
penpal: Finding the Two Identical Penmen

Waseem S. Daher
wdaher@mit.edu

February 16, 2006

Abstract

“Find The Two Identical Penmen” is a poster, created by
Gary Blehm, with 1,047 stick-figure-like drawings known as
penmen. The goal of this project was to create software that
would find the identical penmen, or at least substantially
simplify the task of finding the two penmen, to the point
where it would be quick and easy for a human to identify
the correct match. In this paper, I discuss the design and
implementation, in the Python programming language, of
a straightforward and reasonably simple algorithm that is
fairly reliable in accomplishing this goal: it correctly identi-
fies the identical penmen in the poster, in its first few guesses.

1 Introduction

One of my friends owns the 1,047-penman “Find the Two
Identical Penmen” poster, and put it up on her door. One
night, in early September, 2005, a bunch of us were in a
lounge in my dormitory, and the poster became the topic of
discussion.

People had already seen the poster, and some had even
tried to find the identical penmen by hand, though most
of them gave up fairly quickly. Various suggestions were
offered, along the lines of “Well, you can rule out all the
penmen doing strange things1, since it would be too easy to
find two of those, because they catch your eye.”

While this is certainly a valid point, I was still uncon-
vinced that you could find the penmen quickly, even given
this strategy. So, as an undergraduate studying computer
science, I proposed a different solution: “Guys, computers
can do anything these days — I could easily write a program
to find the identical penmen.”

The claim was met with skepticism, though. Not skepti-
cism at the technology, but skepticism that I would actually
follow through with such a grandiose statement. Feeling in-
vigorated by the challenge, I made a vow: “The identical
penmen will be found before this year’s senior class gradu-
ates!” (that is to say, May 2006).

Unfortunately, the start of the Fall semester, and the
courses that come with it, hampered my progress. But in
about two days in January, I took a photograph of the poster,
wrote some software, and found the penmen. This is my
story.

1For example, the one having water dripped on its head with a
dropper, in Figure 1.

Figure 1: An arrangement of penmen, created for testing.

2 The Algorithm

Since I didn’t actually start the actual project until January,
I had months to think about an algorithm. After much dis-
cussion with just about anyone who was willing to listen,
I actually implemented my first idea... and it didn’t work.
With a bit more refinement, though, the second attempt suc-
ceeded, and is detailed below.

2.1 Overview and Performance

The algorithm basically has two parts: First, segment out
and identify each individual penman. Then, compare each
against every other one, and assign each pair a score. Finally,
pick the pair with the best score, and offer that up as the
best match.

From an asymptotic standpoint, this requires O(n) time
for segmentation, and then approximately n(n− 1)/2 opera-
tions for comparison, for an overall runtime of O(n2), where
n is the number of penmen in the poster. It is worth noting
that this algorithm only needed to run (and be successful)
once, so the asymptotic runtime is not as much a concern as
the actual runtime.

The actual implementation was run in Python 2.4.2, using
the Python Imaging Library 1.1.5, on a 2.8 GHz Pentium
IV laptop with 512 MB of RAM, running Ubuntu “Breezy

1

Badger”. The computation finished in approximately five
minutes, processing my 1626x1873 black-and-white JPEG
image of the poster.

2.2 Preprocessing

I took a photograph of the poster with my digital camera,
for use in this program. There are a few problems with this
technique, though: the image ends up slightly skewed, and
the image is not black-and-white, as desired. To address the
second problem, I edited the image using The Gimp, to crop
out everything except for the penmen, and then increased the
brightness/contrast until it looked good, and then converted
it to black-and-white.

2.3 Segmentation

The first real step in the algorithm is to identify each indi-
vidual penman. The strategy is as follows: Scan the image
until you find the first black pixel. Perform a flood fill on
this pixel, that is to say, select all adjacent black pixels, and
select all black pixels adjacent to those, etc. The object you
have selected is one of the following: a whole penman, a
penman’s head, a penman’s body, or a random small float-
ing object (The problem is made slightly more difficult by
the fact that penmen heads and bodies are not necessarily
connected).

Now, compute the centroid, width, and height of the ob-
ject you have selected, and store those values in an array.
Repeat until you have scanned the entire poster.

Next, we need to discard small objects so that we are left
only with full penmen or just penman bodies. Average all
the widths and heights, and then go through and remove all
objects whose widths or heights are smaller than the average
(because we think they are heads or random floating objects
that aren’t penmen). At this point, the penmen are ready
for comparison.

2.4 Comparison

We use a fairly naive and slow O(n2) strategy of comparing
every penman against every other penman. One could imag-
ine something more elaborate like defining a function on pen-
men that gauged certain attributes, and then the two identi-
cal penmen would be the penmen with values that were clos-
est together (a strategy that could work in O(n lg n) time),
but this seemed a bit like overkill.

The next question is: What function do we use for compar-
ison/determining similarity? I chose to draw a bounding box
of average penman size (computed by multiplying the aver-
age widths and heights by some tweaked constants) around
each penman centroid, as in Figure 2, and then XORing
those boxes with each other. Then, I counted the number
of differences in the result, and assigned that as the score
for the pair. One could imagine many other techniques,
like performing some sort of 2-D convolution/correlation on
the images, which would probably be more resilient to small
changes.

Figure 2: Penmen with bounding boxes drawn in.

2.5 Identifying the match

Since every pair of penmen is assigned a score that would
be zero if they were identical, and large if they were com-
pletely dissimilar, to find the identical penmen, we need only
examine the pairs of penmen in ascending order by score. In
practice, the identical penmen are usually in the top 20 pairs
(on my trial image, the identical pair was the 15th one). Im-
age noise and near-identical penmen drawn in to fool the
viewer typically cause the identical pair not to be the first.

2.6 Assumptions and Effectiveness

“Identical” is, unfortunately, a fairly ambiguous word. In de-
signing the algorithm, a number of assumptions were made.
Perhaps most critically, we assume that the identical penmen
would not be different sizes or rotated differently. It turns
out that this assumption was valid, but it doesn’t necessarily
follow from the statement of the problem.

There are a few failure modes for the algorithm. Most
notably, if two penmen are actually touching, the algorithm
thinks of them as one large penman. This could be problem-
atic if one of the identical penmen was touching something,
and one wasn’t. In practice, the algorithm only works well if
the two identical penmen do not have many pixel differences
between them.

3 Conclusions

In the end, the program accomplished its desired goal: it
made the process of finding the penmen dramatically easier.
While the first match it returned was not correct, the correct
answer did lie in the top 20 pairs, which is certainly within
the realm of numbers of pairs that can be examined by a
human.

2

4 Acknowledgements

This project would not have been a success without the help
of many people.

First, I would like to thank Joshua Mandel for providing
me with a lot of good advice and helpful tips for the algo-
rithm applied here; I probably would have tried something
much more complicated and clumsy were it not for his help.

Next, I would like to thank Kiera Henning, Keith Win-
stein, Mika Tomczak (actual owner of the poster in question),
Ray He, Caitlin Murray, Alice Macdonald, Professors David
Karger and Frédo Durand of MIT, and all of the members of
MIT French House for listening to my algorithm proposals
and offering useful advice. Caitlin offered up a novel ap-
proach that probably would have been even better: Email
a million people with two pieces of the poster, asking: “Are
these two images identical? If so, email back and win a
prize!” — the ultimate distributed computing solution.

Of course, this would also never have happened without
Gary Blehm, the poster’s creator. I sent him an email before
I began the project, and again when I finished it — he was
very enthusiastic about it and proved quite helpful.

5 Appendix

5.1 How to run the code

Two steps are required to process the penmen, and one step
to view your results:

$ python segment.py yourimage.jpg

$ python compare.py penmen-data.txt

Now, look at the output of penmen-comparison.txt

and view the pairs with the following command

$ python show.py penmen-data.txt

5.2 segment.py Source Code

#!/usr/bin/python

segment.py

Part of the "penpal" project

(Finds Gary Blehm’s Identical Penmen)

http://web.mit.edu/wdaher/www/penpal/

#

Waseem Daher

Jan. 21, 2006

import Image, ImageChops

import os, sys

import time

#infile = ’4x4-identical-bw.jpg’

infile = sys.argv[1]

datafile = ’penmen-data.txt’

What value do we consider our

threshold for ’black’?

BLACK_THRESHOLD = 128

Throw away objects whose dimensions

are TOO_SMALL times the average

TOO_SMALL = 1

Throw away objects w/o enough pixels

TOO_FEW_PIXELS = 1

When selecting a bounding box, make it

BOUNDING_BOX times bigger than the average

penman

BOUNDING_BOX_W = 2.5

BOUNDING_BOX_H = 3

What percentage of the avg. to move

up the y-val of the centroid?

(because we want to capture the head)

HEIGHT_SHIFT = 0.3

Magic numbers are a hack, but hey

BIG_NUMBER = 99999999999

class Penman:

def __init__(self):

self.points = []

self.centroid = None

self.dims = None

def addPoint(self, point):

self.points.append(point)

def getCentroid(self):

if self.centroid is None:

self._getCentroidAndDims()

return self.centroid

def getDimensions(self):

if self.dims is None:

self._getCentroidAndDims()

return self.dims

def getNumPixels(self):

return len(self.points)

def _getCentroidAndDims(self):

sumx = sumy = 0

Magic numbers are sort of a hack,

but perhaps this is faster than

doing an or comparison every time

minx = miny = BIG_NUMBER

maxx = maxy = -BIG_NUMBER

for point in self.points:

(x,y) = point

if x < minx:

minx = x

if x > maxx:

maxx = x

if y < miny:

miny = y

if y > maxy:

maxy = y

sumx += x

sumy += y

avgx = sumx / len(self.points)

avgy = sumy / len(self.points)

self.centroid = (avgx,avgy)

self.dims = (maxx-minx, maxy-miny)

def getNeighbors(x,y,rows,cols):

"""

Returns the set of points

that are the neighbors of the

supplied point

"""

3

neighbors = []

if x > 0 and y > 0:

neighbors.append((x-1,y-1))

if x > 0:

neighbors.append((x-1,y))

if x > 0 and y<rows-1:

neighbors.append((x-1,y+1))

if y > 0:

neighbors.append((x,y-1))

if y < rows-1:

neighbors.append((x,y+1))

if x < cols-1 and y > 0:

neighbors.append((x+1,y-1))

if x < cols-1 and y > 0:

neighbors.append((x+1,y))

if x < cols-1 and y<rows-1:

neighbors.append((x+1,y+1))

return neighbors

def findPenman(x,y,im):

"""

Given a starting black pixel, find the

maximally-sized connected region of

pixels. This is a destructive read -

the pixels get set to 255 after we

go over them.

"""

(cols,rows) = im.size

me = Penman()

stack = [(x,y)]

while len(stack) > 0:

(a,b) = stack.pop()

Blank the pixel so we don’t try to

process this one again

im.putpixel((a,b), 255)

me.addPoint((a,b))

Check all the neighbors

and add them if they are

black.

neighbors = getNeighbors(a,b,rows,cols)

for (i,j) in neighbors:

try:

if im.getpixel((i,j))<BLACK_THRESHOLD:

stack.append((i,j))

except:

print "Size is:", im.size

print "Tried to get:", i, j

return me

im = Image.open(infile)

(cols, rows) = im.size

average_width = 0

average_height = 0

average_num_pixels = 0

myPenmen = []

for x in range(cols):

for y in range(rows):

if im.getpixel((x,y)) < BLACK_THRESHOLD:

man = findPenman(x,y,im)

w,h = man.getDimensions()

average_width += w

average_height += h

average_num_pixels+=man.getNumPixels()

myPenmen.append(man)

#--- Throw away "penmen" that don’t make

the cut (e.g. too small)

average_width /= len(myPenmen)

average_height /= len(myPenmen)

average_num_pixels /= len(myPenmen)

min_num_pixels = average_num_pixels * TOO_FEW_PIXELS

min_width = average_width * TOO_SMALL

min_height = average_height * TOO_SMALL

bounding_box_width = average_width * BOUNDING_BOX_W

bounding_box_height = average_height * BOUNDING_BOX_H

realPenmen = []

for man in myPenmen:

w,h = man.getDimensions()

numPix = man.getNumPixels()

if w > min_width and h > min_height \

and numPix > min_num_pixels:

realPenmen.append(man)

Great, we have all the real penmen

Dump this to a list.

file = open(datafile, ’w’)

lines = []

lines.append(’# Penman image details’)

lines.append(’# Date: %s’ % time.asctime())

lines.append(’infile = "%s"’ % infile)

lines.append(’min_width = %i’ % min_width)

lines.append(’min_height = %i’ % min_height)

lines.append(’average_width = %i’ % average_width)

lines.append(’average_height = %i’ % average_height)

lines.append(’bounding_box_width = %i’ \

% bounding_box_width)

lines.append(’bounding_box_height = %i’ \

% bounding_box_height)

lines.append(’num_penmen = %i’ % len(realPenmen))

lines.append(’’)

lines.append(’# Penman data’)

lines.append(’# Number, centroid_x, centroid_y’)

for i in range(len(realPenmen)):

centroid_x,centroid_y = realPenmen[i].getCentroid()

lines.append(’%i,%i,%i’ % (i, centroid_x, \

centroid_y - (HEIGHT_SHIFT * average_height)))

file.writelines([foo + ’\n’ for foo in lines])

file.close()

#os.system(’cat %s’ % datafile)

5.3 compare.py Source Code

#!/usr/bin/python

compare.py

4

Part of the "penpal" project

(Finds Gary Blehm’s Identical Penmen)

http://web.mit.edu/wdaher/www/penpal/

#

Waseem Daher

Jan. 21, 2006

import Image, ImageDraw, ImageStat, ImageChops

import os, sys

import time

outfile = ’penmen-comparison.txt’

filename = sys.argv[1]

data = open(filename, ’r’)

lines = data.readlines()

vars = lines[:11]

Import our variables again

Yeah, this is totally not secure,

but whatever, this isn’t a secure

application

for line in vars:

exec(line)

Now, read in the penmen data

penmen = [None] * num_penmen

info = lines[13:]

for line in info:

num,x,y = eval(line)

penmen[num] = (x,y)

im = Image.open(infile)

def getMan(image, centroid, width, height):

imgx,imgy = im.size

centroidx,centroidy = centroid

tlx = max(0, centroidx - width/2)

tly = max(0, centroidy - height/2)

brx = min(imgx, centroidx + width/2)

bry = min(imgy, centroidy + height/2)

return image.crop((tlx,tly,brx,bry))

def compare(man1, man2):

diff = ImageChops.difference(man1, man2)

stat = ImageStat.Stat(diff)

return stat.sum[0]

print "Loading all penmen..."

for i in range(num_penmen):

penmen[i] = getMan(im, penmen[i],

bounding_box_width,

bounding_box_height)

print "All penmen loaded, beginning comparison..."

scores = {}

for i in range(num_penmen):

for j in range(i+1, num_penmen, 1):

myscore = compare(penmen[i], penmen[j])

if scores.has_key(myscore):

scores[myscore].append((i,j))

else:

scores[myscore] = [(i,j)]

Now sort and print out in order of goodness

oldStdOut = sys.stdout

file = open(outfile, ’w’)

sys.stdout = file

print "Penmen run"

print time.asctime()

actual_scores = scores.keys()

actual_scores.sort()

for act in actual_scores:

print act, scores[act], "\n"

Restore old stdout

sys.stdout = oldStdOut

file.close()

5.4 show.py Source Code

#!/usr/bin/python

show.py

Part of the "penpal" project

(Finds Gary Blehm’s Identical Penmen)

http://web.mit.edu/wdaher/www/penpal/

#

Waseem Daher

Jan. 21, 2006

import Image, ImageDraw

import os, sys

import time

outfile = ’show-image.jpg’

filename = sys.argv[1]

data = open(filename, ’r’)

lines = data.readlines()

vars = lines[:11]

Import our variables again

Yeah, this is totally not secure,

but that’s fine here

for line in vars:

exec(line)

Now, read in the penmen data

penmen = [None] * num_penmen

info = lines[13:]

for line in info:

num,x,y = eval(line)

penmen[num] = (x,y)

os.system(’head -2 %s’ % filename)

im = Image.open(infile)

im = im.convert(’RGB’)

5

def goBound(image, centroid, width, height):

draw = ImageDraw.Draw(im)

imgx,imgy = im.size

centroidx,centroidy = centroid

tlx = max(0, centroidx - width/2)

tly = max(0, centroidy - height/2)

brx = min(imgx, centroidx + width/2)

bry = min(imgy, centroidy + height/2)

draw.rectangle([(tlx,tly),(brx,bry)],

outline="red")

freshImage = im.copy()

while True:

number = input("Draw on (-1 to reset," \

+ " -2 to draw on all," \

+ " -3 to quit," \

+ " -4 to draw): ")

if number == -3:

break

elif number == -1:

im = freshImage

elif number == -4:

im.save(outfile)

os.system(’display %s &’ % outfile)

elif number == -2:

for i in penmen:

Draw the bounding box

goBound(im, i, bounding_box_width,

bounding_box_height)

else:

goBound(im, penmen[number],

bounding_box_width,

bounding_box_height)

6

