

- Isomer shift $\delta E = (8 \pm 6) \times 10^{-8}$ eV for $\text{Fe}_2(\text{SO}_4)_3$
- From literature, should be 2.4×10^{-8} eV
- Isomer shift $\delta E = (1.7 \pm 0.5) \times 10^{-7}$ eV for $\text{Fe}(\text{SO}_4) \cdot 7\text{H}_2\text{O}$
- From literature, expect 6.7×10^{-8} eV
- Quadrupole splitting $\Delta E = (2.1 \pm 0.5) \times 10^{-7}$ eV for $\text{Fe}(\text{SO}_4) \cdot 7\text{H}_2\text{O}$
- From literature, should be 1.5×10^{-7} eV

Conclusions

- Observe isomer shift and quadrupole splitting of iron-containing samples
- For better results, need to improve treatment of velocities around zero