• COOLING
  •    ambient warm
  •  net-
    cool
  • WARMING





particles free surface u free surface v
dyeblob interior u,v interior w
crystals vertical u bottom u,v,w
tracer short time long time
\[\begin{aligned} \frac{\partial u_g}{\partial z} = \frac{\alpha g}{f}\hat{z} \times \nabla{T} \\ \end{aligned} \]
\[\begin{aligned} \frac{\partial u_g}{\partial z} = -\frac{g}{f \rho_0}\hat{z} \times \nabla{\rho} \\ \end{aligned} \] \[\begin{aligned} u_g = \frac{1}{\rho f} \times \nabla{p} \\ \end{aligned} \]

\[\begin{aligned} R_0 = \frac{u}{fL} \\ \end{aligned} \]

Experiment I. SLOW-ROTATION (@ 1 RPM)

Particle Track Computations

Temperature Data

cooled core A B C D E warmer circumference

Experiment II. FAST ROTATION (@ 10 RPM)

Particle track data SET 1

Temperature Data

cooled core  A B C warmer circumference

atmos tank
315K potential temperature [θ] /cyan\ isosurface denser fluid -5°C
+40 m/s west-to-east [u] jet flow (blue) isosurface u flow cyclonic (CCW) +2.5 cm/s
5 m/s interval + into the page |white| contours u (cyclonic) positive .5 cm/s interval
5 m/s interval - out of the page |red| contours u (anticyclonic) negative .5 cm/s interval
Climate IDV - Polar Fronts and Jets
Perpetual Ocean (2005-2007)
Fronts Experiment: Cylinder Collapse - Virtual Lab
Curious Properties of Rotating Fluids
 Weather in a Tank 
   [] cross-cut to the world climate data  /  video of the turntable experiment []