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Abstract

As an important part of overall market architecture, market-wide trading halts,

also called circuit breakers, have been widely adopted as a measure to stabilize the

stock market when experiencing large price movements. We develop an intertemporal

equilibrium model to examine how circuit breakers impact the market when investors

trade for risk sharing. We show that a downside circuit breaker tends to lower the

stock price and increase its volatility, both conditional and realized. Due to this

increase in volatility, the circuit breaker’s own presence actually raises the likelihood

of reaching the triggering price. In addition, the circuit breaker also increases the

chance of hitting the triggering price as the stock price approaches it – the so-called

“magnet effect.” Our model highlights the fact that changes in market liquidity can

endogenously trigger leverage constraints and in turn affect trading and price dynamics.

This mechanism also applies to other forms of market interventions.
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1 Introduction

Large stock market swings in the absence of significant macroeconomic shocks often raise

questions about the confidence in the financial market from market participants, policy

makers and general public alike. While the cause of these swings are still not well understood,

various measures have been adopted to intervene in the normal trading process during

these extreme times in the hope to stabilize prices and maintain proper functioning of the

market. These measures, sometimes referred to as throwing sand in the gears, range from

market-wide trading halts, price limits on the whole market or individual assets, to limits

on order flows, positions and margins, even transaction taxes, just to name a few.1 They

have grown to be an important part of the broad market architecture. Yet, the merits of

these measures, either from a theoretical or an empirical perspective, remain largely unclear

(see, for example, Grossman, 1990).

Probably one of the most prominent of these measures is the market-wide circuit

breaker in the U.S., which was advocated by the Brady Commission (Presidential Task

Force on Market Mechanisms, 1988) following the Black Monday of 1987 and subsequently

implemented in 1988. It temporarily halts trading in all stocks and related derivatives

when a designated market index drops by a significant amount. Following this lead, circuit

breakers of various forms have been widely adopted by equity and derivative exchanges

around the globe.2 Table 1 shows the adoption of market-wide circuit breakers among the

leading stock markets in both the developed and developing economies.

Since its introduction, the U.S. circuit breaker was triggered only once on October 27,

1997 (see, e.g., Figure 1, left panel). At that time, the threshold was based on points

movement of the DJIA index. At 2:36 p.m., a 350-point (4.54%) decline in the DJIA led

to a 30-minute trading halt on stocks, equity options, and index futures. After trading

1It is worth noting that contingent trading halts and price limits are part of the normal trading process
for individual stocks and futures contracts. However, their presence there have quite different motivations.
For example, the trading halt of an individual stock prior to major corporate announcements is motivated
by the desire for fair information disclosure, and daily price limits on futures are motivated by the desire
to guarantee the proper implementation of the mark-to-market mechanism as well as to deter market
manipulation. In this paper, we focus on market-wide trading interventions in the underlying markets such
as stocks as well as their derivatives, which have very different motivations and implications.

2According to a 2016 report, “Global Circuit Breaker Guide” by ITG, over 30 countries around the
world have rules of trading halts in the form of circuit breakers, price limits and volatility auctions.
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Table 1: Adoption of market-wide circuit breakers among leading stock markets. The table
also reports markets with price limits on individual stocks. Markets with market-wide
circuit breakers as well as individual stock price limits are denoted by Y and N otherwise.
Y/N for China denotes its adaptation of circuit breakers and then the abandonment.

2018 Market Cap (Tn $) Rank Circuit Breaker Price Limit

Developed markets
United States 30.4 1 Y Y
Japan 5.3 3 N Y
Hong Kong 3.8 4 N N
France 2.4 5 Y N
Canada 1.9 7 Y N
Germany 1.8 8 Y N

Developing markets
China 6.3 2 Y/N Y
India 2.1 6 Y Y
Brazil 0.9 12 Y N
Russia 0.6 16 Y N

resumed at 3:06 p.m., prices fell rapidly to reach the second-level 550-point circuit breaker

at 3:30 p.m., leading to the early market closure for the day.3 But the market stabilized the

next day. This event led to the redesign of the circuit breaker rules, moving from change in

the level of DJIA to percentage drop of S&P 500, with a considerably wider bandwidth.4

After the Chinese stock market experienced extreme price declines in 2015, a market-wide

circuit breaker was introduced in January 2016, with a 15-minute trading halt when the

CSI 300 Index falls by 5% (Level 1) from previous day’s close, and market closure for the

day after a 7% decline (Level 2).5 On January 4, 2016, the first trading day after the circuit

breaker was put in place, both thresholds were reached (Figure 1, middle panel), and it

took only 7 minutes from the re-opening of the markets following the 15-minute halt for the

index to reach the 7% threshold. Three days later, on January 7, both circuit breakers were

triggered again (Figure 1, right panel), and the entire trading session lasted just 30 minutes.

3For a detailed review of this event, see Securities and Exchange Commission (1998).
4In its current form, the market-wide circuit breaker can be triggered at three thresholds: 7% (Level

1), 13% (Level 2), both of which will halt market-wide trading for 15 minutes when the decline occurs
between 9:30 a.m. and 3:25 p.m. Eastern time, and 20% (Level 3), which halts market-wide trading for the
remainder of the trading day; these triggers are based on the prior day’s closing price of the S&P 500 Index.

5The CSI 300 index is a market-cap weighted index of 300 major stocks listed on the Shanghai Stock
Exchange and the Shenzhen Stock Exchange, compiled by the China Securities Index Company, Ltd.
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Figure 1: Circuit breakers in the U.S. and Chinese stock market. The left panel
plots the DJIA index on Oct 27, 1997, when the market-wide circuit breaker was triggered,
first at 2:36 p.m., and then at 3:30 p.m. The middle and right panels plot the CSI300
index on January 4 and January 7 of 2016. Trading hours for the Chinese stock market are
9:30-11:30 and 13:00-15:00 (the shaded interval in the panels marks the lunch break). Level
1 (2) circuit breaker is triggered after a 5% (7%) drop in price from the previous day’s close.
The blue circles on the left (right) vertical axes mark the price on the previous day’s close
(following day’s open).

On the same day, the circuit breaker was suspended indefinitely.

These events have revived debates about circuit breakers and market interventions in

general. What are the theoretical and empirical basis for introducing circuit breakers? What

are their goals? How do they actually impact the market? How to assess their success or

failure? How may their effectiveness depend on the particular market, the actual design,

and the specific market conditions? More broadly, these questions can be raised about any

form of interventions in the trading process.

In this paper, we develop an intertemporal equilibrium model to capture investors’ most

fundamental trading needs, namely to share risk. We then examine how the introduction

of a downside circuit breaker affects investors’ trading behavior and the equilibrium price

dynamics. In addition to welfare loss by reduced risk sharing, which can be substantial,

we show that a circuit breaker also lowers price levels, increases conditional and realized

volatility, and increases the likelihood of triggering trading halts. These consequences run
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contrary to the often stated goal of circuit breakers, which is to calm the markets. Our

model not only demonstrates the potential cost of circuit breakers, but also provides a basic

setting to further incorporate market imperfections to fully examine their costs and benefits.

In our model, two (classes of) investors have log preferences over terminal wealth and

have heterogeneous beliefs about the dividend growth rate, which generates trading. For

simplicity, one investor’s belief is set to be the same as the objective belief while another

investor’s belief is different, who will also be referred to as the irrational investor.6 Without

the circuit breaker, the stock price is a weighted average of the prices under the two investors’

beliefs, with the weights being their respective shares of total wealth.

The introduction of a downside circuit breaker in the market, however, makes the

equilibrium stock price disproportionately reflect the beliefs of the relatively pessimistic

investor, especially when the stock price approaches the circuit breaker limit. To understand

this result, first consider the scenario when the stock price has just reached the circuit

breaker threshold. Immediate market closure is an extreme form of illiquidity, which forces

the relatively optimistic investor to refrain from taking on leverage due to the inability to

rebalance his portfolio during closure and the risk of default it may entail. As the optimistic

investor faces binding leverage constraints, the pessimistic investor becomes the marginal

investor, and the equilibrium stock price upon market closure entirely reflects his belief,

regardless of his wealth share.

Next, the threat of market closure also affects trading and prices before the circuit

breaker is triggered. Compared to the case without circuit breaker, the relatively optimistic

investor will preemptively reduce his leverage as the price approaches the circuit breaker

limit. For a downside circuit breaker, the price-dividend ratios become lower throughout

the trading interval. Thus, a downside circuit breaker tends to drive down the overall asset

price levels.

In addition, in the presence of a downside circuit breaker, the conditional volatilities of

stock returns can become significantly higher. These effects are stronger when the price is

closer to the circuit breaker threshold, when it is earlier during a trading session. Surprisingly,

6Interpreting the investor heterogeneity as difference in beliefs is solely for convenience. We can also
interpret it as difference in preferences or endowments. See the discussion on the model in Section 2.
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the volatility amplification effect of downside circuit breakers is stronger when the initial

wealth share for the irrational investor (who tends to be pessimistic at the triggering point)

is smaller, because the gap between the wealth-weighted belief of the representative investor

and the belief of the pessimist is larger in such cases.

Our model shows that circuit breakers have multifaceted effects on intra-day price

variability. On the one hand, almost mechanically, a (tighter) downside circuit breaker

eliminates a possibility of very large downward price movements. Such effects could be

beneficial, for example, in reducing inefficient liquidations due to intra-day mark-to-market.

On the other hand, a (tighter) downside circuit breaker tends to raise the probabilities of

intermediate and large price ranges, and can significantly increase the median of daily realized

volatilities as well as the probabilities of very large conditional and realized volatilities.

These effects could exacerbate market instability in the presence of imperfections.

Furthermore, our model demonstrates a “magnet effect.” The very presence of downside

circuit breakers makes it more likely for the stock price to reach the threshold in a given

amount of time than when there are no circuit breakers (the opposite is true for upside

circuit breakers). The difference between the probabilities is negligible when the stock price

is sufficiently far away from the threshold, but it gets bigger as the stock price gets closer

to the threshold. Eventually, when the price is sufficiently close to the threshold, the gap

converges to zero as both probabilities converge to one.

This “magnet effect” is important for the design of circuit breakers. It suggests that

using the historical data from a period when circuit breakers were not implemented can

substantially underestimate the likelihood of future circuit breaker triggers, which might

result in picking a downside circuit breaker threshold that is excessively tight.

Prior theoretical work on circuit breakers focuses on their role in reducing excess

volatility and restore orderly trading in the presence of market imperfections such as limited

participation, information asymmetry and market power. For example, Greenwald and

Stein (1991) argue that, in a market with limited participation and the resulting execution

risk, circuit breakers can help to better synchronize trading for market participants and

improve the efficiency of allocations (see also Greenwald and Stein, 1988).7 On the other

7In Greenwald and Stein (1991), limited participation takes several forms. In particular, value traders,
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hand, Subrahmanyam (1994) shows that in the presence of asymmetric information, circuit

breakers can increase price volatility by causing investors to shift their trades to earlier

periods with lower liquidity supply (see also Subrahmanyam, 1995).

By developing a model to reflect investors’ first-order trading needs, our work comple-

ments the studies above in three important dimensions. First, it properly captures the

cost of circuit breakers, in welfare, price distortion, and excess volatility, in a benchmark

setting without imperfections. For instance, we show that the excess volatility effect that

Subrahmanyam (1994) demonstrates in his model is more generic and is present even in

the absence of asymmetric information. This is relevant in analyzing market-wide circuit

breakers because various forms of market imperfections such as information asymmetry and

strategic behavior could be less important for broad markets, such as the aggregate stock

market, than for narrow markets, such as markets for individual stocks.

Second, our model provides a basis to further include different forms of market imperfec-

tions, if suitable, such as asymmetric information, strategic behavior, cost of participation

and failure of coordination, which are needed to justify and quantify the benefits of circuit

breakers. Such imperfections are undoubtedly important in providing the basis for interven-

tions. However, focusing solely on their influence may understate the fundamental merits of

the market mechanism itself.

Third, our model sheds light on the importance of properly capturing the most funda-

mental trading needs of investors, i.e., risk sharing or liquidity, in analyzing, understanding

and managing financial markets. In models of information asymmetry, these trading needs

are represented by the liquidity demands of “noise traders,” which are treated as exogenous.

Our results suggest that the behavior of these liquidity traders can be significantly affected

by circuit breakers, which should be carefully taken into account.

In this spirit, our paper is closely related to Hong and Wang (2000), who study the

effects of periodic market closures in the presence of asymmetric information. The liquidity

effect caused by market closures as we see here is qualitatively similar to what they find. By

who act as price stabilizers, enter the market at different times with uncertainty. This uncertainty in their
participation, which is assumed to be exogenous, gives rise to the additional risk in execution prices. Also,
these value traders can only rely on market orders or simple limit orders, rather than limit order schedules,
in their trading.
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modeling the stochastic nature of a circuit breaker, we are able to fully capture its impact

on market dynamics, such as volatility and conditional distributions.

While our model focuses on circuit breakers, our theoretical results about the dynamic

impact of disappearing market liquidity in the presence of levered investors is more broadly

applicable. Besides exchange-implemented trading halts, other types of market interventions

such as price limits, short-sale bans, trading speed restrictions (e.g., penalties for HFT),

and other forms of market freezes could also have similar effects on the willingness of highly-

levered investors to continue to hold their risky positions. As these investors preemptively

de-lever, it will depress prices, amplify volatility, and further raise the chances of market

freeze. In fact, the setup we have developed here can be extended to examine the impact of

these interventions.

The empirical work on the impact of market-wide circuit breakers is scarce due to the

fact that their likelihood to be approached, not to mention triggered, is very small by

design. Goldstein and Kavajecz (2004) provide a detailed analysis on the behavior of market

participants in the period around October 27, 1997, the only time the circuit breaker has

been triggered in the U.S. since its introduction. They find that leading up to the trading

halt, market participants accelerated their trades, which is consistent with the magnet effect.

In addition, they show that sellers’ behavior is less influenced when approaching circuit

breaker than the buyers’, who are withdrawing from the market by canceling their buy limit

orders. This is consistent with what our model predicts: sellers are becoming marginal

traders when approaching a circuit breaker.8

There is, however, more extensive empirical work on the impact of conditional trading

restrictions on individual securities including futures. For example, Bertero and Mayer

(1990) and Lauterbach and Ben-Zion (1993) study the effects of trading halts based on

price limits imposed on individual stocks around the 1987 stock market crash. Bertero and

Mayer (1990) find that stock indices of countries with price limits imposed on individual

stocks experienced declines in magnitude of up to 9% lower compared to aggregate indices

in countries without circuit breakers. Lauterbach and Ben-Zion (1993) find that stocks

8Ackert, Church, and Jayaraman (2001) study the impact of market-wide circuit breakers through
experiments. They find that circuit breakers do not impact prices significantly but alter market participants’
trading behavior substantially by accelerating trading when the breakers are approaching.
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with trading halts experienced smaller decline on the day of the crash, but trading halts

did not have any effect on long run performance. Lee, Ready, and Seguin (1994) explore

behavior of individual stock prices traded at NYSE around times of trading halts. They

find that individual stock volatility and trading volume both increase on the days following

a trading halt. On the other hand, Christie, Corwin, and Harris (2002) find that for news

related trading halts of individual NASDAQ stocks, longer halts tend to reduce post-halt

uncertainty.9 Although the focus of our paper is on market-wide circuit breakers, the results

we obtain are broadly compatible with the empirical findings on the impact of trading halts

for individual assets. But the results from individual assets are in general richer and less

robust. In many ways, this is expected given the relative importance of various type of

imperfections in these markets.

The rest of the paper is organized as follows. Section 2 describes the basic model for

our analysis. Section 3 provides the solution to the model. In Section 4, we examine the

impact of a downside circuit breaker on investor behavior and equilibrium prices. Section 5

discusses the robustness of our results with respect to some of our modeling choices such as

continuous trading and no default. In Section 6, we consider extensions of the model to

different types of trading halts. Section 7 concludes. All proofs are given in the appendix.

2 The Model

We consider a continuous-time endowment economy over the finite time interval [0, T ].

Uncertainty is described by a one-dimensional standard Brownian motion Z, defined on a

filtered complete probability space (Ω,F , {Ft},P), where {Ft} is the augmented filtration

generated by Z.

There is a single share of an aggregate stock, which pays a terminal dividend of DT at

9Chen (1993), Santoni and Liu (1993), Kim and Rhee (1997), Corwin and Lipson (2000), Jiang, McInish,
and Upson (2009), Gomber, Haferkorn, Lutat, and Zimmermann (2012), Brugler and Linton (2014), among
others, study the effects of trading halts and price limits on the market behavior individual stocks. Chen,
Gao, He, Jiang, and Xiong (2017) examine the impact of daily price limits on trading patterns and price
dynamics in the Chinese stock market. Kuserk, Locke, and Sayers (1992), Berkman, Steenbeek, et al. (1998),
Coursey and Dyl (1990), Ma, Rao, and Sears (1989b), Ma, Rao, and Sears (1989a), Chen and Jeng (1996)
study effects of trading restrictions related to price fluctuations in futures markets.
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time T . The process for D is exogenous and publicly observable, given by:

dDt = µDtdt+ σDtdZt, D0 = 1, (1)

where µ and σ > 0 are the expected growth rate and volatility of Dt, respectively.10 Besides

the stock, there is also a riskless bond with total net supply ∆ ≥ 0. Each unit of the bond

yields a terminal pays off of one at time T .

There are two competitive agents A and B, who are initially endowed with ω and 1− ω

shares of the aggregate stock and ω∆ and (1− ω)∆ units of the riskless bond, respectively,

with 0 ≤ ω ≤ 1 determining the initial wealth distribution between the two agents. Both

agents have logarithmic preferences over their terminal wealth at time T :

ui(W
i
T ) = ln(W i

T ), i = {A,B}. (2)

There is no intermediate consumption.

The two agents have heterogeneous beliefs about the terminal dividend, and they “agree

to disagree” (i.e., they do not learn from each other or from prices).11 Agent A has the

objective beliefs in the sense that his probability measure is consistent with P (in particular,

µA = µ). Agent B’s probability measure, denoted by PB, is different from but equivalent to

P.12 In particular, he believes that the dividend growth rate at time t is:

µBt = µ+ δt, (3)

where the difference in beliefs δt follows an Ornstein-Uhlenbeck process:

dδt = −κ(δt − δ̄)dt+ νdZt, (4)

10For brevity, throughout the paper we will refer to Dt as “dividend” and St/Dt as the “price-dividend
ratio,” even though dividend will only be realized at time T .

11The formulation here follows earlier work of Detemple and Murthy (1994) and Zapatero (1998), among
others.

12More precisely, P and PB are equivalent when restricted to any σ-field FT = σ({Dt}0≤t≤T ). Two
probability measures are equivalent if they agree on zero probability events. Agents beliefs should be
equivalent to prevent seemingly arbitrage opportunities under any agents’ beliefs.
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with κ ≥ 0 and ν ≥ 0. Equation (4) describes the dynamics of the gap in beliefs under

physical probability measure, which is the same as from the perspective of agent A.13 Notice

that δt is driven by the same Brownian motion as the aggregate dividend. With ν > 0,

agent B becomes more optimistic (pessimistic) following positive (negative) shocks to the

aggregate dividend, and the impact of these shocks on his belief decays exponentially at the

rate κ. Thus, the parameter ν controls how sensitive B’s conditional belief is to realized

dividend shocks, while κ determines the relative importance of shocks from recent past vs.

distant past. The average long-run disagreement between the two agents is δ̄. In the special

case with ν = 0 and δ0 = δ̄, the disagreement between the two agents remains constant over

time. In another special case where κ = 0, δt follows a random walk.

Heterogeneous beliefs are a simple way to introduce heterogeneity among agents, which

is necessary to generate trading. The heterogeneity in beliefs can easily be interpreted as

heterogeneity in utility, which can be state dependent. For example, time-varying beliefs

could represent behavioral biases (“representativeness”) or path-dependent utility that

makes agent B effectively more (less) risk averse following negative (positive) shocks to

fundamentals (e.g., “catching up with the Joneses” utility as in Abel, 1990). Alternatively,

we could introduce heterogeneous endowment shocks to generate trading (see, e.g., Wang,

1994). In all these cases, trading allows agents to share risk.

Let the Radon-Nikodym derivative of the probability measure PB with respect to P be

η. Then from Girsanov’s theorem, we have:

ηt = exp

(
1

σ

∫ t

0

δsdZs −
1

2

1

σ2

∫ t

0

δ2
sds

)
. (5)

Intuitively, since agent B will be more optimistic than A when δt > 0, those paths with high

realized values for
∫ t

0
δsdZs will be assigned higher probabilities under PB than under P.

Because there is no intermediate consumption, we use the riskless bond as the numeraire.

Thus, the price of the bond is always 1. Let St denote the price of the stock at t.

13Under agent B’s beliefs, δt will follow a different O-U process (see Eq. (A.4b) in Appendix A). In
other words, the two agents not only disagree about future dividend growth, but also about how their
disagreement will evolve in the future.
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Circuit Breaker. To capture the essence of a circuit breaker rule, we assume that the

stock market will be closed whenever the stock price St hits a threshold (1−α)S0, where S0 is

the endogenous initial price of the stock, and α ∈ [0, 1] is a constant parameter determining

the floor of downside price fluctuations during the interval [0, T ]. Later in Section 6, we

extend the model to allow for market closures for both downside and upside price movements,

which represent price limit rules. The closing price for the stock is determined such that

both the stock market and bond market clear when the circuit breaker is triggered. After

that, the stock market will remain closed until time T .

In practice, the circuit breaker threshold is often based on the closing price from the

previous trading session instead of the opening price of the current trading session. For

example, in the U.S., a cross-market trading halt can be triggered at three circuit breaker

thresholds (7%, 13%, and 20%) based on the prior day’s closing price of the S&P 500 Index.

However, the distinction between today’s opening price and the prior day’s closing price is

not crucial for our analysis. The circuit breaker not only depends on but also endogenously

affects the initial stock price, just like it does for prior day’s closing price in practice.14

Finally, we impose usual restrictions on trading strategies to rule out arbitrage.

3 The Equilibrium

3.1 Benchmark Case: No Circuit Breaker

In this section, we solve for the equilibrium when there is no circuit breaker. To distinguish

from the case with circuit breakers, we use the symbol “̂” to denote variables in the case

without circuit breakers.

In the absence of circuit breakers, markets are dynamically complete. The equilibrium

14Other realistic features of the circuit breaker in practice is to close the market for m minutes and reopen
(Level 1 and 2), or close the market until the end of the day (Level 3). In our model, we can think of T as
one day. The fact that the price of the stock reverts back to the fundamental value DT at T resembles the
rationale of CB to “restore order” in the market.
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allocation in this case can be characterized as the solution to the following planner’s problem:

max
ŴA
T , Ŵ

B
T

E0

[
λ ln

(
ŴA
T

)
+ (1− λ)ηT ln

(
ŴB
T

)]
, (6)

subject to the resource constraint:

ŴA
T + ŴB

T = DT + ∆. (7)

From the agents’ first-order conditions and the budget constraints, we obtain λ = ω, and

ŴA
T =

ω

ω + (1− ω)ηT
(DT + ∆), (8a)

ŴB
T =

(1− ω)ηT
ω + (1− ω)ηT

(DT + ∆). (8b)

As it follows from the equations above agent B will be allocated a bigger share of the

aggregate dividend when realized value of the Radon-Nikodym derivative ηT is higher, i.e.,

under those paths that agent B considers to be more likely.

The state price density under agent A’s beliefs, which corresponds the objective proba-

bility measure P, is given by:

π̂At = Et
[
ξu′(ŴA

T )
]

= Et
[
ξ(ŴA

T )−1
]
, 0 ≤ t ≤ T (9)

for some constant ξ. Then, from the budget constraint for agent A we see that the planner’s

weights are equal to the shares of endowment, λ = ω. Using the state price density, one can

then derive the price of the stock and individual investors’ portfolio holdings.

In the limiting case with bond supply ∆→ 0, the complete markets equilibrium can be

characterized in closed form. We focus on this limiting case in the rest of this section. First,

the following proposition summarizes the pricing results.

Proposition 1. When there are no circuit breakers, the price of the stock in the limiting
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case with bond supply ∆→ 0 is:

Ŝt =
ω + (1− ω)ηt

ω + (1− ω) ηt ea(t,T )+b(t,T )δt
Dte

(µ−σ2)(T−t), (10)

where

a(t, T ) =

[
κδ − σν
ν
σ
− κ

+
1

2

ν2(
ν
σ
− κ
)2

]
(T − t)− 1|

4

ν2(
ν
σ
− κ
)3

[
1− e2( νσ−κ)(T−t)

]

+

[
κδ − σν(
ν
σ
− κ
)2 +

ν2(
ν
σ
− κ
)3

] [
1− e(

ν
σ
−κ)(T−t)

]
, (11a)

b(t, T ) =
1− e(

ν
σ
−κ)(T−t)

ν
σ
− κ

. (11b)

From Equation (10), we can derive the conditional volatility of the stock σ̂S,t in closed

form, which is available in the appendix.

Next, we turn to the wealth distribution and portfolio holdings of individual agents. At

time t ≤ T , the shares of total wealth of the two agents are:

ω̂At =
ω

ω + (1− ω)ηt
, ω̂Bt = 1− ω̂At . (12)

The number of shares of stock θ̂At and units of riskless bonds φ̂At held by agent A are:

θ̂At =
ω

ω + (1− ω)ηt
− ω(1− ω)ηt

[ω + (1− ω)ηt]
2

δt
σσ̂S,t

= ω̂At

(
1− ω̂Bt

δt
σσ̂S,t

)
, (13)

φ̂At = ω̂At ω̂
B
t

δt
σσ̂S,t

Ŝt, (14)

and the corresponding values for agent B are θBt = 1− θAt and φBt = −φAt .

As Equation (13) shows, there are several forces affecting the agents’ portfolio positions.

First, all else equal, agent A owns fewer shares of the stock when B has more optimistic

beliefs (larger δt). This effect becomes weaker when the volatility of stock return σ̂S,t is high.

Second, changes in the wealth distribution (as indicated by (12)) also affect the portfolio

holdings, as the richer agent will tend to hold more shares of the stock.
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We can gain more intuition on the stock price by rewriting Equation (10) as follows:

Ŝt =
1

ω
ω+(1−ω)ηt

Et
[
D−1
T

]
+ (1−ω)ηt

ω+(1−ω)ηt
EBt
[
D−1
T

] =

(
ω̂At

ŜAt
+
ω̂Bt

ŜBt

)−1

, (15)

which states that the stock price is a weighted harmonic average of the prices of the stock in

two single-agent economies with agent A and B being the representative agent, respectively,

denoted by ŜAt and ŜBt , where

ŜAt = e(µ−σ
2)(T−t)Dt, (16a)

ŜBt = e(µ−σ
2)(T−t)−a(t,T )−b(t,T )δtDt, (16b)

and the weights (ω̂At , ω̂
B
t ) are the two agents’ shares of total wealth. Controlling for the

wealth distribution, the equilibrium stock price is higher when agent B has more optimistic

beliefs (larger δt).

One special case of the above result is when the amount of disagreement between the

two agents is the zero, i.e., δt = 0 for all t ∈ [0, T ]. The stock price then becomes:

Ŝt = ŜAt =
1

Et[D−1
T ]

= e(µ−σ
2)(T−t)Dt, (17)

which is a version of the Gordon growth formula, with σ2 being the risk premium for the

stock. The instantaneous volatility of stock returns becomes the same as the volatility of

dividend growth, σ̂S,t = σ. The shares of the stock held by the two agents will remain

constant and be equal to the their endowments, θ̂At = ω, θ̂Bt = 1− ω.

Another special case is when the amount of disagreement is constant over time (δt = δ for

all t). The results for this case are obtained by setting ν = 0 and δ0 = δ̄ = δ in Proposition

1. Equation (10) then simplifies to:

Ŝt =
ω + (1− ω)ηt

ω + (1− ω)ηte−δ(T−t)
e(µ−σ

2)(T−t)Dt. (18)

As expected, Ŝt increases with δ, which reflects agent B’s optimism on dividend growth.
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3.2 Circuit Breaker

We start this section by introducing some notation. By θit, φ
i
t, and W i

t we denote stock

holdings, bond holdings, and wealth of agent i at time t, respectively, in the market with a

circuit breaker. Let τ denote the time when the circuit breaker is triggered. It follows from

the definition of the circuit breaker and the continuity of stock prices that τ satisfies

τ = inf{t ≥ 0 : St = (1− α)S0}. (19)

We use the expression τ ∧ T to denote min{τ, T}. Next, we define the equilibrium with a

circuit breaker.

Definition 1. The equilibrium with circuit breaker is defined by an Ft-stopping time τ ,

trading strategies {θit, φit} (i = A,B), and a continuous stock price process S defined on the

interval [0, τ ∧ T ] such that:

1. Taking stock price process S as given, the two agents’ trading strategies maximize

their expected utilities under their respective beliefs and budget constraints.

2. For any t ∈ [0, T ], both the stock and bond markets clear,

θAt + θBt = 1, φAt + φBt = ∆. (20)

3. The stopping time τ is consistent with the circuit breaker rule in (19).

One crucial feature of the model is that markets remain dynamically complete until the

circuit breaker is triggered. Hence, we solve for the equilibrium with the following three

steps. First, consider an economy in which trading stops when the stock price reaches any

given triggering price S ≥ 0. By examining the equilibrium conditions upon market closure,

we can characterize the Ft-stopping time τ that is consistent with Sτ = S. Next, we solve

for the optimal allocation at τ ∧ T through the planner’s problem as a function of S, as

well as the stock price prior to τ ∧ T , also as a function of S. Finally, the equilibrium is the

fixed point whereby the triggering price S is consistent with the initial price, S = (1− α)S0.

We describe these steps in detail below.
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Suppose the circuit breaker is triggered before the end of the trading session, i.e., τ < T .

We start by deriving the agents’ indirect utility functions at the time of market closure.

Agent i has wealth W i
τ at time τ . Since the two agents behave competitively, they take the

stock price Sτ as given and choose the shares of stock θiτ and bonds φiτ to maximize their

expected utility over terminal wealth, subject to the budget constraint:

V i(W i
τ , τ) = max

θiτ , φ
i
τ

Eiτ
[
ln(θiτDT + φiτ )

]
, (21)

s.t. θiτSτ + φiτ = W i
τ ,

where V i(W i
τ , τ) is the indirect utility function for agent i at time τ < T .

The market clearing conditions at time τ are:

θAτ + θBτ = 1, φAτ + φBτ = ∆. (22)

For any τ < T , the Inada condition implies that terminal wealth for both agents needs to

stay non-negative, which implies θiτ ≥ 0 and φiτ ≥ 0. That is, neither agent will take short

or levered positions in the stock. This is a direct result of the inability to rebalance one’s

portfolio after market closure, which is an extreme version of illiquidity.

Solving the problem (21) – (22) gives us the indirect utility functions V i(W i
τ , τ). It also

gives us the stock price at the time of market closure, Sτ , as a function of the dividend Dτ ,

the gap in beliefs δτ , and the wealth distribution at time τ (which is determined by the

Radon-Nikodym derivative ητ ). Thus, the condition Sτ = S translates into a condition on

Dτ , δτ , and ητ , which in turn characterizes the stopping time τ as a function of exogenous

state variables. As we will see later, in the limiting case with bond supply ∆ → 0, the

stopping rule satisfying this condition can be expressed in closed form. When ∆ > 0, the

solution can be obtained numerically.

Next, the indirect utility for agent i at τ ∧ T is given by:

V i(W i
τ∧T , τ ∧ T ) =

 ln(W i
T ), if τ ≥ T

V i(W i
τ , τ), if τ < T.

(23)
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These indirect utility functions make it convenient to solve for the equilibrium wealth

allocations in the economy at time τ ∧ T through the following planner problem:

max
WA
τ∧T ,W

B
τ∧T

E0

[
λV A(WA

τ∧T , τ ∧ T ) + (1− λ)ητ∧TV
B(WB

τ∧T , τ ∧ T )
]
, (24)

subject to the resource constraint:

WA
τ∧T +WB

τ∧T = Sτ∧T + ∆, (25)

where

Sτ∧T =

 DT , if τ ≥ T

S, if τ < T.
(26)

Taking the equilibrium allocation WA
τ∧T from the planner’s problem, the state price

density for agent A at time τ ∧ T can be expressed as his marginal utility of wealth times a

constant ξ:

πAτ∧T = ξ
∂V A(W, τ ∧ T )

∂W

∣∣∣
W=WA

τ∧T

. (27)

The price of the stock at any time t ≤ τ ∧ T is then given by:

St = Et
[
πAτ∧T
πAt

Sτ∧T

]
, (28)

where like in Equation (9),

πAt = Et
[
πAτ∧T

]
. (29)

The expectations above are straightforward to evaluate, at least numerically.

Having obtained the solution for St as a function of S, we can finally solve for the

equilibrium triggering price S through the following fixed point problem,

S = (1− α)S0. (30)

Proposition 2. There exists a solution to the fixed-point problem in (30) for any α ∈ [0, 1].

To see why Proposition 2 holds, consider S0 as a function of S, S0 = f(S). First notice
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that when S = 0, there is essentially no circuit breaker, and f(0) will be the same as

the initial stock price in the complete markets case. Next, there exists s∗ > 0 such that

s∗ = f(s∗), which is the initial price when the market closes immediately after opening.

The fact that f is continuous ensures that there exists at least one crossing between the

function f(s) and s/(1− α), which will be a solution for (30).

Below we will show how these steps can be neatly solved in the special case when riskless

bonds are in zero net supply.

Because neither agent will take levered or short positions during market closure, there

cannot be any lending or borrowing in that period. Thus, in the limiting case with net bond

supply ∆→ 0, all the wealth of the two agents will be invested in the stock upon market

closure. Consequently the leverage constraint will always bind for the relatively optimistic

investor in the presence of heterogeneous beliefs. The result is that the relatively pessimistic

investor becomes the marginal investor, as summarized in the following proposition.

Proposition 3. Suppose the stock market closes at time τ < T . In the limiting case with

bond supply ∆→ 0, at τ both agents will hold all of their wealth in the stock, θiτ = W i
τ

Sτ
, and

hold no bonds, φiτ = 0. The market clearing price is:

Sτ = min
{
ŜAτ , Ŝ

B
τ

}
=

 e(µ−σ
2)(T−τ)Dτ , if δτ > δ(τ)

e(µ−σ
2)(T−τ)−a(τ,T )−b(τ,T )δτDτ , if δτ ≤ δ(τ)

(31)

where Ŝiτ denotes the stock price in a single-agent economy populated by agent i, as given in

(16a)-(16b):

δ(t) = −a(t, T )

b(t, T )
, (32)

and a(t, T ), b(t, T ) are given in Proposition 1.

Clearly, the market clearing price Sτ only depends on the belief of the relatively pes-

simistic agent. This result is qualitatively different from the complete markets case, where

the stock price is a wealth-weighted average of the prices under the two agents’ beliefs. It

is a crucial result: the lower stock valuation upon market closure affects both the stock

price level and dynamics before market closure, which we analyze in Section 4. Notice that
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having the lower expectation of the growth rate at the current instant is not sufficient to

make the agent marginal. One also needs to take into account the agents’ future beliefs and

the risk premium associated with future fluctuations in the beliefs, which are summarized

by δ(t).15

Equation (31) implies that we can characterize the stopping time τ using a stochastic

threshold for dividend Dt, as summarized below.

Lemma 1. Take the triggering price S as given. Define a stopping time:

τ = inf{t ≥ 0 : Dt = D(t, δt)}, (33)

where

D(t, δt) =

 Se−(µ−σ2)(T−t), if δt > δ(t)

Se−(µ−σ2)(T−t)+a(t,T )+b(t,T )δt , if δt ≤ δ(t).
(34)

Then, in the limiting case with bond supply ∆→ 0, the circuit breaker is triggered at time τ

whenever τ < T .

Having characterized the equilibrium at time τ < T , we plug the equilibrium portfolio

holdings into (21) to derive the indirect utility of the two agents at τ :

V i(W i
τ , τ) = Eiτ

[
ln

(
W i
τ

Sτ
DT

)]
= ln(W i

τ )− ln (Sτ ) + Eiτ [ln(DT )]. (35)

The indirect utility for agent i at τ ∧ T is then given by:

V i(W i
τ∧T , τ ∧ T ) =

 ln(W i
T ), if τ ≥ T

ln(W i
τ )− ln (Sτ ) + Eiτ [ln(DT )], if τ < T.

(36)

Substituting these indirect utility functions into the planner’s problem (24) and taking

15Technically, there is a difference between the limiting case with ∆→ 0 and the case with ∆ = 0. When
∆ = 0, any price equal or below Sτ in (31) will clear the market. At such prices, both agents would prefer
to invest more than 100% of their wealth in the stock, but both will face binding leverage constraints,
which is why the stock market clears at these prices. However, these alternative equilibria are ruled out by
considering a sequence of economies with bond supply ∆→ 0. In each of these economies where ∆ > 0,
the relatively pessimistic agent needs to hold the bond in equilibrium, which means his leverage constraint
cannot not be binding.
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the first order condition, we get the wealth of agent A at time τ ∧ T :

WA
τ∧T =

ωSτ∧T
ω + (1− ω) ητ∧T

, (37)

where Sτ∧T is given in (26). Then, we obtain the state price density for agent A and the

price of the stock at time t ≤ τ ∧ T as in (27) and (28), respectively. In particular,

St =
(
ωAt Et

[
S−1
τ∧T
]

+ ωBt EBt
[
S−1
τ∧T
] )−1

. (38)

Here, ωit is the share of total wealth owned by agent i, which, in the limiting case with

∆→ 0, is identical to ω̂it in (12) before market closure. Equation (38) is reminiscent of its

complete markets counterpart (15). Unlike in the case of complete markets, the expectations

in (38) are no longer the inverse of the stock prices from the respective representative agent

economies.

From the equilibrium stock price, we can then compute the conditional mean µS,t and

volatility σS,t of stock returns, which are given by:

dSt = µS,tStdt+ σS,tStdZt. (39)

In Appendix A.3, we provide the closed-form solution for St in the special case with constant

disagreements (δt ≡ δ).

Finally, by evaluating St at time t = 0, we can solve for S = (1− α)S0 from the fixed

point problem (30). Beyond the existence result of Proposition 2, one can further show that

the fixed point is unique when the riskless bond is in zero net supply.16

The case of positive bond supply. When the riskless bond is in positive net supply,

there are four possible scenarios upon market closure: the relatively optimistic agent faces

binding leverage constraint, while the relatively pessimistic agent is either unconstrained

(Scenario i) or faces binding short-sale constraint (Scenario ii); the relatively optimistic agent

16The uniqueness is due to the fact that S0 will be monotonically decreasing in the triggering price S in
the limiting case when ∆→ 0, which is not necessarily true when ∆ > 0.
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is unconstrained, while the relatively pessimistic agent is either unconstrained (Scenario iii)

or faces binding short-sale constraint (Scenario iv). In contrast, only Scenario (i) is possible

when the riskless bond is in zero net supply. The three new scenarios originate from the

fact that when ∆ > 0 the two agents can hold different portfolios without borrowing and

lending; furthermore, when the relatively optimistic agent is sufficiently wealthy, he could

potentially hold the entire stock market without having to take on any leverage.

In particular, Scenario (iv) is the opposite of Scenario (i) in that the relatively optimistic

agent, instead of the pessimistic one, becomes the marginal investor. As a result, the price

level can become higher and volatility lower in the economy with a circuit breaker. Under

Scenarios (ii) and (iii), the equilibrium stock price upon market closure is somewhere in

between the two agents’ valuations.

In Section 5.1, we examine the conditions (wealth distribution, size of bond supply, and

amount of disagreement upon market closure) that determine which of the four scenarios

occur in equilibrium. As we show later, which of the scenarios is realized has important

implications for the equilibrium price process.

Circuit breaker and wealth distribution. We conclude this section by examining the

impact of circuit breakers on the wealth distribution. As explained earlier, the wealth shares

of the two agents before market closure (at time t ≤ τ ∧ T ) will be the same as in the

economy without circuit breakers, and take the form in (12) when the riskless bonds are in

zero net supply.

However, the wealth shares at the end of the trading day (time T ) will be affected by

the presence of the circuit breaker. This is because if the circuit breaker is triggered at

τ < T , the wealth distribution after τ will remain fixed due to the absence of trading. Since

irrational traders on average lose money over time, market closure at τ < T will raise their

average wealth share at time T . This “mean effect” implies that circuit breakers will help

“protecting” the irrational investors in this model. How strong this effect is depends on the

amount of disagreement and the distribution of τ . In addition, circuit breakers will also

make the tail of the wealth share distribution thinner as they put a limit on the amount of

wealth that the relatively optimistic investor can lose over time along those paths with low
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realizations of Dt.

4 Impact of Circuit Breakers on Market Dynamics

We now turn to the quantitative implications of the model. In Section 4.1 we examine the

special case of constant disagreement, δt ≡ δ. This case helps to demonstrate the main

mechanism through which circuit breakers affect trading and asset prices. Then, in Section

4.2, we examine the general case with time-varying disagreements. Throughout this section

we focus on the case where riskless bonds are in zero net supply (∆→ 0). We examine the

robustness of these results in Section 5.

4.1 Constant Disagreement

For calibration, we normalize T = 1 to denote one trading day. We set the expected value

of the dividend growth µ = 10%/250 = 0.04% (implying an annual dividend growth rate

of 10%) and its (daily) volatility σ = 3%. The downside circuit breaker threshold is set at

α = 5%. For the initial wealth distribution, we assume agent A (with rational beliefs) owns

90% of total wealth (ω = 0.9) at t = 0. For the amount of disagreement, we set δ = −2%.

This means agent B is relatively pessimistic about dividend growth, and his valuation of

the stock at t = 0, ŜB0 , will be 2% lower than that of agent A, ŜA0 , which is fairly modest.

In Figure 2, we plot the equilibrium price-dividend ratio St/Dt (left column), the

conditional volatility of returns (middle column), and the stock holding for agent A (right

column). The stock holding for agent B can be inferred from that of agent A, as θBt = 1−θAt .

In each panel, the solid line denotes the solution for the case with circuit breaker, while the

dotted line denotes the case without circuit breaker. To examine the time-of-the-day effect,

we plot the solutions at two different points in time, t = 0.25 and 0.75, respectively.

Let’s start with the price-dividend ratio. As discussed in Section 3.1, the price of the

stock in the case without circuit breaker is the weighted (harmonic) average of the prices

of the stock from the two representative-agent economies populated by agent A and B,

respectively, with the weights given by the two agents’ shares of total wealth (see equation
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Figure 2: Price-dividend ratio, conditional return volatility, and agent A’s (ra-
tional optimist) portfolio holding. Blue solid lines are for the case with circuit breaker.
Red dotted lines are for the case without circuit breaker. The grey vertical bars denote the
circuit breaker threshold D(t).

(15)). Under our calibration, the price-dividend ratio is close to one for any t ∈ [0, T ] under

agent A’s beliefs (ŜAt /Dt), and it is approximately equal to eδ(T−t) ≤ 1 under agent B’s

beliefs (ŜBt /Dt). These two values are denoted by the upper and lower horizontal dash lines

in the left column of Figure 2.

The price-dividend ratio in the economy without circuit breaker (red dotted line) indeed

lies between ŜAt /Dt and ŜBt /Dt. Since agent A is relatively more optimistic, he will hold

levered position in the stock (see the red dotted line in the middle column), and his share of

total wealth will become higher following positive shocks to the dividend. Thus, as dividend

value Dt rises (falls), the share of total wealth owned by agent A increases (decreases),

which makes the equilibrium price-dividend ratio approach the value ŜAt /Dt (ŜBt /Dt).

In the case with circuit breaker, the price-dividend ratio (blue solid line) still lies between

the price-dividend ratios from the two representative agent economies, but it is always

below the price-dividend ratio without circuit breaker for any given level of dividend. The
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gap between the two price-dividend ratios is negligible when Dt is sufficiently high, but it

widens as Dt approaches the circuit breaker threshold D(t).

The reason that stock price declines more rapidly with dividend in the presence of a

circuit breaker can be traced to how the stock price is determined upon market closure. As

explained in Section 3.2, at the instant when the circuit breaker is triggered, neither agent

will be willing to take on levered position in the stock due to the inability to rebalance

the portfolio. With bonds in zero net supply, the leverage constraint always binds for the

relatively optimistic agent (agent A), and the market clearing stock price has to be such

that agent B is willing to hold all of his wealth in the stock, regardless of his share of total

wealth. Indeed, we see the price-dividend ratio with circuit breaker converging to ŜBt /Dt

when Dt approaches D(t), instead of the wealth-weighted average of ŜAt /Dt and ŜBt /Dt.

The lower stock price at the circuit breaker threshold also drives the stock price lower before

market closure, with the effect becoming stronger as Dt moves closer to the threshold D(t).

This explains the accelerated decline in stock price as Dt drops.

The higher sensitivity of the price-dividend ratio to dividend shocks due to the circuit

breaker manifests itself in elevated conditional return volatility, as shown in the middle

column of Figure 2. Quantitatively, the impact of the circuit breaker on the conditional

volatility of stock returns can be quite sizable. Without circuit breaker, the conditional

volatility of returns (red dotted lines) peaks at about 3.2%, only slightly higher than the

fundamental volatility of σ = 3%. This small amount of excess volatility comes from the

time variation in the wealth distribution between the two agents. With circuit breaker, the

conditional volatility (blue solid lines) becomes substantially higher as Dt approaches D(t).

For example, when t = 0.25, the conditional volatility reaches 6% at the circuit breaker

threshold, almost twice as high as the return volatility without circuit breaker.

We can also analyze the impact of the circuit breaker on the equilibrium stock price by

connecting it to how the circuit breaker influences the equilibrium portfolio holdings of the

two agents. Let us again start with the case without circuit breaker (red dotted lines in

right column of Figure 2). The stock holding of agent A, θ̂At , continues to rise as Dt falls

to D(t) and beyond. This is the result of two effects: (i) with lower Dt, the stock price is

lower, implying higher expected return under agent A’s beliefs; (ii) lower Dt also makes
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agent B (who is shorting the stock) wealthier and thus more capable of lending to agent A,

who then takes on a more levered position.

With circuit breaker, while the stock holding θAt takes on similar values as θ̂At , its

counterpart in the case without circuit breaker, for large values of Dt, it becomes visibly

lower than θ̂At as Dt approaches the circuit breaker threshold, and it eventually starts to

decrease as Dt continues to drop.

This is because agent A becomes increasingly concerned with the rising return volatility

at lower Dt, which eventually dominates the effect of higher expected stock return. Finally,

θAt takes a discrete drop when Dt = D(t). With the leverage constraint binding, agent A

will hold all of his wealth in the stock, which means θAt will be equal to his wealth share ωAt .

The preemptive deleveraging by agent A can be interpreted as a form of “self-predatory”

trading. The stock price in equilibrium has to fall enough such that agent A has no incentive

to sell more of his stock holding.

Time-of-the-day effect. Comparing the cases with t = 0.25 and t = 0.75, we see that

the impact of circuit breaker on the price-dividend ratio and return volatility weakens as t

approaches T . For example, at t = 0.25, the price-dividend ratio with circuit breaker can

be as much as 1.2% lower than the level without circuit breaker, and the conditional return

volatility peaks 6%. In contrast, at t = 0.75, the gap in price-dividend ratio is at most 0.3%,

and the peak return volatility is 4.5%.

The reason behind this result is quite straightforward: A shorter remaining horizon

reduces the potential impact of agent B’s pessimistic beliefs on the equilibrium stock price,

as reflected in the shrinking gap between ŜAt /Dt and ŜBt /Dt (the two horizontal dash lines)

from the top left panel to the bottom left panel in Figure 2. Thus, this “time-of-the-day”

effect really reflects the fact that the potential impact of circuit breaker is larger when there

is more disagreement.

Notice also that the circuit breaker threshold D(t) becomes lower as t increases. That

is, the dividend needs to drop more to trigger the circuit breaker later in the day. This is

because the price-dividend ratio for any given Dt becomes higher as t increases.
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Figure 3: Circuit breaker vs. pre-scheduled trading halt. Blue solid lines are for the
case with circuit breaker. Red dotted lines are for the case with pre-scheduled trading halt
at T = 0.5. Grey dotted lines are for the case without trading halts. The grey vertical bars
denote the circuit breaker threshold D(t). The purple dotted line in the last panel denotes
θAt for t = 0.49.

Circuit breaker vs. pre-scheduled trading halt. Like the price-based circuit breaker,

pre-scheduled trading halts, such as daily market closures, will also prevent investors from

rebalancing their portfolios for an extended period of time. However, the implications of

such pre-scheduled trading halts on trading behavior and price dynamics are quite different

from those of circuit breakers. The key difference is that, in the case of a circuit breaker,

the trigger of trading halt endogenously depends on the dividend. A negative shock to

fundamentals not only reduces the price-dividend ratio through its impact on the wealth

distribution (as in the case without circuit breakers), but also drives the price-dividend

ratio closer to the level based on the pessimist’s beliefs by moving the markets closer to the

trading halt threshold.

This second effect is absent in the case of a pre-scheduled trading halt. As t approaches

the pre-scheduled time of market closure T , the price-dividend ratio converges to the
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pessimist valuation for all levels of dividend (which only occurs when Dt approaches D(t)

in the case with circuit breaker). Away from T , the price level is lower for all levels of

dividend due to the expectation of trading halt, but there is no additional sensitivity of the

price-dividend ratio to fundamental shocks, hence no volatility amplification.

To illustrate these differences, Figure 3 plots the price-dividend ratio, the conditional

return volatility, and agent A’s portfolio holding in the case when the market is scheduled

to close at T = 0.5 and remains closed until T = 1 (red dotted lines). We then compare

these results against the case with a 5% circuit breaker (blue solid lines) as well as the case

without any trading halts (grey dotted lines).

Among the three cases, the price-dividend ratio has the most sensitivity to changes in

dividend in the case of a circuit breaker; consequently, the conditional return volatility is

the highest in that case. Interestingly, the conditional return volatility is the lowest with

the pre-scheduled trading halt, and it almost does not change with the dividend. Moreover,

unlike in the circuit breaker case, there is no preemptive deleveraging with pre-scheduled

trading halt – agent A continues to take levered positions in the stock market as t approaches

T , and only delevers at the instant of market closure (see the purple dotted line – agent

A’s stock holding at t = 0.49 – and the red dotted line – stock holding at t = 0.5 – in the

bottom right panel).

4.2 Time-varying Disagreement

In the previous section, we use the special case of constant disagreement to illustrate the

impact of circuit breakers on trading and price dynamics. We now turn to the full model

with time-varying disagreement, where the difference in beliefs δt follows a random walk. We

do so by setting κ = 0, ν = σ, and δ0 = δ̄ = 0. Thus, there is neither initial nor long-term

bias in agent B’s belief.

Under this specification, Agent B’s beliefs resemble the “representativeness” bias in

behavioral economics. As a form of non-Bayesian updating, he extrapolates his belief about

future dividend growth from the realized path of dividend.17 As a result, he becomes overly

17Specifically, δt = ln
[
Dt
D0
e−(µ−σ2/2)t

]
, which is a mean-adjusted nonannualized realized growth rate.
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Figure 4: Price-dividend ratio and agent A’s portfolio in the case of time-varying
disagreements. Blue solid lines are for the case with circuit breaker. Red dotted lines
are for the case without circuit breaker. The grey vertical bars denote the circuit breaker
threshold D(t).

optimistic following large positive dividend shocks and overly pessimistic following large

negative dividend shocks. An alternative interpretation of such beliefs is that they capture

in reduced form the behavior of constrained investors, who effectively become more (less)

pessimistic or risk averse as the constraint tightens (loosens).

In Figure 4, we plot the price-dividend ratio, conditional return volatility, conditional

expected returns under the objective probability measure, and agent A’s stock holding.

Unlike the constant disagreement case, dividend Dt and time of the day t are no longer

sufficient to determine the state of the economy. Thus, we plot the average values of the

variables conditional on t and Dt.
18

18Given our calibration of δt process as a random walk, the one additional state variable besides t and
Dt is the Radon-Nikodym derivative ηt, or equivalently,

∫ t
0
Z2
sds (which together with Dt determines ηt).

There is no need to keep track of δt separately because of the one-to-one mapping between δt and Dt. Thus,
we plot the variables of interest while setting the integral

∫ t
0
Z2
sds equal to its expected value conditional on

Dt.
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Let’s start with the price-dividend ratio, shown in the first column of Figure 4. Since

agent A’s belief about the dividend growth rate is constant over time, the price-dividend

ratio under his beliefs is constant over different values of Dt (the horizontal grey dash line).

However, due to the variation in δt which is perfectly correlated with Dt, the price-dividend

ratio under agent B’s beliefs now increases with Dt (the upward-sloping grey dash line).

The price-dividend ratio in the equilibrium without circuit breaker (red dotted line) is still

a wealth-weighted average of the price-dividend ratios under the two agents’ beliefs. In the

presence of a circuit breaker, for any given level of dividend Dt above the circuit breaker

threshold, the price-dividend ratio is lower than the value without circuit breaker, and

the difference becomes more pronounced as Dt approaches the threshold D(t).19 These

properties are qualitatively the same as in the case of constant disagreement.

The circuit breaker does rule out extreme low values for the price-dividend ratio during

the trading session, which could have occurred at extreme low dividend values had trading

continued. This could be one of the benefits of circuit breakers. When there are intra-day

mark-to-market requirements for some of the market participants, a narrower range for the

price-dividend ratio can help reduce the chances of inefficient liquidations that could further

destabilize the market. Formally modeling such frictions will be an interesting direction for

future research.

However, the circuit breaker generates significant volatility amplification when Dt is close

to D(t) (see Figure 4, second column). The conditional return volatility with time-varying

disagreement can reach as high as 10% at t = 0.25, compared to the peak volatility of

6% in the constant disagreement case and the fundamental volatility of 3%. Like in the

constant disagreement case, the volatility amplification effect weakens as t approaches T

(“time-of-the-day effect”), which is because the effective amount of disagreement between

the two agents is falling with t.

The third column of Figure 4 plot the conditional expected returns under the agent

A’s (objective) beliefs. Even when there is no circuit breaker, the conditional expected

return rises as dividend falls. This is because the irrational agent B is both gaining wealth

19In general cases, the threshold D(t, δt) depends on both t and δt. Since our calibration of the δ process
implies a one-to-one mapping between δt and Dt, the threshold becomes unique for any t.
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share and becoming more pessimistic as Dt falls, driving prices lower and expected returns

higher for agent A higher. The presence of the circuit breaker accelerates the increase in

the conditional expected return as Dt approaches the threshold D(t). Despite the higher

expected returns, agent A still becomes more and more conservative when investing in

the stock (see Figure 4, last column) due to the concern of market closure. In fact, the

preemptive deleveraging by agent A is again evident as Dt approaches D(t).

Unconditional distributions of price and volatility. So far we have been analyzing

the conditional effects of the circuit breaker on prices, volatility, and portfolio holdings.

Next, in Figure 5, we examine the impact of circuit breakers on the distribution of daily

average price-dividend ratios, daily price ranges, and daily return volatility. Daily price

range is defined as daily high minus low prices, while daily return volatility is defined as

the square root of the quadratic variation of log(St) over the period [0, τ ∧ T ] and scaled

back to daily value.

The top panel of Figure 5 shows that the distribution of daily average price-dividend

ratio is shifted to the left in the presence of a circuit breaker, and the left tail of the

distribution becomes fatter. The magnitude of the price distortion is small on average,

because the large price distortions (when Dt approaches D(t)) occur infrequently.

The middle and bottom panels illustrate the impact of the circuit breaker on volatility.

Theoretically, when it comes to the daily price range, a commonly used measure of volatility

in market microstructure studies, the circuit breaker, by limiting stock price from below,

has a potential to reduce daily price ranges for certain paths of the dividend process. As

the middle panel shows, however, statistically this effect is dominated by an increased price

ranges for other realizations of the dividend process. So the presence of the circuit breaker

shifts the whole distribution of the daily price range to the right. One gets a similar message

when it comes to daily realized volatility. The presence of a circuit breaker generates a

significantly fatter right tail for the distribution of daily realized volatility.

The “magnet effect”. The “magnet effect” is a popular term among practitioners that

refers to the changes in price dynamics as the price moves closer to the limit. While there is
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Figure 5: Distributions of price-dividend ratio, daily price range, and realized
volatility. Blue solid lines are for the case with circuit breaker. Red dotted lines are for
the case without circuit breaker.

no formal definition of this effect, we try to formalize this notion in our model by computing

the conditional probability that the stock price, currently at St, will reach the circuit breaker

threshold (1−α)S0 within a given period of time h, which we refer to as conditional hitting

probability, and comparing these probabilities to their counterparts in absence of the circuit

breaker.

In Figure 6, we plot the conditional hitting probabilities for the horizon of h = 10

minutes. When St is sufficiently far from (1− α)S0 (say St > 0.98), the conditional hitting

probabilities with and without circuit breaker are both essentially zero. The gap between

the two hitting probabilities quickly widens as the stock price moves closer to the threshold.

By the time St reaches 0.96, the conditional hitting probability with circuit breaker has
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Figure 6: The “magnet effect”. Conditional probabilities for the stock price to reach
the circuit breaker limit within the next 10 minutes. Blue solid lines are for the case with
circuit breaker. Red dotted lines are for the case without circuit breaker. The grey vertical
bars denote the circuit breaker threshold D(t).

risen above 20%, while the hitting probability without circuit breaker is still close to 0.

The gap eventually narrows as both hitting probabilities will converge to 1 as St reaches

(1− α)S0.

This is our version of the “magnet effect”: the very presence of a circuit breaker raises

the probability of the stock price reaching the threshold. Moreover, the pace at which the

hitting probability increases as the stock price moves closer to the threshold will be much

faster with a circuit breaker than what a “normal price process” would imply. The “magnet

effect” is caused by the significant increase in conditional return volatility in the presence of

a circuit breaker. Combined with the “time-of-the-day” effect, it is not surprising to see

that the “magnet effect” is stronger earlier during the trading day.

Welfare implications In the absence of other frictions, trading halts would reduce

investors’ abilities to share risk. When the reason to trade is heterogeneous beliefs and

the social planner respects the beliefs of individual investors, then any such trading halts

will inevitably reduce welfare. The amount of welfare loss depends on the initial wealth

distribution (it will be higher when wealth is more evenly distributed). Based on our

calibration, the certainty equivalent loss in wealth peaks at close to 3%.
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Alternatively, if the planner takes a paternalistic view by evaluating welfare under

the correct probability measure, then circuit breakers could protect those investors with

irrational beliefs from hurting themselves by trading too much. Such calculations yield

certainty equivalent gain in wealth that peaks at about 1%. While this result might appear

to provide some justification for implementing circuit breaker rules, its implication would

be to prevent trading by irrational investors altogether.

While our framework provides a neoclassical benchmark that highlights some of the

negative effects of circuit breakers, it may well be incomplete in providing a full analysis on

welfare or the optimal design of circuit breaker rules. To do so requires one to properly take

into account the actual frictions such as coordination and information problems, which we

leave for future research.

5 Robustness

Our analysis in Section 4 has focused on the case where riskless bonds are in zero net supply

(∆→ 0). In this section, we examine the robustness of these results when riskless bonds are

in positive supply. In addition, we also discuss the differences between the continuous-time

and discrete-time settings.

5.1 Positive Bond Supply

In the model with positive riskless bond supply, we first consider the problem at the instant

before market closure, which will provide us with much of the intuition about the effect of

positive bond supply. Suppose the stock market will close at some arbitrary time τ with

fundamental value Dτ . There is still trading at time τ , but the agents have to hold onto

their portfolios thereafter until time T . The equilibrium conditions are already given in

Section 3.2.

For illustration, in Figure 7 we plot the equilibrium stock price as a function of the

wealth share of agent A for τ = 0.25 and Dτ = 0.97 (blue solid line), and compare it to the

stock price under complete markets (red dotted line). The bond supply is assumed to be
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∆ = 0.17. Notice that because of the one-to-one mapping between Dt and δt, we know that

agent A is relatively more optimistic for this value of Dτ .

As before, the stock price without circuit breaker is a weighted average of the optimist

and pessimist valuations in the case with positive bond supply, with the weight depending

on their respective wealth shares. Since agent A is more optimistic, the stock price without

circuit breaker is linearly increasing in her wealth share.

We have seen that, when riskless bonds are in zero net supply, the stock price with

a circuit breaker will always be equal to the pessimistic valuation at the time of market

closure. However, this is no longer the case with ∆ > 0. As Figure 7 shows, when agent A’s

wealth share is not too high, the stock price with circuit breaker is lower than its complete

markets counterpart, but the opposite occurs when agent A’s wealth share is sufficiently

high.

The intuition is as follows. When agent A’s wealth share ωAτ is not too high, he invests

all of his wealth into the stock, but that is still not enough to clear the stock market. In

this case, agent A’s leverage constraint will be binding, agent B will hold all the riskless

bonds and the remaining stock not held by agent A, and the market clearing price has to

agree with agent B’s (the pessimist) valuation.

This scenario is similar to the case where riskless bonds are in zero net supply, where the
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pessimist is also the marginal investor. One difference is that the pessimist’s valuation here

increases with ωAτ instead of remaining constant. This is because as agent A gets wealthier,

agent B’s portfolio will become less risky (he is required to hold less stock relative to the

riskless bonds), which makes him value the stock more. However, this effect is quantitatively

small.

When agent A’s wealth share becomes sufficiently high, he will be able to hold the

entire stock market without borrowing. This is possible because not all of the wealth in the

economy is in the stock. In such cases, agent A will hold all of the stock and potentially some

bonds, while agent B will invest all of his wealth in the bonds. As long as the stock price is

above agent B’s private valuation, he would want to short the stock, but the short-sales

constraint would be binding (an arbitrarily small short position can lead to negative wealth).

Consequently, agent A (the optimist) becomes the marginal investor, and the market clearing

price has to agree with his valuation.20 This equilibrium is qualitatively different. The

switch of the marginal investor from pessimist to optimist means that the price-dividend

ratio will be higher and conditional return volatility lower with circuit breaker.

The above analysis highlights the key differences between the economies with positive

and zero bond supply. For a given amount of bond supply ∆, the circuit breaker equilibrium

will be similar to what we have seen in the zero bond supply case as long as agent A’s wealth

share is not too high. However, if agent A’s wealth share becomes sufficiently high, the

property of the equilibrium changes drastically. Price level will become higher and volatility

lower with circuit breaker. Moreover, the region for which this alternative scenario occurs

will become wider as bond supply ∆ increases (relative to the net supply of the stock).

Figure 8 shows a heat map for the ratio of average daily return volatility in the economies

with and without circuit breaker. It is done for a wide range of net bond supply (∆) and

initial wealth share for agent A (ω). The red region indicates volatility amplification by the

circuit breaker, while the blue region indicates the opposite. Quantitatively, the volatility

amplification effect is stronger when net bond supply is small, and when agent A’s initial

20There is also a knife-edge case where agent A does not hold any bonds, the stock price is below his
valuation, but he faces binding leverage constraint. In this case, the stock price and the wealth distribution
have to satisfy the condition ωAτ = Sτ

Sτ+∆ .
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Figure 8: Heat map: ratio of realized volatilities. Heat map for the ratio of average
daily volatilities in the economies with and without circuit breakers.

wealth share is not too low or too high.

In the data, the net supply of riskless bonds relative to the stock market is likely small.

For example, the total size of the U.S. corporate bond market is about $8 trillion in 2016,

while the market for equity is about $23 trillion. If we assume a recovery rate of 50%, the

relative size of the market for riskless bonds would be 0.17. Even if one counts the total size

of the U.S. market for Treasuries, federal agency securities, and money market instruments

(about $16.8 trillion in 2016) together with corporate bonds, the relative size of riskless

bonds will be less than 1, and we still get volatility amplification for most values of ω.

5.2 Bounded Stock Prices

Our model is set in continuous time with the dividend following a geometric Brownian

motion. In a finite time interval (t, t+ s), the dividend can in theory take any value on the

interval (0,∞), as does the stock price, no matter how small s is. This feature together with

a utility function that satisfies the Inada condition implies that the agents in our model

cannot take any levered or short positions in the stock upon market closure. This is why
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the pessimist has to become the marginal investor upon market closure when bonds are in

zero net supply.

In the previous section, we have already seen how the equilibrium could change when

riskless bonds are in positive supply. Similar changes could occur if the stock price has

a non-zero lower bound during the period of market closure. With bounded prices, the

optimistic agent will be able to maintain some leverage when the market closes. Like in

the case with positive bond supply, this agent will then be able to hold the entire stock

market by himself if his wealth share is sufficiently large, and he might become the marginal

investor when the pessimistic agent faces binding short-sales constraint.

Why might the stock price be bounded from below? One reason could be government

bailout. It would also effectively capture the fact that bankruptcy is not infinitely costly.

In unreported results, we study a discrete-time version of the model where the dividend

process is modeled as a binomial tree. We find that when the share of wealth owned by

the optimist is not too high, the presence of a circuit breaker lowers prices and increases

conditional volatility. The magnitude of the effects is also similar to what we see in the

continuous-time model.

6 Extensions

In this section, we extend the model to two-sided circuit breakers. We also discuss how the

model can be extended to allow for multi-tier circuit breakers as well as circuit breakers

triggered by variables other than price levels.

Two-sided circuit breakers. In some markets, the circuit breaker is triggered when the

stock price reaches either the lower bound (1 − αD)S0 or the upper bound (1 + αU)S0,

whichever happens first. This is straightforward to model in our framework. For simplicity,

we consider the two-sided circuit breakers in the constant disagreement case, with αD =

αU = 5%.

Figure 9 shows the results. With the two-sided circuit breaker, the price-dividend ratio

is no longer monotonically increasing in Dt; instead, it takes an inverse U-shape. As in the
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Figure 9: Price-dividend ratio, conditional return volatility, and agent A’s (ratio-
nal optimist) portfolio holdings in the two-sided circuit breaker case. Blue solid
lines are for the case with circuit breaker. Red dotted lines are for the case without circuit
breaker. The grey vertical bars denote the downside threshold D(t) and upside threshold
D(t).

downside circuit breaker case, the price-dividend ratio converges to the pessimist valuation

as Dt approaches the downside threshold D(t). As Dt rises, the price-dividend ratio also

rises and approaches the level in the economy without circuit breaker. The key difference

is that as Dt keeps increasing, the price-dividend ratio starts to decline, and eventually

converges to the pessimist valuation again as Dt approaches the upside threshold D(t).

The reason that the price-dividend ratio converges to the pessimist valuation at the

upside circuit breaker threshold D(t) is the same as at the downside threshold D(t). Since

the leverage constraint starts to bind for the optimistic agent upon market closure, the

pessimistic agent has to become the marginal investor regardless of whether it is the upside

or downside circuit breaker.

While the price-dividend ratio converges to the same value for downside and upside

circuit breakers, the implications for conditional return volatility are quite different. As
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Figure 9 shows, while the conditional return volatility is amplified (relative to the case

without circuit breaker) when Dt is low, the opposite is true when Dt is high, with the

volatility dropping to as low as 1% (compared to the fundamental volatility of 3%) at

t = 0.25. Intuitively, when Dt is high, the direct impact of a positive fundamental shock

on the stock price is partially offset by the negative impact due to the increase in the

probability of market closure. Thus, the stock price becomes less sensitive to fundamental

shocks, which results in lower volatility.

In summary, like the downside circuit breaker, the upside circuit breaker also causes

the leverage constraint to bind for the optimistic investor and the pessimistic investor to

become the marginal investor. Their impacts on volatility are quite different: conditional

return volatility is amplified near the downside circuit breaker threshold but reduced near

the upside threshold.

Multi-tier circuit breakers. Circuit breakers implemented on exchanges often have

more than one trigger threshold. For example, market-wide circuit breaker in the U.S. stock

market can be triggered at three different downside thresholds: 7%, 13%, and 20%. One

can solve the model with multi-tier circuit breakers using backward induction, with the

starting point being the state when only the highest threshold remains un-triggered (this is

identical to the single-tier circuit breaker problem).

To gain some intuition on the effects of multi-tier circuit breakers, consider an example

with two downside thresholds, α1 and α2, with α1 < α2, and assume bonds are in zero net

supply. Whenever the stock price reaches (1 − α1)S0 during the trading day, trading is

suspended for a period s (e.g., 10 minutes) if there is more than s remaining in the trading

day; otherwise the market is closed for the rest of the day. After reopening, if the price

reaches (1− α2)S0, the market will be closed till the end of the trading day.

When market reopens following the first trading halt, the price dynamics are isomorphic

to the case of single-tier circuit breaker. Suppose the first threshold is reached at τ1 (and we

will focus on the interesting case where τ1 + s < T ). Even though the duration of trading

halt will be relatively short, both agents will still avoid taking on levered or short positions

upon the first trading halt. This again means that the pessimist (agent B) has to become
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the marginal investor at τ1. However, a key difference between multi-tier and single-tier

circuit breakers is that agent B’s valuation of the stock at time τ1 now depends on his

beliefs about the stock price at the time when the market reopens, Sτ1+s.

There are two possible scenarios here. First, if agent B’s private valuation at the time

of reopening (which depends on Dτ1+s) is higher than the second circuit breaker threshold,

ŜBτ1+s > (1 − α2)S0, then the market will reopen, and the participation of the optimistic

agent will raise the market price above agent B’s private valuation, Sτ1+s > ŜBτ1+s. Second,

if agent B’s private valuation at the time of reopening is lower than the second circuit

breaker threshold, the second-tier circuit breaker will be triggered immediately when market

reopens. In this case, Sτ1+s = ŜBτ1+s. Thus, the stock price at the time of reopening following

the first trading halt will be on average higher than agent B’s private valuation, which

means the closing price upon the first trading halt will also be higher than agent B’s private

valuation, Sτ1 > ŜBτ1 .

The above result suggests that the dynamics of the two agents’ portfolio holdings will

be similar as the market approaches earlier versus later trading halts. However, the impact

of trading halt on the price level and return volatility will be weaker near earlier trading

halts due to the expectation of market reopening, more so when the duration of trading

halt s is shorter.

Circuit breakers based on non-price variables. An appealing property of the solution

strategy presented in Section 3.2 is that so long as market closure is characterized by an

Ft-stopping time τ , we can determine the stock price upon and prior to market closure in

the same way. This means we can use the same solution strategy to study any other types

of circuit breakers where the circuit breaker trigger criterion is determined by the history of

(Dt, δt, ηt) (we will need to search for the stopping rule that is consistent with the circuit

breaker criterion, a fixed point problem). For example, we can use this method to solve for

models where trading halts are based on conditional return volatility or measures of trading

volume (see e.g., Xiong and Yan, 2010).
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7 Conclusion

In this paper, we build a dynamic model to examine the mechanism through which market-

wide circuit breakers affect trading and price dynamics in the stock market. As we show, a

downside circuit breaker tends to lower the price-dividend ratio, reduce daily price ranges,

but increase conditional and realized volatility. It also raises the probability of the stock price

reaching the circuit breaker limit as the price approaches the threshold (the “magnet effect”).

The effects of circuit breakers can be further amplified when some agents’ willingness to

hold the stock is sensitive to recent shocks to fundamentals, which can be due to behavioral

biases, institutional constraints, etc.

Our results demonstrate some of the negative impacts of circuit breakers even without

any other market frictions, and they highlight the source of these effects, namely the

tightening of leverage constraint when levered investors cannot rebalance their portfolios

during trading halts. These results also shed light on the design of circuit breaker rules.

Using historical price data from a period when circuit breakers have not been implemented

can lead one to significantly underestimate the likelihood of triggering a circuit breaker,

especially when the threshold is relatively tight.
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Appendix

A Proofs

A.1 Proof of Proposition 1

When there are no circuit breakers, the stock price is

Ŝt = Et

[
π̂ATDT

Et
[
π̂AT
]] =

Et [θ + (1− θ) ηT ]

Et
[
D−1
T (θ + (1− θ) ηT )

] =
θ + (1− θ) ηt

θEt
[
D−1
T

]
+ (1− θ)Et

[
D−1
T ηT

] , (A.1)

where

Et
[
D−1
T

]
= D−1

t e−(µ−σ2)(T−t), (A.2)

and

Et
[
D−1
T ηT

]
= ηtEt

[
D−1
T

ηT
ηt

]
= ηtEBt

[
D−1
T

]
. (A.3)

Our model fits into the affine disagreement framework of Chen, Joslin, and Tran (2010). Define

the log dividend xt = logDt. Under measure PB, the processes for xt and δt are

dxt =

(
µ− σ2

2
+ δt

)
dt+ σdZBt , (A.4a)

dδt =
(
κδ +

(ν
σ
− κ
)
δt

)
dt+ νdZBt . (A.4b)

Define Xt = [xt δt]
′, then Xt follows an affine process,

dXt = (K0 +K1Xt) dt+ σXdZ
B
t , (A.5)

with

K0 =

µ− σ2

2

κδ

 , K1 =

0 1

0 ν
σ − κ

 , σX =

σ
ν

 . (A.6)

We are interested in computing

g (t,Xt) = EBt
[
eρ
′
1XT

]
, with ρ1 = [−1 0]′ . (A.7)

By applying standard results for the conditional moment-generating functions of affine processes,
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we get

g (t,Xt) = exp
(
A (t, T ) +B (t, T )′Xt

)
, (A.8)

where

0 = Ḃ +K ′1B, B (T, T ) = ρ1 (A.9a)

0 = Ȧ+B′K0 +
1

2
tr
(
BB′σXσ

′
X

)
, A (T, T ) = 0. (A.9b)

Solving for the ODEs gives:

B(t, T ) =

[
−1

1− e(
ν
σ
−κ)(T−t)

ν
σ − κ

]′
, (A.10)

and

A(t, T ) =

[
µ− σ2 − κδ − σν

ν
σ − κ

− ν2

2
(
ν
σ − κ

)2
]

(t− T )− ν2

4
(
ν
σ − κ

)3 [1− e2( νσ−κ)(T−t)
]

+

[
κδ − σν(
ν
σ − κ

)2 +
ν2(

ν
σ − κ

)3
] [

1− e(
ν
σ
−κ)(T−t)

]
. (A.11)

After plugging the above results back into (A.1) and reorganizing the terms, we get

St =
θ + (1− θ)ηt

θ + (1− θ)ηtH(t, δt)
Dte

(µ−σ2)(T−t), (A.12)

where

H(t, δt) = ea(t,T )+b(t,T )δt , (A.13a)

a(t, T ) =

[
κδ − σν
ν
σ − κ

+
ν2

2
(
ν
σ − κ

)2
]

(T − t)− ν2

4
(
ν
σ − κ

)3 [1− e2( νσ−κ)(T−t)
]

+

[
κδ − σν(
ν
σ − κ

)2 +
ν2(

ν
σ − κ

)3
] [

1− e(
ν
σ
−κ)(T−t)

]
, (A.13b)

b(t, T ) =
1− e(

ν
σ
−κ)(T−t)

ν
σ − κ

. (A.13c)
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Finally, to compute the conditional volatility of stock returns, we have

dŜt = µ̂S,tŜtdt+ σ̂S,tŜdZt

= o(dt) + Ŝt
dDt

Dt
+ ηtDte

(µ−σ2)(T−t) θ(1− θ)[1−H(t, δt)]

[θ + (1− θ)ηtH(t, δt)]
2

dηt
ηt

−Dte
(µ−σ2)(T−t) [θ + (1− θ)ηt](1− θ)ηtH(t, δt)b(t, T )

[θ + (1− θ)ηtH(t, δt)]
2 dδt.

After collecting the diffusion terms, we get

σ̂S,t = σ +
Dte

(µ−σ2)(T−t)

Ŝt

{
θ(1− θ) [1−H(t, δt)]

[θ + (1− θ)ηtH(t, δt)]
2

δtηt
σ

− [θ + (1− θ)ηt] (1− θ)ηtb(t, T )H(t, δt)

[θ + (1− θ)ηtH(t, δt)]
2 ν

}
. (A.14)

A.2 Proof of Proposition 3

Suppose the market closes at time τ < T . The two agents’ problems at time τ are specified in

(21), together with the portfolio constraints θiτ ≥ 0 and φiτ ≥ 0 as implied by the Inada condition.

The Lagrangian for agent i is

L = Eiτ
[
ln
(
θiτDT + φiτ

)]
+ ζi

(
W i
τ − θiτSτ − φiτ

)
+ ξiaθ

i
τ + ξibφ

i
τ ,

and the first order conditions with respect to θiτ and φiτ are

0 = Eiτ
[

DT

θiτDT + φiτ

]
− ζiSτ + ξia, (A.15)

0 = Eiτ
[

1

θiτDT + φiτ

]
− ζi + ξib. (A.16)

Furthermore, the market clearing conditions at time τ are given in (22).

First consider the case when agent A is less optimistic than agent B at time τ . This requires

that δτ is sufficiently large such that agent A’s valuation of the stock in a single-agent economy is

higher than that of agent B, ŜAτ < ŜBτ . This implies the condition

δτ > δ ≡ −a(t, T )

b(t, T )
. (A.17)

Under this assumption, we can examine the following three scenarios:
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1. It can be an equilibrium if the stock price is such that agent A (pessimist) is unconstrained

and finds it optimal to hold all of his wealth in the stock (plus the infinitesimal amount of

bonds); agent B (optimist) would like to put more than 100% of his wealth in the stock but

faces a binding leverage constraint. In this case,

θiτ
∗

=
Wi,τ

Sτ
, φAτ

∗
= ∆→ 0, φBτ

∗
= 0,

ξAa = ξBa = 0, ξAb = 0, ξBb > 0.

Then from the FOCs (A.15-A.16) of the unconstrained agent A, we get

lim
∆→0

Sτ =
EAτ
[

DT
θA∗τ DT+φA∗τ

]
EAτ
[

1
θA∗τ DT+φA∗τ

] =
1

EAτ
[

1
DT

] = Dτe
(µ−σ2)(T−τ) = ŜAτ .

2. For any Sτ < ŜAτ , the price is so low that both agents would prefer to take levered positions

in the stock. The circuit breaker will constrain both agents from borrowing, but neither will

be willing to hold any positive amount of the bond. Thus, the bond market will not clear

and this cannot be an equilibrium.

3. For any Sτ > ŜAτ , agent A will prefer to hold less than 100% of the wealth in the stock.

Agent B will need to take levered position in order to clear the stock market but cannot

because of the circuit breaker. Thus, this cannot be an equilibrium, either.

Similar arguments apply for the case when agent A is more optimistic than agent B at time τ .

In that case, the only equilibrium price will be Sτ = ŜBτ in the limit with ∆→ 0.

A.3 Special Case: Constant Disagreement

The stock price can be computed in closed form in the case of constant disagreement, δt = δ.

Without loss of generality, we focus on the case where agent B is relatively more optimistic, δ ≥ 0.

The results are summarized below.

Proposition 4. Take S0 as given. With δ ≥ 0, the stock price time t ≤ τ ∧ T is

St =
(
ωAt Et[S−1

τ∧T ] + ωBt EBt [S−1
τ∧T ]

)−1
, (A.18)
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where

Et[S−1
τ∧T ] =

1

αS0

{
N

[
dt − σ(T−t)

2√
T − t

]
+ eσdtN

[
dt + σ(T−t)

2√
T − t

]}

+D−1
t e−(µ−σ2)(T−t)

{
N

[
−
dt + σ(T−t)

2√
T − t

]
− e−σdtN

[
dt − σ(T−t)

2√
T − t

]}
, (A.19)

EBt [S−1
τ∧T ] =

1

αS0

{
N

[
dt −

(
δ
σ + σ

2

)
(T − t)

√
T − t

]
+ e(σ+ 2δ

σ )dtN

[
dt +

(
δ
σ + σ

2

)
(T − t)

√
T − t

]}

+D−1
t e−(µ−σ2+δ)(T−t)

{
N

[
−
dt −

(
δ
σ −

σ
2

)
(T − t)

√
T − t

]

−e(
2δ
σ
−σ)dtN

[
dt +

(
δ
σ −

σ
2

)
(T − t)

√
T − t

]}
, (A.20)

and

dt =
1

σ

[
log

(
αS0

Dt

)
−
(
µ− σ2

)
(T − t)

]
. (A.21)

Proof. As show in Section 3.2, the stock price at time t ≤ τ ∧ T is

St =
Et
[
πAτ∧TSτ∧T

]
πAt

=
θ + (1− θ)ηt

Et
[
θ+(1−θ)ητ∧T

Sτ∧T

]
=

1

θ
θ+(1−θ)ηtEt

[
S−1
τ∧T
]

+ (1−θ)ηt
θ+(1−θ)ηtEt

[
ητ∧T
ηt

S−1
τ∧T

]
=

1
θ

θ+(1−θ)ηtEt
[
S−1
τ∧T
]

+ (1−θ)ηt
θ+(1−θ)ηtE

B
t

[
S−1
τ∧T
] . (A.22)

The second equality follows from Doob’s Optional Sampling Theorem, while the last equality

follows from Girsanov’s Theorem.

Now consider the case when δt = δ. Taking S0 as given and imposing the condition for stock

price at the circuit breaker trigger, we have

Et
[
S−1
τ∧T
]

=
1

αS0
Pt (τ ≤ T ) + Et

[
D−1
T 1{τ>T}

]
, (A.23)

EBt
[
S−1
τ∧T
]

=
1

αS0ηt
Et
[
ητ1{τ≤T}

]
+

1

ηt
Et
[
ηTD

−1
T 1{τ>T}

]
. (A.24)

The following standard results about hitting times of Brownian motions are helpful for deriving

the expressions for the expectations in (A.23)-(A.24) (see e.g., Jeanblanc, Yor, and Chesney,

2009, chap 3). Let Zµ denote a drifted Brownian motion, Zµt = µt + Zt, with Zµ0 = 0. Let

46



T µy = inf {t ≥ 0 : Zµt = y} for y < 0. Then:

Pr
(
Tµy ≤ t

)
= N

(
y − µt√

t

)
+ e2µyN

(
y + µt√

t

)
, (A.25)

E
[
e−λT

µ
y 1{Tµy ≤t}

]
= e(µ−γ)yN

(
y − γt√

t

)
+ e(µ+γ)yN

(
y + γt√

t

)
, (A.26)

where γ =
√

2λ+ µ2.

Recall the definition of the stopping time τ in Equation (33), which simplifies in the case with

constant disagreement,

τ = inf
{
t ≥ 0 : Dt = αS0e

−(µ−σ2)(T−t)
}
. (A.27)

Through a change of variables, we can redefine τ as the first hitting time of a drifted Brownian

motion for a constant threshold. Specifically, define:

yt =
1

σ
log
(
e−(µ−σ2)tDt

)
, (A.28)

then y0 = 0, and

yt = Z
σ
2
t =

σ

2
t+ Zt. (A.29)

Moreover,

T
σ
2
d = inf {t ≥ 0 : yt = d} a.s.= τ, (A.30)

where the threshold is constant over time,

d =
1

σ
log
(
αS0e

−(µ−σ2)T
)
. (A.31)

Conditional on yt and the fact that the circuit breaker has not been triggered up to time t, the

result from (A.25) implies

Pt (τ ≤ T ) = Pt

(
T

σ
2
dt
≤ T − t

)
= N

[
dt − σ(T−t)

2√
T − t

]
+ eσdtN

[
dt + σ(T−t)

2√
T − t

]
, (A.32)

where

dt = d− yt =
1

σ

[
log

(
αS0

Dt

)
−
(
µ− σ2

)
(T − t)

]
. (A.33)

The threshold dt is normalized with respect to yt so as to start the drifted Brownian motion Z
σ2

2
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from 0 at time t. Next,

Et
[
D−1
T 1{τ>T}

]
= D−1

t e
−
(
µ−σ

2

2

)
(T−t)Et

[
e−σ(ZT−Zt)1{τ>T}

]
= D−1

t e−(µ−σ2)(T−t)EQ
t

[
1{τ>T}

]
= D−1

t e−(µ−σ2)(T−t)

{
N

[
−
dt + σ(T−t)

2√
T − t

]
− e−σdtN

[
dt − σ(T−t)

2√
T − t

]}
. (A.34)

The second equality follows from Girsanov’s Theorem, and the third equality again follows from

(A.25). Under Q, Zσt = Zt + σt is a standard Brownian motion, and

yt = −σ
2
t+ Zσt . (A.35)

Next, it follows from (A.28) and the definition of τ that

yτ = yt +
σ

2
(τ − t) + (Zτ − Zt) = d. (A.36)

Thus,

Zτ − Zt = dt −
σ

2
(τ − t). (A.37)

With these results, we can evaluate the following expectation:

Et
[
ητ1{τ≤T}

]
= Et

[
ηte

δ
σ

(Zτ−Zt)− δ2

2σ2
(τ−t)

1{τ≤T}

]
= ηte

δdt
σ Et

[
exp

(
−
(
δ

2
+

δ2

2σ2

)
(τ − t)

)
1{τ≤T}

]
= ηt

{
N

[
dt −

(
δ
σ + σ

2

)
(T − t)

√
T − t

]
+ e(σ+ 2δ

σ )dtN

[
dt +

(
δ
σ + σ

2

)
(T − t)

√
T − t

]}
,

where the last equality follows from an application of (A.26). Finally,

Et
[
ηTD

−1
T 1{τ>T}

]
= Et

[
ηte

δ
σ

(ZT−Zt)− δ2

2σ2
(T−t)D−1

t e
−
(
µ−σ

2

2

)
(T−t)−σ(ZT−Zt)

1{τ>T}

]
= ηtD

−1
t e−(µ−σ2+δ)(T−t)EQ̃

t

[
1{τ>T}

]
= ηtD

−1
t e−(µ−σ2+δ)(T−t)

{
N

[
−
dt −

(
δ
σ −

σ
2

)
(T − t)

√
T − t

]
− e(

2δ
σ
−σ)dtN

[
dt +

(
δ
σ −

σ
2

)
(T − t)

√
T − t

]}
.

The second equality follows from Girsanov’s Theorem, and the third equality follows from (A.25).
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Under Q̃, Z
σ− δ

σ
t = Zt +

(
σ − δ

σ

)
t is a standard Brownian motion, and

yt =

(
δ

σ
− σ

2

)
t+ Z

σ− δ
σ

t . (A.38)

B Numerical Solution

Now we outline the numerical algorithm used to solve the model for the ∆ > 0 case. Time interval

[0, T ] is discretized using a grid {t0, t1, ..., tn}, where t0 = 0 and tn = T . For every point ti on the

time grid we construct grids for a set of state variables which uniquely determine fundamental

value Dti , Radon-Nikodym derivative ηti and disagreement δti
21. We will denote by Θi,k = (ti,Ξk)

a tuple (which we will call a “node”) that summarizes the state of the economy at time ti and

k here indexes a particular point of the discretized state-space. We assign probabilities of the

transition Θi,k → Θi+1,j for all i, j, k to match expected value and dispersion of one-step changes

in state variables with their continuous time counterparts, namely, drifts and diffusions.

Using this structure we can solve for the equilibrium in complete markets in the following way.

1. For time point tn = T : use equations (8a)—(9) to calculate consumption allocations and

state-price density in all nodes Θn,k; set stock price equal to DT .

2. For time point tn−1: use transition probabilities and the fact that πtSt, πtŴ
A
t , πt are

martingales to calculate the state-price density, stock price and wealth of agent A in nodes

Θn−1,k for all k.

3. Proceding backwards repeat the above step n− 1 times to obtain the state-price density,

stock price and wealth of agent A in every point Θi,k.

4. Using transition probabilities calculate drift and diffusion of the stock price process and

portfolio holdings of each agent.

In the case with circuit breakers we want to use the algorithm similar to the one above

21One obvious potential choice of state variables is Dt, ηt and δt. However, depending on specific
assumptions of the model the state-space dimensionality can be reduced, e.g. in the case of constant
disagreement one need to keep track of t and Dt only since they uniquely determine disagreement δt and
the Radon-Nikodym derivative.
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initialized it at time [τ ∧ T ] instead of time T . The problem is that τ is endogenous itself. The

following steps show how we solve the problem:

1. In every node Θi,k: pick a grid for ωti = WA
ti /(W

A
ti +WB

ti ) spanning the interval [0, 1] and

solve the problem (21)—(22) for every point of the grid22. Solution to this problem yields

“stop” prices Si,k,j and marginal utilities of wealth of agents which we will denote by V A′
i,k,j

and V B′
i,k,j , where j indexes grid points for ωti . Using the planner’s problem (24) first order

condtion we can define,

λi,k,j =
ηV B′

i,k,j

V A′
i,k,j + ηV B′

i,k,j

.

2. Now pick an initial guess for the planner’s weight λg and price threshold S. In every node

Θi,k using the values λi,k,j and Si,k,j from the previous step find the “stop” price Si,k in

point λg by interpolation. If Si,k ≤ S then the node Θi,k will be either a “stop” node or a

node that will never be reached in the equilibrium with circuit breakers. For “stop” nodes

we define stock price to be equal to Si,k and state-price density to be proportional to V A′
i,k

(which is also obtained by interpolation of V A′
i,k,j in point λ).

The above procedure effectively defines the stopping time rule τ corresponding to the economy

with threshold S and planner’s weight λg. Now we can use the backward procedure described for

the case of complete markets to obtain the state-price density, stock price and wealth of every

agent in every node Θi,k. Note that initial wealth share of agent A in this economy will be different

from both λg and ω. The final step is to find λg and S so that initial wealth share in the resulting

economy is equal to ω and S = (1−α)S0. This can be done using the standard bisection method.

22In equilibrium given initial wealth distribution the value WA
ti /(W

A
ti +WB

ti ) is uniquely pinned down by
the Radon-Nikodym derivative ηti and fundamental value Dti . Since this relationship is endogenous and is
not known before the model is solved our algorithm requires solving the problem for a wide range of wealth
distributions.
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