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Introduction: Why Mossbauer Spectroscopy?

e Interested in observing resonance absorption of nuclear radi-
ation, as previously observed optically

e Recoil of nucleus gives a shift in energy too large to observe
resonance absorption

e Mossbauer spectroscopy: recoilless emission allows us to see
resonance absorption (1957)

e Can then probe properties of resonance, other effects



Nuclear Absorption and Emission

e For conservation of momentum, nucleus must recoil, has
Kinetic recoil energy

e Energy of the gamma ray absorbed or emitted has an energy
2

difference of 25;62, difference between absorbed and emitted

IS twice this, which is much larger than the linewidth, E is

energy of the transition, m is nuclear mass, c is speed of light

e Don't see resonance



Recoilless Emission

Instead, use a crystal lattice as a substrate

Only recoil would come from phonons (vibrations of lattice),
with quantized energies

For recoil energy less than lowest phonon energy, k©p, no
recoil, k Boltzmann constant, ©p Debye temperature

See resonance absorption



Mossbauer Spectroscopy

e Moving source or emitter creates a Doppler shift % = % E

energy, Vv velocity, ¢ speed of light

e By probing a range of velocities, we can shift in and out of
the resonance energy



Quadrupole Splitting

e Quadrupole moment comes from a non-spherical nuclear charge
distribution

e Quadrupole splitting arises from an internal electric field gra-
dient

o ANE = 3?725‘(2[]([?1)@3 V.. e is charge of electron, I is angular

momentum, my magnetlc quantum number of nuclear state,
Q quadrupole moment, V electric potential

e For Fe-57, ground state, I=1/2, AF = 0, excited state,
I=3/2, AFE = 4+1 Qe



Isomer Shift

e Arises from changes in chemical environment: s electron
wavefunctions overlap with nucleus

e Because nuclear charge is not a point charge, but a distribu-
tion, Coulomb potential is altered for different nuclear radii,
affects nuclear energy levels

o AE = 2Ze?(R2—R2,)([¢(0)a|*—|1(0)e|?), Z nuclear charge,
R radius, is excited state, gs ground state, ¥(0), electron
wavefunction of absorber, 1(0)e electron wavefunction of
emitter at R=0



Apparatus
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Co-57 decays into excited Fe-57, emits without recoil, 14.4 keV photon
Recoilless absorption causes a drop in the number of detector counts
Sweep over a range of velocities to move in and out of resonance

Observe a number of nuclear effects using different absorbers



Calibration
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e Need to match channel number to a velocity
e Constructive interference when piston moves distance \/2

e In any given channel, V, = % V is velocity, i is channel number, N is
number of sweeps, T is dwell time, C is counts
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Calibration

Michelson Calibration

Channel Number

e Fit positive and negative velocities to two lines, don't intersect

e Calibration Equation: v=(x-a)b, v = velocity, x = channel number, a =
(1030 £ 40), b = (0.0011 £ 0.0001)

e Use another spectrum as a secondary calibration (Zeeman)



Isomer Shift of Fe2(804)3
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e Resonant peak is not Lorentzian-reflective of bad drive velocity
e [0 correct, remove area where counts don’'t change: 100 &+ 30 channels

e No quadrupole splitting because no field gradient for Fet++ (it's a 3d®
state)



Isomer Shift in FeZSO4 After Correction
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e Fit Lorentzian to resonant peak: perfect xﬁ_l

e Calculate velocity to be (0.18 £ 0.13) cm/s, 6E = (8 £ 6) x 1078 eV

e Very large error comes 99% from uncertainty in calibration coefficient
because the peak is near zero velocity



Mossbauer Spectrum of Fe(SO4) 7H20
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e Fit 2 Lorentzians with same correction: perfect X5_1

e Calculate quadrupole splitting from Fe™T (3d° state) of Av = (.4 £ 0.1)
cm/s, AE = (2.1 £ 0.5) x 1077 eV

e Isomer shift v = (0.3 £ 0.1) cm/s, §E = (1.7 £ 0.5) x 10~ 7 eV



Error Analysis

From Michaelson, v = (x-a)*b*c, v is velocity, a is zero of velocity in
channels, x is channel number, c is scaling factor

2 __  2r0240? o} o2
O-v_v( +b—§+g)

r—a)?
For isomer shifts, a contributes 99% of o

For quadrupole shift, a contributes 61% to o, b and c contribute about
19% each



Results and Interpretation
Isomer shift §F = (8 £ 6) x 1078 eV for Fex(SO4)3
From literature, should be 2.4 x 1078 eV
Isomer shift 6F = (1.7 &£ 0.5) x 10~7 eV for Fe(SO4) 7H-O
From literature, expect 6.7 x 1078 eV
Quadrupole splitting AE = (2.1 £ 0.5) x 10~ eV for Fe(SO4) 7H,O

From literature, should be 1.5 x 10~7 eV



Conclusions

e Observe isomer shift and quadrupole splitting of iron-containing
samples

e For better results, need to improve treatment of velocities
around zero



