

Presentation Outline

- 1. Introduction to Kanchan Filter (Arsenic Biosand Filter)
- 2. Arsenic, Iron, & Bacteria Removal Mechanisms
- 3. Four Different Filter Configurations
- 4. Filter Operations & Maintenance
- 5. Technical Performance
- 6. Implementational Issues
- 7. Cost
- 8. Conclusions
- 9. Questions and Discussions

Biosand Filter

- First developed by a Dr. David Manz of the University of Calgary in Canada
- Based on slow sand filter technology for intermittent use
- · Intended for bacteria removal from drinking water
- Made with easily available materials: concrete or plastic container, PVC pipe, sand, gravel, and lid
- · Adequate flow rate for a large family
- No chemical additives
- Easy to operate and clean
- Require 2 to 3 weeks to reach optimum removal of bacteria & viruses

Arsenic Biosand Filter (Kanchan Filter)

• Developed by <u>Massachusetts Institute of</u> <u>Technology (MIT), Environment & Public</u> <u>Health Organization (ENPHO), and Rural Water</u> <u>Supply and Sanitation Support Programme</u> (RWSSSP)

An improvement on the former Biosand Filter

• Intended for bacteria and arsenic removal

• Made with easily available materials: concrete or plastic container, PVC pipe, sand, gravel, **iron nails**, and lid

- Adequate flow rate for a large family
- No chemical additives
- Easy to operate and clean
- Require 2 to 3 weeks to reach optimum removal of bacteria & viruses

Immediate arsenic removal after installation

Filter Cleaning/ Maintenance

Replace the basin and add more water. Repeat the stirring process for two additional time.

> Discard the turbid water in a dug hole with some cow dung in it

Now the filter can be used again

Filter Performance

• Currently more than 800 filters are in operation

• More than 500 were distributed by NRCS, about 100 by Fund Board, about 200 by RWSSSP

 Filters were distributed starting from September 2002 until today

• We have monitored more than 300 filters from February - April 2004 on arsenic and iron removal

	9/ 2%	
% of Filtered water	37.270	
0 to 0.3 ppm	80.5%	
0.3 to 1 ppm	18.2%	
1 + ppm	2.2%	
Average Raw Water Conc	4.4 ppm	

Filter Performance: Bacteria

• Insufficient bacteria removal test on the Kanchan Filter for statistically significant results

• Our study (7 filters) showed bacteria removal of up to 100% after the filter was in operation for about 2 – 3 months

• Previous studies on the Biosand Filter in Canada, Nicaragua, Dominican Republic, and U.S.A. showed 90 to 99+% bacteria removal

Te	chnica	l Perfo Confi	orman gurati	ce of 4 ons	Filter
	Concrete Square	Concrete Round	Plastic Hilltake	Plastic Gem505	
Arsenic Removal		Averag	Hiltake		
Iron Removal	Average 94%				The sentempt
Bacteria Removal	Under investigation				A start
pH Change	Increase b	y an average			
Flow Rate (Liters per hour)	17	15	25	15	
Flow Rate (Liters per hour)	17	15	25	15	

Implementation Issues Comparison of 4 Filter Configurations

	Concrete Square	Concrete Round	Plastic Hilltake	Plastic Gem505
Operation	Easy	Easy	Easy	Easy
Maintenance	Simple	Simple	Simple	Simple
Labour	Require trained Mistri	Require trained Mistri	Require trained technician	Require trained technician
Production rate	One filter per mold per day	One filter per mold per day	Many filters	Many filters
Transportation	Very heavy	Very heavy	Somewhat	Light
Aesthetic	Good	Good	Looks like a	Good

All filters are easy to operate and maintain

The concrete filter is very heavy (100+ kg) thus transportation can be difficult

The Plastic Hilltake filters may look like a trash bin therefore not attractive

Cost Comparison	of 4 Filter	Configurations
------------------------	-------------	----------------

	Concrete Square	Concrete Round	Plastic Hilltake	Plastic Gem505
Container and Lid	445	395	1300	405
Basin	250	250	75	75
Piping System	98	98	174	133
Sand & Gravel	3	3	5	3
Iron Nails 5 kg	350	350	350	350
Transportation	53	48	91	49
Labour	210	210	68	54
Documentation	25	25	25	25
Tools	223	223	54	54
Total Cost	1657	1607	2142	1149

Comparison	Summary
------------	---------

	Concrete Square	Concrete Round	Plastic Hilltake	Plastic Gem505
Technical Performance	Excellent	Excellent	Excellent	Excellent
Easy to Implement	Somewhat	Somewhat	Easy	Easy
Cost	Cheap	Cheap	Relatively	Cheapest
Recommended for Wide-scale Implementation?	Maybe	Maybe	Maybe	YES

Conclusions

• The Kanchan Filter (Arsenic Biosand Filter) is an improvement upon the proven Biosand Filter technology

- The Kanchan Filter can effectively remove arsenic (94%) and iron (94%)
- Of the 4 different configurations, the Gem505 shows the most promise
- The construction, operation, and maintenance of the filter is simple

• The filter cost is estimated to be about 1100-1200 Rs

In Nepal:

- Environment and Public Health
- Organization (ENPHO), Kathmandu
- Rural Water Supply and Sanitation Support Programme (RWSSSP), Butwal
- Nepal Red Cross Society (NRCS)
- Rural Water Supply and Sanitation
- Fund Development Board (RWSSFDB)
- Department of Education (DOE)
- Department of Water Supply &

Sewerage

UNICEF Nepal

Internationally:

- The World Bank
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Boston, USA
- MIT IDEAS Competition and Lemelson Foundation
- Japanese Red Cross Soceity (JRCS)
- University of Calgary, Canada