Financial Engineering

Course Description

This course provides an introduction to financial engineering. The course covers the following topics: asset pricing theory and its applications, stochastic calculus, financial optimization, market equilibrium, market frictions, dynamic trading strategies, and risk management.

Pre-requisites

Prerequisites include 15.401 or 15.415. In addition to formal prerequisites, this course assumes solid background in calculus, probability, statistics, and programming at the advanced undergraduate level. It also contains a substantial coding component. Course materials and review sessions will primarily use R. Students are encouraged but not required to use R for assignments and projects.

Class Time and Location

Fall 2017, 2:30-4PM, Monday and Wednesday, E62-223.

Lecture Notes

Lecture notes will be available on Stellar (http://stellar.mit.edu) before each class. Additional readings will be suggested for each topic.

Reference books

Course Requirements and Grading

Course requirements include class attendance and participation, homework assignments, a midterm exam and a final exam. The following weighting scheme will be used to determine the course grade:
10% Class participation
25% Assignments
20% Midterm exam
45% Final exam

Recitations

The TA will hold regular recitations to review class material and assignments and to present additional exercises.

Instructors

Leonid Kogan, E62-636, phone: (617) 253-2289, email: lkogan@mit.edu
Jiang Wang, E62-614, phone: (617) 253-2632, email: wangj@mit.edu

Administrative Assistants

Jenn Alton, E62-671, phone: (617) 253-3386, email: jalton@mit.edu (Kogan and Wang)

Teaching Assistant

Maarten Meeuwis, email: meeuwis@mit.edu
Course Outline
(This version: September 6, 2017)

H1: Wang –

1. Asset Pricing Theory and Applications
 - Stochastic modeling in finance
 - State-space model
 - Securities market
 - Trading strategies
 - Complete markets and state prices
 - Arbitrage
 - Monte Carlo simulations
 - Arbitrage pricing
 - Fundamental Theory of Asset Pricing (FTAP)
 - Pricing by arbitrage
 - State price density (SPD)
 - Risk-neutral pricing
 - Relating physical and risk-neutral probabilities
 - Martingales
 - Applications
 - Return, risk and dynamic trading
 - Derivative pricing, hedging and replication
 - Stochastic volatility
 - Credit risk and pricing
 - Interest rate models
 - Linear factor models

2. Stochastic Calculus and Financial Modeling
 - Brownian motion
 - Stochastic calculus
 - Financial modeling in continuous-time
• Dynamic trading, replication and hedging in continuous-time
• FTAP in continuous-time
• Risk-neutral pricing in continuous-time
• Applications
 – Black-Scholes-Merton model for option pricing
 – Arbitrage pricing
 – Interest rate models

3. Financial Optimization

• Expected utility theory
• Consumption-saving/portfolio decisions
• Optimal consumption-portfolio choice under complete markets
• Optimal consumption-portfolio decision in continuous time
• Simulation approach to dynamic optimization
• Optimization with constraints
• Applications
 – Dynamic portfolio choice
 – Asset-liability management
 – Trading strategies with constraints: margin/leverage, draw-downs

Midterm Exam: Monday, October 30, 2017 (in class)

H2: Kogan –

4. Market Equilibrium in Frictionless Markets

• Equilibrium analysis
• Equilibrium asset-pricing models
 – Capital Asset Pricing Model (CAPM)
 – Intertemporal Capital Asset Pricing Model (ICAPM)
 – Consumption-based Capital Asset Pricing Model (CCAPM)
• Applications
 – Fundamental determinants of interest rates
 – Equilibrium dynamics of wealth distribution and return predictability

5. Equilibrium Models with Frictions

• Asymmetric information
 – Rational expectations and market efficiency: Grossman-Stiglitz model
 – Market micro-structure: Kyle model, Glosten-Milgrom model

• Incomplete markets and constraints
 – Liquidity risk
 – Limits to arbitrage
 – Background risk
 – Models with disagreement and mispricing

6. Dynamic Strategies and Market Frictions

• Dynamic programming

• Numerical approach to dynamic programming: finite-difference and simulation methods

• Applications:
 – Optimal order execution
 – Markov Chain Monte Carlo for derivatives with early exercise
 – Dynamic portfolio strategies with margin constraints and liquidity risk
 – Robust optimization

• Risk management

Final Exam (MIT Final Exam schedule)