Fracture flow simulation using a finite difference lattice Boltzmann method

I. Kim and W. B. Lindquist
Department of Applied Mathematics and Statistics
University at Stony Brook
Stony Brook, NY 11794-3600"

W. B. Durham
Lawrence Livermore National Laboratory
Livermore, CA 94550-92341
(Dated: November 7, 2002)

We present numerical computations for single phase flow through 3D digitized rock fractures
under varied simulated confining pressures appropriate to midcrustal depths. The computations are
performed using a finite difference, lattice Boltzmann method and thus simulate Navier-Stokes flow.
The digitized fracture data sets come from profiled elevations taken on tensile induced fractures
in Harcourt granite. Numerical predictions of fracture permeability are compared with laboratory

measurements performed on the same fractures.

Use of the finite difference lattice Boltzmann

method allows computation on nonuniform grid spacing, enabling accurate resolution across the
aperture width without extensive refinement in the other two directions.

PACS numbers: 47.55.Mh, 46.50.4+a, 47.11.4j

I. INTRODUCTION

Fluid flow in fractured rock is a subject of primary
importance in petroleum engineering and hydrogeology.
In the simplest approximation, single phase fluid flow
through a fracture can be described by Poiseuille flow
between smooth, parallel plates of separation (aperture
width) h. In the parallel plate model fluid flow obeys
Darcy’s law[1],

o=2*yp 1)
W

Our notation is standard: @ is the volumetric flow rate;
the outlet flow area is A = Lyh; p is the fluid viscosity; k

is the channel permeability; and VP is the fluid pressure
gradient driving the flow. For parallel plate flow

k= h?/12. (2)

A fair amount of investigation has centered on devel-
oping a modification of (2) which would be predictive
for flow in a real fracture; that is to say, one which ac-
counts for the irregular surface profiles, alignment and
partial contact of real fractures. Early measurements on
smooth and rough non-contacting surfaces were reviewed
by Witherspoon et al.[2] leading to the prediction

k= h?/(12f), 3)

where h is now to be interpreted as mean aperture width
and the surface roughness factor f varied from 1.04 to
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1.65. Previously, Lomize [3] had proposed the experi-
mental form

f=1+6(5hn/h)*"2, (4)

where dh is a measure of the surface roughness (asperite
heights). Walsh and Brace [4] have proposed f = T2
where T is a mean fracture tortuosity (ratio of actual to
apparent path lengths). Notable work by Brown [5-7]
provided a statistical quantification of fracture surfaces.
More modern predictions, such as that by Zimmerman
and Bodvarson [8],

h? 30}
k‘ﬁ(“ﬁ) (1-20), (5)

incorporate higher order statistical moment measures.
Here oy, is the standard deviation of the aperture width,
and C is the fractional contact area between the two sur-
faces. Among other models, we mention that of Drazer
and Koplik [9] which is based upon two dimensional lat-
tice Boltzmann simulations in channels between artifi-
cially generated rough surfaces having small height vari-
ation.

Our interest is in numerical computation of real frac-
ture flow, specifically utilizing the lattice Boltzmann
(LB) method to approximate Navier-Stokes flow. Among
the earliest numerical computations of fracture flow were
those by Brown and collaborators [6, 10] using finite dif-
ference solutions to Reynolds equation. Ge [11] has re-
cently introduced a general governing equation for fluid
flow in a single fracture bounded by rough surfaces. The
governing equation reduces to Reynolds equation if vari-
ations in tortuosity and aperture are small. Verberg and
Ladd [12] have applied three dimensional LB computa-
tions to a digitized geometry obtained by profiling real
fractures. There however, the computed flow field was



used primarily to compare the performance of a new
boundary condition.

To our knowledge, no LB computations on fracture
flow have been compared with permeability measure-
ments from real data sets. Our purpose in this paper is
to examine the performance of LB numerical simulation
for permeability computation and to compare the results
with experimental measurements taken on the same frac-
ture samples upon which the digitized computations are
based. Both laboratory and computational results were
obtained at several values of mean aperture.

Our underlying physical interest is the behavior of rock
fractures at midcrustal depths for which evidence [13] ex-
ists of fracture permeabilities several orders of magnitude
higher than bulk permeability of most unfractured rock.
Durham et al.[14, 15] have profiled laboratory-produced
fracture surfaces and conducted permeability studies [15]
under various confining pressures (and hence mean aper-
tures) appropriate to midcrustal depths. Two of these
profiled data sets have been used in the numerical flow
computations considered in this study.

The lattice Boltzmann method used in our computa-
tions is presented in §II. Parallel plate validation studies
are given in §III. A description of the two data sets uti-
lized in this study is presented in §IV. Parallelization
of the LB scheme is addressed in §V. Results from the
LB simulations and comparison with laboratory measure-
ments are presented in §VI. Discussion follows in §VII.

II. THE FINITE DIFFERENCE LATTICE
BOLTZMANN SCHEME

The lattice Boltzmann (LB) method has been used as a
numerical method for simulating Navier-Stokes flow since
its introduction in 1988 [16]. Attractive features of the
method include its handling of complicated geometries,
appropriate for flow through porous media where wall
boundaries are extremely irregular; the localization and
ease of implementation of the computational scheme; and
relative ease of parallelization, an added attraction for
massive computations. On the negative side are the ex-
treme numbers of iterations typically needed to compute
steady state conditions; difficulties in implementing some
types of boundary conditions; and the limited range of
physical and chemical terms that can be modeled.

The LB method [16] is a finite difference method for
solving the Boltzmann equation for a discrete velocity
distribution,

3] by -e;

a_'l;lz+ei'vfi:Qi+Wa i=0,..,N—-1. (6)
fi(z,t), e;, and Q;(x,t) are, respectively, the particle dis-
tribution function, the velocity, and the collision oper-
ator in the ith direction at each space-time point z,t.
N is the number of discrete directions considered in the
model. bs(z,t) is an external body force vector that will
be used to simulate a pressure gradient to drive fluid

motion; ¢ denotes particle speed; and N, denotes the
number of the discrete directions ¢ that have non-zero
projection onto by. The LB method uses a BGK [17] re-
laxation term instead of a full nonlinear collision opera-
tor, specifically the single-time relaxation approximation,
O = —(fi—f;{%) /7. Here f{(z,t) is the local equilibrium
population distribution and 7 is the relaxation time. The
first several velocity moments of the equilibrium popula-
tion distribution must match those of a Maxwellian dis-
tribution to ensure macroscopic Navier-Stokes behavior
[18]. From the particle distribution functions and veloci-
ties, macroscopic values for density p and momentum are
defined by

N-1

p = Z fi, (7)
N

pu = fies. (8)
=0

In 3D, we utilize N = 27 directions (the so-called
3D27Q model [19].) In this model the discrete veloci-
ties are

¢(0,0,0), i=0,
¢(£1,0,0),¢(0,+£1,0),
o ¢(0,0,£1), i=1,..86, 9
© = ¢(£1,+1,0),c(+1,0,+1), )
c(0,£1,%1), i=7,..,18,
¢ (&1, 41, £1), i=19,..,26.

The equilibrium particle distribution function is

o =cip (14 20 Ne 0,
i=0,.,26, (10)
where
8/27, i=0,
= T (1)

1/216, i = 19, ..., 26.
Starting with a first order, upwind discretization of (6),

flz+ e At t + At) = f(z,t) + Qi + bs(z,t) - €;/(Npc?),
i=0,..,N—112)

a Chapman-Enskog expansion can be used [18] to show
that the macroscopic behavior of this isothermal model
produces the Navier-Stokes equations, plus terms of order
M2,

Oip + Oapua = O(Mz)a (13)
pPOiuq + pugdpug —Vp + 10s(0pua + Oxup)
+bs + O(M?), (14)



with viscosity p, Mach number M, and Reynolds number
R, given by

po= (1-1/2)pc, (15)
M = Ules, (16)
R, = pUL UL (17)

PR VF) P

U and L are, respectively, a macroscopic speed and length
scale characteristic of the flow. The sound speed for the
model is ¢; = c/\/§

Note that (12) restricts Azq = e;nAt, @ = 1,2,3,
implying a uniform spatial grid spacing in all dimensions.
For higher order accuracy, and to enable different grid
spacing in each dimension, we utilize a second order finite
difference lattice Boltzmann (FDLB) solver [20] in which
central differencing is used for the spatial derivatives in
the convective term,

ﬂngz

Oz,

fxo + Azy,t) — f(xqg — Az, t)
2Az, ’
a=1,2,3. (18)

producing the spatial discretization

a ’i Cc c c 1 e
6_{5 = —e; - (D{fi, D5fi, D5 fi) — =(fi — fi%)
T
bf - €5
e (19

The time discretization is done via second order Runge-
Kutta,

k? = AtG; (fz (matn)atn)a (20)
Fil tusn) = fileyta) + 5K + KD, (22

where G;(f;,t) denotes the RHS of (19). A Chapman-
Enskog expansion for (22) replicates [19] the results of
(13) - (17), with the replacement (7 — 1/2) — 7.

Initial conditions on the f; can be set by requiring
fi(z,0) = f1(p(x,0),u(z,0)) using (10). With an ini-
tial velocity v = 0, (10) simplifies to partitioning the
density amongst the N discrete directions at each point
according to the weights C;. Boundary conditions are
generally more problematic since the fundamental quan-
tities f; in (6) are not the same as the macroscopic vari-
ables in which boundary conditions are usually formu-
lated. Three boundary conditions concern us in our com-
putations, the solid rock wall defining the upper and
lower limits of the fracture (the z-direction); the inlet-
outlet boundary conditions in the flow direction (the -
direction); and the flow seal restraining the fracture flow
in the y-direction.

Periodic boundary conditions are the easiest to im-
plement in LB calculations. We therefore use periodic
boundary conditions on the y-direction endplanes of the

fracture (perpendicular to the flow direction) to approxi-
mate the flow seal. The body force term, used to mimic a
pressure gradient by = VP driving the flow, obviates the
need to explicitly set separate pressures at inlet and out-
let. Thus periodic boundary conditions were also used
for the inlet-outlet. Using periodic boundary conditions
creates a problem when simulating real fractures, since
geometries of the fracture at the two ends involved will
not be in alignment. Our solution is to double the frac-
ture in each periodic direction by attaching a mirror im-
age of the fracture at one end. The new fracture is now
twice the length, but with geometrically matching ends.
Since we impose periodic boundary conditions in the z-
and y-directions, this expands the computational volume
by a factor of 4; clearly an expensive option in terms of
memory and CPU time. We address this problem using
parallel computation.

The implementation of no-slip wall-boundary condi-
tions has been the subject of some discussion. The
bounce-back scheme is one of the most popular imple-
mentations for complex wall geometries; when streaming
to a wall node, the particle distribution scatters back to
the node whence it came. Bounce-back is locally first
order accuracy at boundaries [21]. A number of other
schemes have been proposed [22-25]. We have found
these schemes to be complicated to implement for irreg-
ularly shaped boundaries and have instead implemented
the following scheme for updating wall boundary nodes
and enforcing no-slip.

1) An intermediate solution f;(zy,t+ At) is generated
at a wall boundary point z; using (20) - (22) with the
exception that any second order derivative D% in G;(-, )
is replaced by a first order upwind derivative

of f(xa + APz, t) — f(a:aat)
Oz, Avpy, ’
a=1,23, (23)

~ DyP =

whenever a node internal to the wall would be required
by the central difference formula (18). Nodes internal
to the wall are therefore avoided in implementing spatial
differencing.

2) Final update values for each wall-boundary node are

then computed as appropriate averages of f values;

Ji(zy,t + At) = fi(@p,t + At)
= (filmp, t + AL) + fi(zp, t + At))/24)

where % denotes the direction opposite to i. This ensures
explicit enforcement of no-slip momentum conditions at
wall-boundary nodes.

We have not ascertained the overall order of accuracy
of this mixed first and second order no-slip boundary con-
dition. Using the validation computations described in
the next section, we have ascertained that the boundary
conditions produce more accurate computation of flow
field in the vicinity of the wall boundary than simple
bounce-back.
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FIG. 1: The geometry of parallel plates, of separation L.,
with a rectangular constrictive slot of separation h.

III. PARALLEL PLATE VALIDATION STUDIES

We have validated our FDLB solver on a slight vari-
ation of a standard problem; we consider steady state
Poiseuille flow between parallel plates separated by dis-
tance L, with the addition of a rectangular neck of width
h placed in the flow path. The channel geometry is shown
in Figure 1. Flow is induced by a constant body force
in the z-direction; periodic boundary conditions are used
for the inlet/outlet- and y-directions; the wall boundary
condition is used at the plate surfaces.

The analytic solution (uz(z),0,0) for the velocity is
known for the case h = L.,

z z
= 4— 11— — L 2
w) = (1= ), zeln] @)

where Upmq, = L2V P/(81).

Figure 2 compares the prediction of (25) with the com-
putational result for u,(z = 5,y = 5, 2), for a fluid having
¢ =1 mm/sec and density p = 1072 gm/mm? driven by
a pressure gradient VP = 107% gm/mm-sec?. Two fine
grid computations are shown, for R, = 0.1 and R, = 1.
(The computational result is virtually independent of the
x,y coordinate of the point of comparison.)

The computation was declared to have reached steady
state when the relative change in the Ls norm of the
timestep velocity difference was less than input tolerance,

Vo, lu(z,t + At) — u(z, t)?
> lu(z,t)?

These validation computations were done in double pre-
cision; the value of tol was set to 1078,

Comparisons between computed and analytic predic-
tions of parallel plate permeability are shown in Figure 3.
The solid line is the analytic prediction (2) and points
marked ‘x’ are computed results. Here the computa-
tional domain is L, = L, = 10, and L, = h is vari-
able; p = 1072 gm/mm?®, 7 = 1 sec, ¢ = 1 mm/sec,

< tol. (26)
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FIG. 2: Comparison of analytic and FDLB computation for
the steady state Poiseuille flow between parallel plates. The
computational geometry is Ly = Ly = 10 mm, L, = 1 mm,;
the grid spacings are A, = Ay =1 mm, A, =0.01 mm.
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FIG. 3: Permeability versus the smallest channel width be-
tween parallel plates. The solid curve represents the analyti-
cal, parallel plate solution, with separation h. 'x’ represents
computed results for parallel plates of separation h (no flow
constriction). Circular points represent computed results for
parallel plate of separation L, with a restricted neck of width
h<L,.

and VP = 107® gm/mm-sec?. The agreement is excel-
lent, given the coarseness of the grid, Az = Ay = 1,
Az =10.2.

We now consider parallel plate flow through a constric-
tive neck h < L,. Intuitively, for incompressible flow,
the permeability should be dominated completely by the
neck width h. This is confirmed in Figure 3 which also
plots (open and filled circles) permeabilities computed
for flows through constrictive necks of variable widths h.
The permeability through the constrictive parallel plate
geometry is determined solely by the neck width h, the
resultant permeability is that equivalent to flow through
an unconstricted parallel plate of width h = L,.

An interesting steady state solution is obtained when
the constriction is completely closed off. Computed ve-
locity and density fields are shown in Figure 4 for the
cases h = L, h = L,/3, and h = 0. If there is no con-
striction (h = L), the steady state density is constant,
and the flow modeled is effectively incompressible. How-



h=0

FIG. 4: Mid-fracture transects of the (left) velocity field pro-
jected onto the xzz-plane and (right) density for steady state
flow though constrictive neck geometry of Figure 1. The do-
main considered is 10 x 10 x 9 mm?®. The illustrated compu-
tations are on a coarse grid Az = Ay = Az = 1.

ever, in the presence of flow constrictions (h = L,/3),
density gradients appear. These density gradients arise
in direct response to the body force used to drive the
flow.

In the case in which the constriction is total, rather
than zero flow (which would be expected when attempt-
ing to drive incompressible fluid under pressure gradient
into a closed fracture) the numerical solution shows two
counter-rotating vortices. The rotating vortices set up a
net z-component of flux as summarized in the last row
of Table I. In the case of complete flow constriction, the
density gradients are achieved through the establishment
of counter-rotating vortices. The presence of the density
gradient is presumably due to the O(M?) compressibility

TABLE I: Total flux (mm?®/sec) through the constrictive plate
cross section as a function of distance z along the flow direc-
tion.

h z (mm)

(mm) ‘ 0 2 4 5 6 8 10
9 9.896 9.896 9.896 9.896 9.896 9.896 9.896
3 1.146 1.097 1.106 1.161 1.222 1.201 1.146
0 2.4e-5 1.48e-4 0.0 0.0 0.0 2.37e-4 2.4e-5

error terms in (13), (14) by which the LB method devi-
ates from incompressible Navier-Stokes flow. As long as
the constrictive channel is open, the O(M?) terms remain
“small”. When through-flow is impossible, the O(M?)
terms become dominant and drive the flow into a solu-
tion regime incorrect for incompressible flow.

IV. PROFILED HARCOURT GRANITE
FRACTURES

Laboratory measured geometrical and permeability
data were obtained for a fracture in Harcourt granite
(HG), a medium to coarse grained granite from South
Australia. A single tensile fracture was produced us-
ing the so-called “Brazilian” technique [26]. The sam-
ple consisted of a cylindrical core fractured along its axis
(z-direction). The core was approximately 140 mm in
diameter and 164 mm in length. We designate the z-
direction to be along the core axis, and the z direction to
be “perpendicular” to the fracture surfaces. A 116 x 128
mm? area of the fracture was profiled at 1 mm spacing
in both horizontal (z,y) directions [27]. Both upper and
lower faces of the fracture were profiled with horizon-
tal registration between corresponding points on the two
surfaces good to within 0.05 mm. Profile measurements
(z direction) are accurate to within 8 ym. We refer to
this data set as the mated configuration, HG3.

A second set of geometrical and permeability data were
measured on the same rock, but with the two rock halves
shifted with respect to one another by 0.5 mm in the x
(flow) direction. We refer to this as the offset configu-
ration HG3F. Note that the offset was achieved not by
sliding, but by separating the mated rock halves, displac-
ing one of them 0.5 mm in the axial direction, and then
placing them back together. The profiles in the offset
configuration were 111 x 128 mm?, profiled again at 1
mm spacing.

Consider an arbitrary reference plane z = 0. The up-
per (+) and lower (—) surfaces of the fracture are de-
scribed by

Z+($,y) = hf)'— - h+($,y), (27)
z7(x,y) = hg +h™(2,y).

Here h{ and hg are z-values relative to which At and
h~ are measured. The subtraction/addition asymmetry
in the definitions of z* and 2~ arises from a difference



in sign convention for At and h™. hT is defined to be
positive in the downward direction; h™ is defined to be
positive in the upward direction. This convention derives
from the laboratory profilometry used to measure A+ and
h~. In profilometry, the two rock halves are laid open,
side by side, fracture surface upward, and profiles are
taken on both halves. In this profilometry configuration,
ht and h™ are defined with consistent signs. The fracture
aperture is

a(mayvA) = z+(a:,y)—z_(a:,y),
= (hg —ho) — (A" +h7),
= A-2z(z,y), (28)

where the definitions of A and z are clear from context.

Profilometry directly measures h~(z,y) and h*(z,y),
or equivalently, their sum z(z,y). Determination of the
constant A needed to obtain the true, unconfined, frac-
ture aperture a(-) requires careful experimental registra-
tion of the two halves of the fracture when they are sepa-
rated for profilometry, accurate measurements of the in-
creased diameter induced in the core after fracturing due
to relaxation of stresses and to near-surface inelastic de-
formation associated with fracturing, and estimation pro-
cedures to account for gaps induced by small amounts of
loose shattered material. Such accounting for the profiled
configuration HG3 indicates a value of A = 0.19 &+ 0.03
mm.

We are interested in computationally varying the aper-
ture. From (28) we can define a variable mathematical
aperture

a(w,y;A,t)EA—t—z(a:,y). (29)

The “push-down”, ¢, is an arbitrary parameter by which
we can artificially widen or contract the aperture of the
fracture. (It mimics the variable confining pressure used
in laboratory experiments to change the aperture width.)
Note that as ¢ increases from zero, sections of the lower
and upper surfaces begin to overlap, simulating contact.
The overlap is unphysical; in real rock, under increasing
confining pressure, areas of contact between the two sur-
faces will locally deform in a complex manner. We ignore
the presence of such deformation in our study. To com-
pensate for overlapping portions of the surfaces under
change in A, we redefine the variable aperture a as

) _ [ A—t—2(z,y), f A—t—2(z,y) >0,
a(z,y; A, ) = { 0, otherwise.
(30)

From now on we shall refer to a(z,y; A,t) simply as the
aperture of our model fracture. We denote the mean
aperture of a(-) as a,, = (a(z,y; A,t)), where the average
is over all profiling locations z,y. We define the fractional
contact area C' between the upper and lower surfaces of
our model fracture as the fraction of sites z,y for which
a(z,y; A,t) = 0 in (30). For brevity, we shall refer to C
as the contact area.

—HG3
-~ HG3F

contact area

05 10
mean aperture (mm)

FIG. 5: Contact area C as a function of mean aperture for the
two profiled configurations, HG3 (mated) and HG3F (offset).

TABLE II: Bounding intervals determined for percolation
threshold values, C; and Cy, of contact area in z- and y-
directions respectively.

C, C,
HG3 [0.441,0.467] [0.623,0.646]
HG3F [0.560,0.588] [0.430,0.463]

Figure 5 plots the contact area C' between the two sur-
faces as a function of mean aperture a,, for both mated
and offset configurations. It is important to note that the
C(ay,) relationship in Figure 5 is independent of choice
of A. (If A is changed, then the push-down ¢ required
to achieve a specific value of a,, will also change, result-
ing in the same a,,,C point in Figure 5 .) The C(a.,)
relationship is solely a property of the measured profile
z(z,y).

Our interest is in computing permeability as a function
of mean aperture and comparing with laboratory mea-
surements. Consequently it is useful to know at what
contact area, complete loss of flow in the fracture can be
expected. (This is referred to as the percolation thresh-
old of the fracture.)

The percolation threshold was estimated using medial
axis analysis [28, 29]. Briefly, for each value of C, the me-
dial axis transform was used to trace all possible paths
through the aperture connecting “inlet” to “outlet”. If
any inlet-to-outlet connection existed, the fracture was
deemed capable of supporting flow. Using a bisection
search on C, bounding values on the percolation thresh-
old contact area for flows separately in the z- and y-
directions were obtained as shown in Table. II.

Permeabilities were experimentally measured for HG3
and HG3F under steady state flow conditions using tap
water as a fluid. All measurements were made at room
temperature. The outlet pressure was fixed at 0.1 MPa (1
atm). For the mated fracture, HG3, confining pressures
varied from 0.21 MPa to 80 MPa, and pressure differences
driving the flow varied from 5 KPa at the lowest confining
pressure, to 10 MPa at the highest. For the offset frac-



ture, HG3F, confining pressures varied from 0.1 MPa to
160 MPa, and pressure differences driving the flow varied
from 120 Pa at the lowest confining pressure, to 4.4 KPa
at the highest. Permeability was determined from (1) us-
ing the cross sectional area of the cylindrical core face at
the outlet. The laboratory permeability measurements
on a fracture were performed as a sequence of measure-
ments with confining pressure increasing for each new
data point. Plastic strain and structural damage pre-
clude lowering confining pressure to check reproducibil-
ity. Typically each permeability measurement involved
measuring the time to flow 25 mL of water through the
fracture.

V. PARALLELIZATION

With the data profiled at 1 mm spacing in the z- and
y-directions, interpolation must be used if a finer numer-
ical horizontal grid spacing is desired. We avoid inter-
polation and use Az = Ay = 1.0 mm. In the case of
the mated configuration (HG3), when the contact area
C = 0, the maximum value of the aperture profile is
max, y 2(2,y) = 12.09 mm and the mean aperture is 0.94
mm. At a near-percolation threshold value of C' = 0.5,
while the mean aperture of 0.09 mm is now much smaller,
Zmaz = 11.29 mm is still large. Thus with a grid spacing
of Az = 0.05 mm, the numerical grid size will require 11
to 14 million nodes. (Recall the doubling of the fracture
in the z- and y-directions to implement periodic bound-
ary conditions.) As a compromise between memory re-
quirement, CPU time, and communication cost, we store
4 single precision floats f{?(-,tn), fi(:,tn), fi(-, tn + At)
from (21), and f;(, tp+1)) for each link of each node. For
3D27Q, we therefore store 432 bytes of information per
node. Thus a naive computation gives memory require-
ments of 6 GBytes for a computation on a 232 x 256 x 243
node grid. A major savings in memory is accomplished
by assigning no storage to any node lying outside of the
open aperture region (with an exception for wall bound-
ary nodes). Depending on the contact area, this reduces
memory requirements to 2—16% of the naive value. Even
with this reduction, parallel implementation is required.
Parallelization was done using non-overlapping, “bread-
slice”, domain decomposition in the flow direction. Load
balancing was achieved by adjusting the widths of indi-
vidual domain slices so that the each contained approx-
imately the same number of aperture nodes. Message
passing was done with the MPI interface. Computations
were performed on the Stony Brook Galaxy, a Beowolf
class cluster having 256 Pentium processors, each proces-
sor having 512 MBytes of RAM. Parallel performance of
the FDLB implementation is discussed in [29]. Typically,
a simulation required nearly 340 hours using 8 Pentium
II processors to achieve steady state in ~ 10° iterations.
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FIG. 6: Comparison between computed (FDLBM), experi-
mental (HG3), parallel plate model, and equation (31) values
of permeability versus mean aperture for the mated Harcourt
granite fracture.

VI. NUMERICAL RESULTS

In parallel with the laboratory permeability measure-
ments performed on HG3 and HG3F, we numerically
compute the steady state flow of water (u = 0.001 Pa-
sec, p = 0.001 g/mm?) through the fracture. The particle
speed ¢ required in the LB formulation was chosen as the
average velocity of the water measured in the correspond-
ing experiment. While pressure gradients were not avail-
able for all experimental measurements, pressure drops
across the cylinder core were measured for the lowest
and highest confining pressure runs. Pressure gradients
for intermediate confining pressures were approximated
using linear interpolation.

Figure 6 summarizes the comparison between the com-
puted and measured values of permeability versus mean
aperture for the mated fracture HG3. The mean aperture
values for the laboratory measurements are mechanical
mean apertures, computed from fracture closure mea-
surements. The laboratory permeability measurements
were normalized by the cross sectional area of the cylin-
drical core. Since the entire cross sectional area was not
modeled numerically, the numerical permeabilities were
normalized to agree with the laboratory measurements at
the highest mean aperture setting (lowest confining pres-
sure on the fracture). The numerical permeabilities tend
to exceed the experimental permeabilities (worst case is
a factor of 10) but capture the experimental permeability
trend very well.

The prediction of the parallel plate model, based upon
h = an,, also shown in Figure 6 does very poorly in cap-
turing the trend. So will (3) for any constant value of f.
This is hardly unexpected, our simple constricted-neck
parallel plate model would lead us to conclude that a,, is
a poor indicator of the constrictive fracture width value
that is effectively controlling the flow rate.

There is a problem in applying the Zimmerman-
Bodvarson (ZB) prediction (5) to our fracture - the stan-
dard deviation of the fracture aperture is 70% of the true,
unconfined, mean aperture and becomes larger than the



mean aperture at 7% contact area (a,, = 0.13). Thus any
factor of the form 1 — a(oy,/h)? as used in (5) is going to
have a sharp “knee” behavior and very rapidly become
negative at some mean aperture value. This is demon-
strated in Figure 6 using a generalized ZB prediction

2 2

= (1 - aﬂ) (1-20), (31)
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for parameter values @ = 0.9,1.0. We also note that

the contact area factor (1 — 2C) plays little role in the

accuracy of the fit (31) to the experimental data.

For the offset data, HG3F, we have been unable to
reconcile the mechanical mean apertures measured dur-
ing the laboratory experiments with the mathematical
mean apertures computed from the profiled data. Off-
setting the top and bottom surfaces of the fracture may
require a recalibration of the constant A in (28). As
mean aperture is a very sensitive variable (i.e. small er-
rors result in comparatively large changes in k), we there-
fore compare measured and computed permeabilities for
the offset fracture as a function of a more robust vari-
able, the contact area C'. To estimate contact areas for
the offset configuration we note that measurements on a
similar tensile-induced, offset fracture in Westerly gran-
ite [14] found surface contact ratios of approximately 20%
at confining pressures of 160 MPa. We therefore assume
that the laboratory range of measured mean apertures for
HGS3F correspond to surface contact ratios in the range 0
to 20% and presume a linear relationship between confin-
ing pressure and surface area contact for the laboratory
measurements. (This assumption is also in accord with
the mated data HG3. From Figure 6 note that mean
apertures vary from 0.2 down to 0.1, which, from Fig-
ure 5, correspond to contact areas from 0 to 10%. As the
mated configuration was subjected to a maximum con-
fining pressure of only 80 Mpa, this is consistent with our
contact area assumption for the offset configuration.)

Figure 7 compares measured and computed permeabil-
ities for the offset fracture as a function of contact area.
Numerical computations were performed at C' = 0, 0.05,
0.1, 0.15 and 0.2 and compare surprisingly well with the
laboratory measurements. Note repeated laboratory per-
meability measurements at several values of C. For these
measurements the confining pressure was held constant
and several permeability measurements taken over a pe-
riod of time. The largest set of measurements were taken
at a confining pressure of 140 Mpa (contact area of 0.175)
where five permeability measurements were taken over a
five hour period. A slow decrease in permeability with
time is observed in all such repeated measurements for
this fracture. We postulate that the time dependent de-
crease in permeability is due to increased clogging result-
ing from the movement of fines, the clogging occurring
either in the fracture or in the fluid collection tubing at
the outlet. We further note that the set of permeability
measurements taken at C' = 0.2 were performed a day
later than the others; the confining pressure was removed
overnight and then reapplied the next day.
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FIG. 7: Comparison between computed (FDLBM) and exper-
imental (HG3F') values of permeability versus contact area C
for the offset Harcourt granite fracture.

VII. DISCUSSION

There are clearly several factors that affect the agree-
ment between the numerical and experimental results.

One factor is the discretization of the fracture surface.
With profiling locations spaced at 1 mm, we are resolving
the surface feature only above wavelengths of 1 mm; the
effect on flow for features below 1 mm wavelength is of
unknown magnitude. A second feature of discretization is
the “Manhatten” skyline nature of a discretized surface,
which makes computation of surface-surface contact area
easier, but simplifies the true “mountain” topography of
a fracture surface.

Ignoring stresses induced in the surfaces when numer-
ically pushing the fracture surfaces together is a second
factor. The elastic and plastic changes so induced in the
surface profiles of a real fracture were not captured in
the numerical aperture. The numerical “push-through”
of the fracture surfaces also produces missing mass which
remains unaccounted for.

The absence of recorded values for fluid pressure gradi-
ents for some of the experimental measurements, and the
decision to use contact area as the comparing parameter
for the offset data, lead to the use of linear interpolation
to provide necessary numerical parameters. The error
introduced in using the interpolated values is unknown.

The use of laboratory measured average water velocity
values for the particle speeds required in the LB calcu-
lations undoubtedly works in a manner to improve the
accuracy of the calculations.

From the constrictive plate studies, we note that the
presence of the compressible O(M?2) terms in the LB
method will causing density variations in the rough ge-
ometry aperture. The overall effect of these variations on
the resultant flow is unknown.

While the LB method gives reasonably good perme-
ability predictions, the computational resources required
to compute steady state flow are very large. As men-
tioned, we required approximately 10° iterations to reach
steady state (as determined by (26) with a tolerance



tol = 107%). Using 8 processors, steady state was
achieved typically in 340 hours of CPU time. Boost-
ing this to 128 processors (unavailable to us due to the
typical load on the Galaxy) will reduce CPU time to 24
hours.

Our results indicate that LB based computations can
reproduce permeability trends in profiled fractures with-
out resorting to “fudgable” factors common to theoreti-
cal predictions of the types (3) - (5). In our opinion, the
computational time is the major hurdle.
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