AIR
water
• COOLING
•    ambient warm
•  net-
cool
• WARMING

tracer short time long time particles free surface u free surface v dyeblob interior u,v interior w crystals vertical u bottom u,v,w
Calculating Radial Heat Flux in Hadley Cell experiment Thermal Wind Balance \begin{aligned} \frac{\partial u_g}{\partial z} = \frac{\alpha g}{f}\hat{z} \times \nabla{T} \\ \end{aligned}
\begin{aligned} \frac{\partial u_g}{\partial z} = -\frac{g}{f \rho_0}\hat{z} \times \nabla{\rho} \\ \end{aligned} \begin{aligned} u_g = \frac{1}{\rho f} \times \nabla{p} \\ \end{aligned}

\begin{aligned} R_0 = \frac{u}{fL} \\ \end{aligned}

## Experiment II. FAST ROTATION (@ 10 RPM)

### Temperature Data

#### cooled core  ABC warmer circumference

 315K potential temperature [θ] /cyan\ isosurface denser fluid -5°C +40 m/s west-to-east [u] jet flow (blue) isosurface u flow cyclonic (CCW) +2.5 cm/s 5 m/s interval + into the page |white| contours u (cyclonic) positive .5 cm/s interval 5 m/s interval - out of the page |red| contours u (anticyclonic) negative .5 cm/s interval Climate IDV - Polar Fronts and Jets Perpetual Ocean (2005-2007) Fronts Experiment: Cylinder Collapse - Virtual Lab Curious Properties of Rotating Fluids
Weather in a Tank
[] cross-cut to the world climate data  /  video of the turntable experiment []