
26th Symposium on Naval Hydrodynamics
Rome, Italy, 17-22 September 2006

Advances in Cartesian-grid methods for computational ship
hydrodynamics

G. Weymouth1, D.G. Dommermuth2, K. Hendrickson1, and D.K.-P. Yue1
1(Massachusetts Institute of Technology, USA)

2(Science Applications International Corporation, USA)

ABSTRACT

Recent developments in computational fluid dynamics
are enabling accurate simulations of full scale ship
hydrodynamic flow. In particular, Cartesian-grid
techniques such as volume-of-fluid and immersed
boundary methods expedite computational simulations
of unsteady breaking wave flows around complicated
ship geometries. However, there are still a number of
important numerical and modeling issues to overcome
such as finite computational domains, moving bodies, and
dynamic slip conditions which are required in order for
Cartesian-grid methods to achieve their full potential as
a practical analysis tool. Additionally, systematic studies
of the accuracy and applicability of numerical techniques
are key for their use in quantitative engineering appli-
cations. In this work we develop a new method for
the enforcement of general boundary conditions on an
arbitrary body as well as a new exit condition to allow
for significantly smaller domains and a volume of fluid
algorithm to preserve the free surface characteristics. We
consider a number of canonical problems to establish
quantitative comparisons and assessments of these new
methods. We use these new capabilities to preform flow
simulations with naval applications and compare them to
experimental results.

INTRODUCTION

Scientific and engineering investigation into ocean
systems give rise to a wide variety of complex nonlinear
fluid dynamics problems. Historically the solutions
techniques used to solve these problems were of limited
accuracy and applicable only to a very small subset of the
complete system. Even with the continuing increase of
availability of computational resources, producing quality
solutions with modern computational fluid dynamic

techniques requires extensive time and training, limiting
their use in practical science and engineering applications.

Cartesian-grid methods are a significant advancement
in the simulation of general fluid flows because they afford
the capability of computing flows with engineering appli-
cations without the limitations and difficulties associated
with non-orthogonal or unstructured grids. Recently,
Hendrickson and Yue (2006) show the level-set method
is capable of high-resolution computations of unsteady
small-scale breaking waves. Dommermuth et al.
(2005) use the volume-of-fluid method to simulate full-
scale ship breaking waves at high Froude numbers on
Cartesian grids and Dommermuth et al. (2006) present
high-resolution unsteady predictions of the free-surface
elevation and wave making resistance of a model 5415
hull.

While the move to Cartesian-grid methods is a step in
the correct direction, there are still many issues which
have not received a simple and general treatment. These
techniques must be comprehensive, robust, and well
validated before Cartesian-grid methods will be useful
in an engineering setting. This paper forwards such
advancements in free surface tracking, exit boundary
conditions and body boundary treatment. These new
techniques are developed using a flow solver based on
the algorithms described in Dommermuth et al. (2005)
such that they will be easily incorporated into similar
large-scale commercially ready codes. The techniques
are verified with two and three-dimensional canonical
simulations. They are then used to preform initial inves-
tigations into Cartesian-grid simulations of 2D+t bow
waves. A wave maker test based on this methodology
is used to validate the code and motivate discussion of
practical models of tangential flow for Cartesian-grid
methods.



PROBLEM FORMULATION AND GENERAL
SOLVER DESCRIPTION

Our physical system is the general fluid flow near an air-
water interface. For our model it is required that the fluid
velocity ~u satisfy the conservation of momentum for an
incompressible inviscid fluid, given by the Euler equation
as

∂~u

∂t
+ (~u · ~∇)~u = −1

ρ
~∇p− ~g (1)

wherep is the total pressure,~g is the gravitational accel-
eration vector, andρ is the local fluid density. For conve-
nience, the vector~r is defined as the combination of the
convective and gravitational terms, such that (1) becomes

∂~u

∂t
= −1

ρ
~∇p + ~r. (2)

The effects of surface tension are ignored for the large-
scale flows studied in this work.

Taking the divergence of (2) results in a variable
coefficient Poisson equation for the pressure of the form

~∇ ·
(

1
ρ

~∇p

)
= ~∇ ·

(
~r − ∂~u

∂t

)
. (3)

The pressure field resulting from the solution of this
equation is used to project the velocity field onto one
satisfying the divergence free constraint

~∇ · ~u = 0. (4)

We use a volume-of-fluid method to model free-surface
flows. In this framework the local fluid density is
calculated as

ρ = ρwf + ρa(1− f) (5)

whereρw andρa are the densities of water and air respec-
tively. The field f is the fraction of water filling each
cell and our scheme for determining this field will be
discussed in detail in the following section.

Our basic implementation of these equations follows
the method of the Numerical Flow Analysis (NFA) code
(Dommermuth et al. 2004). The discrete forms of
equations (2) and (3) are posed on a Cartesian grid
covering the fluid domain. Staggered variable placement
is used. The time derivatives are treated with an
explicit low storage second-order Runge-Kutta method
(Dommermuth et al. 2004). The pressure terms

are treated conservatively using central differences and
a preconditioned conjugate-gradient method is used to
iteratively solve the Poisson equation. The convective
terms in NFA are treated with a slope-limited QUICK
scheme for stability and accuracy.

The NFA code is well documented as providing
excellent high fidelity turnkey solutions to ship flows.
However, there are still a number of challenging issues
which must be overcome for Cartesian-grid methods
to robustly simulate completely general two and three-
dimensional free-surface flows. First, the free surface
must be tracked accurately and consistently for simulated
results to compare well with experiments. Existing
methods for the advection of the volume fractionf
describing a three-dimensional free surface are highly
complex and do not conserve fluid volume at the interface.
This can lead to free surface “stepping” as well as the
generation of flotsam and jetsam. In the next section
we present a list of requirements for an operator-split
algorithm to conserve fluid volume to machine precision
and present a simple dimensionally independent method
which meets these requirements.

The second advancement which we investigate in this
work is an improvement to exit boundary conditions.
For some types of flows a simple numerical exit,
such as a free-stream exit, can be implemented with
only moderate corruption of the solution. However,
a general fluid system may have such characteristics
as a lack of underlying free-stream flow or nontrivial
domain boundaries which prohibit the use of currently
documented exit conditions. This work proposes a new
boundary condition with the potential for general and
accurate simulations of external flows in two or three
dimensions.

A third challenge is the proper treatment of body
boundaries in Cartesian-grid methods. Because they
do not require complex boundary fitted grids to be
created, Cartesian-grid solvers have the potential to
generate solutions to more complicated problems orders
of magnitude faster than conventional fitted-grid solvers.
Yet, this speed and generality must not result in a lack of
accuracy in the flow around bodies immersed in the fluid
domain. A new and general formulation of this problem is
presented whereby the analytic form of the fluid equations
are altered to ensure exact enforcement of the boundary
conditions.

This formulation produces equations which are a
superset of those solved in boundary-fitted methods and



could be used to derive adjustments to the discrete
algebraic equations as in Cut-Cell methods. Instead of
altering the discrete form of the equations we present
a simple implementation akin to Immersed-Boundary
methods which automatically maintains the solver’s order
of accuracy. While any type of body geometry repre-
sentation could be incorporated into this method, Non-
Uniform-Rational-Basis-Splines (NURBS) are used in
this work which allow for increased efficiency and flexi-
bility in immersing the body on the grid.

In the fourth section of this paper an assessment is made
of the ability of the current Cartesian-grid method to use
“slender ship”, or 2D+t, assumptions to preform reduced
simulations of bow wave flows. Completely resolving
naval hydrodynamic flows using brute force techniques
is impossible due to the required computing expense.
2D+t models offer a simple alternative which reduces
that cost by multiple orders of magnitude. Within this
framework, experimental wave maker results are used to
validate the code. Limitations due to this method as well
as practical tangential boundary conditions for Cartesian-
grid methods are discussed and one viable solution is
presented.

When proposing these modeling advances it is
important to retain the inherent advantages of Cartesian-
grid methods. The proposed solutions for (i) free surface
advection, (ii ) exit boundary conditions, and (iii ) solid-
body treatment are as simple and general as possible.
These capabilities are developed with general large-
scale simulations in mind and have benefits which allow
comprehensive simulation of ship hydrodynamic flows on
Cartesian grids.

FREE SURFACE ADVECTION METHOD

Volume-of-Fluid (VOF) methods allow topologically
complex surfaces to be treated generally by tracking the
volume of each fluid instead of the interface location.
Current methods to propagate the fluids allow volume
to be lost at the free surface leading to “stepping” of
the interface and spurious flotsam and jetsam. In this
section a simple set of requirements are detailed to
avoid this problem, and a general advection algorithm is
proposed which exactly conserves the total fluid volume
and maintains a sharp air-water interface.

VOF techniques use a fieldf to specify the fraction of
each finite volume which is filled with one type of fluid in
order to track the free surface. By definition, the fraction

f must satisfy the condition

0 ≤ f ≤ 1 (6)

at all times. This condition is difficult to maintain and
standard advection methods result in cells which are less
than empty and more than full. Volume must be added or
removedad-hocfrom these cells introducing significant
inaccuracies into the simulations at the free surface.

The volume fraction of fluid in an incompressible flow
is advected by solving the conservative equation

∂f

∂t
+ ~∇ · (f~u) = 0. (7)

Pilliod and Puckett (2004) present one of many suggested
unsplit advection algorithms to solve (7) for two-
dimensional flows based on geometric flux integrations
along approximated characteristics of the velocity field
~u. These methods do not typically conserve volume and
are very complicated, particularly for three-dimensional
flows.

The standard simplification is to use an operator-split
advection method. In an operator-split algorithm, the non-
conservative advection equations

∂f

∂t
+

∂

∂xd
(fud) = f

∂ud

∂xd
for d = 1 . . .N (8)

are solved sequentially for progressive updates off for
each of theN spatial dimensions. By treating only
one velocity component at a time, the calculation of
the advected volume fraction through each face can be
analytically determined with relative ease, even for planar
surface reconstructions in three dimensions (Scardovelli
and Zaleski 2000). A typical two-dimensional recon-
struction is shown in Figure 1. In this figure the
velocities are scaled by∆t/∆x making them local
Courant numbers. With this scaling a donating region
upwind of each face can be defined with width equal to
the velocity magnitude. The dark fluid within each region
will be fluxed into the next cell. In Figure 1, the fluid in
the bottom-right corner of cell(i, j) is in two donating
regions. To avoid the possibility of fluxing the same fluid
into two different cells the surface must be reconstructed
after each sweep of an operator-split method.

The divergence term is not canceled from (8) because at
each step of the algorithm the volume fraction is advected
in a one-dimensional flowwhich is not divergence free.
Without the velocity stretching term there is no way to



v j+1/2

u i+1/2

v j-1/2

u i-1/2

f i,j

Figure 1: 2D diagram of a typical linear VOF surface
reconstruction on a 3x3 block of cells with scaled velocity
components. Using the standard operator-split treatment,
the donating regions are right-cylinders upwind of each
face.

ensure that (6) is met after each step of the algorithm.
In Figure 1 more fluid is being fluxed in from cell(i −
1, j) than space left after fluxing out to cell(i + 1, j),
meaning that cell(i, j) would overfill in the first sweep.
Scardovelli and Zaleski (2003) investigate this effect in
detail geometrically and develop a fairly simple two-
dimensional operator-split Eulerian implicit Lagrangian
explicit (EI-LE) method which conserves the global
volume fraction exactly. In that method, (8) is integrated
implicitly with for d = 1 and explicitly with Lagrangian
flux treatment ford = 2. Using the same velocity scaling
as above, the discrete form of the implicit and explicit
integrations are given by

f
n+1/2
i,j =

fn
i,j −

(
Fn

i+1/2 − Fn
i−1/2

)
[
1− un

i+1/2 − un
i−1/2

] (9)

fn+1
i,j =f

n+1/2
i,j

[
1 + vn

j+1/2 − vn
j−1/2

]

−
(
G

n+1/2
j+1/2 −G

n+1/2
j−1/2

)
(10)

whereF andG are the fluxed dark fluid in the first and
second directions. Puckett et al. (1997) propose the same

splitting without the Lagrangian flux calculation. Rider
and Kothe (1998) propose integrating first explicitly, then
implicitly.

Aulisa et al. (2003) demonstrate by two-dimensional
algebraic mapping that the EI-LE scheme is the only one
of the three that is volume conserving. It also shows
that this is dependant upon a strictly two-dimensional
divergence free velocity field. The mathematical analysis
in that work is straightforward but does not help suggest a
general solution for three-dimensional flows.

Breaking the problem of conservation into a short list
of requirements clarifies the issues. Given that

1.The flux terms are conservative,and

2.The divergence term sums to zeroand

3.No clipping or filling of a cell is needed due to
violation of (6) at any stage

then the algorithmmustconservef to machine precision.
The first requirement ensures that any fluid going into
one cell is coming out of another and the second ensures
that there is no net source term added to the advection
equation. Along with the third requirement, it is then
guaranteed that there is no net change inf in the fluid
domain regardless of the dimensionality of the system.
By multiplying the divergence term byfn in the explicit
step and thenfn+1 in the implicit step, Rider and Kothe
(1998) create a net source term, violating requirement 2.
Implicit integration violates requirement 1 by scaling the
fluxes by a local stretching term, bracketed in (9). This
scaling term is not consistent on both sides of the cell
face, meaning the effective flux is not conservative. The
EI-LE scheme maintains global conservation despite this
by using the Lagrangian flux calculations and relying on
the bracketed term in (9) to be exactly canceled by the
bracketed term in (10) due to two-dimensional continuity.
This cancelation is not extendable to three dimensions.

However, these requirements are not insurmountable
and a simple operator-split algorithm which meets them
is

fa = f b −∆dF
b
d + gn∆du

n
d for d = 1 . . .N (11)

where∆d denotes differences in thed direction andg
is a function to be determined. Theb and a super-
scripts indicate thecurrentandupdatedvalue off respec-
tively. As in equations (9) and (10), the fluxes are always
calculated using the current value off to avoid fluxing the



same fluid twice. The key features of this scheme are the
use of conservative fluxes and the constantgn field multi-
plying the divergence term. Thus requirements 1 and 2
are met, and it only remains to examine requirement 3.

The form of (11) emphasizes that the divergence
correction term is offsetting the dark fluid flux with
an approximate flux proportional to the stretching. A
definition of g is needed which maintains (6) for any
configuration, and we propose the simple form

gn ≡
{

1 if fn > 1/2
0 else

(12)

makingg a sharp version off . It might seem intuitive
to let gn = fn, but setting the approximate flux propor-
tional to the fraction in the central cell does not guarantee
conservation. Scardovelli and Zaleski (2003) give a
detailed example of this for essentially the situation in
Figure 1. Usinggn = fn for this case results in overfilling
in the first step because the dilatation is small and the in-
flux is large. Using the definition ofg above enhances the
influence of the stretching term and with the restriction

|ud| , |∆dud| < 1
2N − 2

for all d (13)

guarantees that (6) is met at all stages of the algorithm.
The velocity restriction limits the acceptable time step;
yet our experience has shown that it is conservative,
particulary for three-dimensional flows.

Even with the restriction on the time step, all three
requirements are met and the algorithm will conserve
volume fraction to machine precision. A series of
canonical three-dimensional simulations were run to
verify this capability and quantify errors in other methods.
The test case is a high amplitude standing air-water wave
and the Cartesian-grid solver described in the previous
section was used to run the tests. The computational
domain is a cube, with∆x/L = 0.025, ∆t/T = 0.005
and reflection boundary conditions set on all walls. A
sinusoidal free surface withA = 0.3L, λ = 2L and
an average elevation ofz = 0.5L is used as the initial
condition. The slope is well above the Stokes limit and
results in a highly nonlinear fully three-dimensional wave
with overturning as seen in Figure 2.

Five advection methods were tested, the first being a
baseline test with no stretching term included. The second
two are extensions of methods such as that of Rider and
Kothe (1998) to three-dimensional flows. The first (E-E-
E) uses all explicit integrations of the form of (10) and the
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Figure 2: Visualization of the free surface for the 3D wave
test att = 0.5. Contours indicate elevation. The nonlinear
wave has nearly impinged on the top of the computational
domain in this image.

second (I-I-E) uses implicit integration of the form of (9)
for the first two steps. Next is the current method usingg
as defined in (12) and then usinggn = fn for comparison.
The results are shown in Table 1. The first two columns
give theL1 andL∞ norms of the global volume loss in
the domain after each use of the advection method. The
third column gives the percentage change in total water
volume in the domain after one wave period. The baseline
gives by far the worst performance, with a net mass loss
of 12% after only one wave period. The second and third
rows show around an order of magnitude decrease in error
compared to neglecting the stretching term altogether but
still leave room for improvement.

The current method demonstrates nearly exact conser-
vation of mass after each step and overall. The average
values of|u|max and|∆u|max at the interface are around
1/3 in this test. Despite this violation of (13), the volume
loss is negligible. The final row shows the results when
setting gn = fn. While the volume of water is not
conserved exactly, there is still an order of magnitude
decrease in error as compared to the second and third
rows.



Algorithm L1 norm L∞ norm % Change
Baseline 2.53e-3 1.40e-2 -12.63%
E-E-E 3.03e-4 2.51e-3 -1.42%
I-I-E 1.22e-4 1.34e-3 +0.81%
Current 1.34e-12 6.83e-12 -0.00%
gn = fn 9.69e-6 1.51e-4 +0.04%

Table 1: Global mass loss measurements for a high slope
3D standing wave test case. The first two columns refer
to the volume loss at each step, and the final column gives
the total change after one wave period.

EXIT CONDITION

Exit conditions are required for external incompressible
flow simulations and are notoriously difficult to enforce
accurately. In practice poor exit conditions require large
computational domains and short simulation times to
avoid corrupting the solution. This reduces the compu-
tational efficiency and reliability of the simulation. In this
section a new exit boundary condition is presented which
minimizes reflections for general fluid systems.

Unlike the free surface or a no-slip wall, an “exit”
is a purely numerical boundary. The ideally semi-
infinite domain of an external flow is truncated by the
exit boundary to make the solution trackable. In estab-
lishing an exit boundary, we are inherently assuming that
the flow phenomena of interest are within the numerical
domain and independent of the flow beyond the exit.
Exit conditions must be set despite this assumption of
independence because the pressure Poisson equation is
elliptic and requires information on every boundary to
ensure a globally divergence-free velocity field.

One method of modeling an exit is to construct a
numerical beach to absorb the energy out of exiting
waves. Such methods are often ineffective and require
large buffer regions, lowering computational efficiency.
In Dommermuth et al. (2004) a body force method is
developed to drive the flow at the exit to match the free
stream conditions, and Ferziger and Peric (2002) suggest
using 1D extrapolation to set the velocity profile at the
exit. While these methods can be applied in limited cases
they rely on a strong underlying convective flow to wash
away the errors resulting from their modeling inaccu-
racies.

A more advanced unsteady condition is a wave exit,
such as developed by Orlanski (1976). The typical

Orlanski-type boundary condition applied to the velocity
vector is (

∂

∂t
+ c

∂

∂x

)
~u = 0 (14)

where c is the, as yet undetermined, wave speed and
the x-coordinate represents the direction normal to the
exit. When using this condition, the mass flux through
the boundary is prescribed and a compatible Neumann
condition must be set on the pressure. Reasonable choices
of the wave speedc are the free-stream velocity or some
other natural velocity metric, such as

√
gL. In Hurt

(1999), a field of exit speeds are determined by solving
(14) for c one point interior to the exit. However,
this method is unstable if the momentum equations are
integrated explicitly.

Regardless of how the wave speed is chosen, if there are
multiple waves with differing speeds exiting the domain,
(14) will produce reflections for waves with speeds not
equal toc. The Higdon condition (Higdon 1994) has been
developed to circumvent this difficulty. The condition is a
wave product

HJ :
J∏

j=1

(
∂

∂n
+

1
cj

∂

∂t

)
~u = 0 (15)

wherecj are the set of exiting wave speeds. Increasing
the number of wave speeds reduces the energy reflected
back into the domain. Derivation and implementation
of this conditions for the two-dimensional wave equation
is given by Givoli et al. (2003), but applying this
boundary condition to incompressible free-surface flows
is nontrivial.

Additionally, the requirement of maintaining the
divergence-free condition on the velocity means that
neither (14) nor (15) can be applied to the exiting
component of the velocity in their current form. This is
because a velocity boundary condition that determines the
mass flux through the exit must be globally compatible
with the other boundaries. There is no value ofc that will
ensure this global conservation, and so regardless of the
choice of wave speed (or speeds) the calculated velocities
must be adjusted. The standard solution is to integrate
the mass fluxes on the other domain boundaries and make
an ad-hocadjustment to the exit velocity field such that
global conservation is maintained. This is only possible
if the mass fluxes on all other boundaries can be readily
determineda priori, which is not true for general cases.



Formally, this adjustment to thex-component of the
velocity vector can be written as

(
∂

∂t
+ c

∂

∂x

)
u = −α (16)

whereα is some, hopefully small, deviation from a true
exiting wave form. The terms above are readily correlated
to those of thex-component of the momentum equation

(
∂

∂t
+ ~u · ~∇

)
u = −1

ρ

∂p

∂x
. (17)

The time derivatives match andc∂u
∂x is a one-dimensional

model of the convective acceleration. The remaining
term is the pressure force, which leads us to formulate
a boundary condition of the form

(
∂

∂t
+ c

∂

∂x

)
u = −1

ρ

∂p

∂x
(18)

for the exiting component of velocity. Adjusting the
standard Orlanski exit in this way allows the pressure field
to fulfill it’s normal role of projecting the velocity onto a
solenoidal field. Therefore, no global flux integrations are
required and the system will conserve mass locally and
globally to the tolerance of the pressure solver.

When using (18) a Dirichlet boundary condition must
be set on the pressure equation. Hydrostatic pressure
could be set at the exit, but a wave condition for the
pressure (

∂

∂t
+ c

∂

∂x

)
p = 0 (19)

is the most consistent option. The boundary condition is
applied at the exit using linear interpolation

P e =
1
2

(PE + PI) (20)

whereP e is the interpolated exit value andPE andPI

are the cell-centered values to the exterior and interior of
the exit respectively. Second-order central differences and
Runge-Kutta integration in time then give the boundary
equations as

P
n+1/2

e = P
n

e −
c∆t

∆x
(Pn

E − Pn
I ) (21)

in the predictor step and

P
n+1

e =
1
2

[
P

n

e + P
n+1/2

e

− c∆t

∆x

(
P

n+1/2
E − P

n+1/2
I

)]
(22)

in the corrector step. These equations are substituted
into the pressure equation to eliminate references to the
exterior pressure value. While modifying the pressure
equation at the exit in this manner does entail some
additional complexity it is the only method presented
which can be used to model any general free-surface flow.

To quantify the performance of these exit condition
a series of tests are run using two-dimensional Cauchy-
Poisson waves. The domain has an aspect ratio of 2 and is
discretized using∆x/L = 0.04 and∆t/T = 0.02. The
exit conditions are set on the far right boundary atx = 4L
and free-slip conditions are set on all other boundaries.
The initial free-surface elevation is set toη(x)/L = 1 +
1
2 exp(−πx/L). To measure the error induced by the exit,
a reference solution is generated by doubling the length of
the numerical domain and using the standard Orlanski exit
with c = 1.5L/T at x = 8L. Figure 3 shows the initial
condition fromx = 0..4L along with subsequent snap-
shots in a waterfall plot for this reference solution. In this
figure, time progresses by moving down the page, and the
waves travel from left to right. Four nonlinear waves of
decreasing amplitude, wavelength and speed can be easily
identified in the figure. The figure also shows that there
is little reflection into the domain during this time period
justifying our use of this solution to estimate errors in the
simulations on the truncated domain.

Four types of exiting conditions are tested, the first of
which is a baseline case using a free-slip wall condition.
This condition will give pure reflection. The second
exit condition uses linear extrapolation to determine the
velocity profile at the exit. Theu component was
corrected in by global flux integration to ensure mass
conservation. The third condition is the standard single-
speed Orlanski exit described by (14) using a global
integration adjustment to determineα. The last condition
is the pressure adjusted wave exit using (18) and (19). The
wave speed is set toc = 1.5L/T for all the wave cases.
Figure 4 shows the results from all of these tests along
with the reference solution as the second wave reaches
x = 4L at t = 3.36T . Contours of∂p

∂x are plotted within
the water to aid in comparing the methods. By this time,
the large first wave has reflected back across the domain in
Figure 4(b) and the comparison to the reference solution is
already poor. The extrapolation exit condition is observed
to give essentially the same solution as the reflection exit.
The two wave exits compare much better to the reference
solution.

To establish a quantitative comparison, theL2 norm
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Figure 3: Free surface elevation waterfall plot of the
reference solution. Each line is6∆t = 0.12T later than
the line above it. The view is truncated at thex = 4L
where the tested numerical exit conditions were enforced.

of the error in the free surface elevation in the truncated
domain is calculated as a function of time. The results are
shown in Figure 5 for each exit condition and for a range
of c values. The error in the pure reflection condition is
seen to fluctuate in time as the waves reflect from one end
of the truncated domain to the other. The Euler equations
generate no physical dissipation to damp out the wave
energy yet the magnitude of error remains well bounded in
time. This is in contrast to the extrapolation exit which has
similar characteristics to the reflection boundary initially
but rapidly becomes unstable and diverges completely at
t = 9T . This instability in the extrapolation exit demon-
strates that spurious information generated at the exit has
fully corrupted the solution.

The next six lines of Figure 5 show the wave exit
with global-integration correction (labeled Wave 1) and
pressure correction (labeled Wave2) using wave speeds
of c = 0.5, 1.0 and 1.5L/T . All six wave exits show
a significant decrease in error and a fast overall trend
towards zero error in time. Byt = 10T nearly all
waves have traveled out of the truncated domain, and the
remaining error is likely indicative of reflections in the
reference solution. For all choices of wave speed, we see
that the pressure corrected exit has comparable errors to
the exit corrected by global-integration. As (18) is more

(a) Reference solution

(b) Reflection condition

(c) Extrapolation exit

(d) Wave exit with global-integration adjustment

(e) Wave exit with pressure adjustment

Figure 4: Contours of∂p
∂x in the water for the exit

conditions att = 3.36T . A wave speed ofc = 1.5T/L
was used for all wave cases.
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Figure 5: Measurements of theL2 spacial norm of free
surface error as a function of time. The wave exit with
global-integration correction are labeled Wave 1, and the
pressure corrected exits are labeled Wave 2.

physically relevant than (16) and allows comprehensive
treatment of free-surface flows, we conclude it to be a
significant advancement.

However, the measurements shown in figure 5 still
show reflections which could corrupt solutions. The
Higdon condition may be used to extend the method to
multiple wave speeds but solution algorithms for such
methods are complicated, particularly for variable density
flows. Simplifying these numerical methods is a topic of
current research.

BODY BOUNDARIES

Treatment of body boundaries are of particular concern in
Cartesian-grid methods. The methods currently available
have limitations in applications or accuracy or have
complicated implementations. A general framework is
presented in the next two sections to formulate equations
of motion which accurately simulate complex flows
around solid geometries. A simple implementation is
proposed which automatically maintains the order-of-
accuracy of the general flow solver. While any surface
representation could be used with this method, we
present a representation which increases ease of use and
efficiency.

Thus far, two primary methods exists in the literature
to enforce the effects of solid bodies in Cartesian-
grid simulations: Immersed-Boundary methods and Cut-
Cell methods. The Immersed-Boundary method was
developed for use in fluid-structure interaction problems,
specifically biological fluid dynamics. Peskin (2002)
gives a detailed review. In general, the elastic body
equations are solved on an explicitly defined surface
mesh, while the fluid equations are solved on a Cartesian
grid. The two simulations are linked by applying the
reaction force of the body on the fluid and advecting the
body in the resulting flow. The localized forces and body
velocities are calculated using a smoothed approximation
of the Dirac delta function. Because the body is advected
by the flow the interactions are restricted to flexible bodies
and systems that are not mathematically stiff.

The so called Cut-Cell methods alter the discrete form
of the fluid equations of motion near the body to account
for its presence. There are a great variety of these
methods, and the body may either be explicitly defined
by a mesh or implicitly defined by a field (Udaykumar
et al. 2001). The changes to the discrete equations
often involve interpolating boundary values such as in
Chimera methods and altering the local grid metrics such
as with non-orthogonal grids. Other alterations have
also been researched such as locally changing the grid
from staggered to collocated (Gilmanov and Sotiropoulos
2005) and setting up extrapolated “ghost-cells” (Tseng
and Ferziger 2003) within the domain. The diffi-
culties with these methods are their complexity, compu-
tational expense and maintaining the flow solver’s order
of accuracy and stability (Ye et al. 1999).

Dommermuth et al. (1998) avoids these issues in
developing a simple body force method suitable for rigid
no-slip bodies such as ships. A body force term is added
to the discrete momentum equations within the body
proportional to the velocity error. This force drives the
velocity of the fluid within the body to the prescribed body
velocity exponentially in time. As such, the boundary
condition is treated as a goal-state rather than an instan-
taneous restriction on admissible velocity fields.

Expanding upon that work, a new method is presented
to constrain the flow to the known instantaneous velocity
conditions on a general, dynamic bodyB for two and
three-dimensional flows. A distance based normalized



delta function, or switch function, defined as

δ′(~x) ≡
{

1 for all ~x ∈ B
0 else

(23)

is used to alter the analytic form of the governing
equations. This is in contrast with Cut-Cell methods
which change the discrete form of the equations near the
body. By directly imposing constraints on the velocity
field the body will drive the flow instead of being advected
by it, allowing for the treatment of high-stiffness bodies
such as ship hulls.

No-Slip Condition

In this subsection equations to enforce the no-slip body
boundary condition on a general topological bodyB
immersed in the fluid domainR are derived. We are given
the velocity vector~U of B as well as the distance from any
fluid point in the domain to the body surface. The no-slip
condition is then stated as

~u = ~U for all ~x ∈ B. (24)

To derive a no-slip equality for use in the momentum
equation, (24) is substituted into (2) to give

∂~U

∂t
+

1
ρ

~∇p− ~r = 0 for all ~x ∈ B, (25)

which is commonly used as a starting point for deriving
solid-body boundary conditions for the pressure. In this
method we instead multiply (25) by the functionδ′. Its
definition ensures that this product is zero throughout the
domain and therefore may be added to (2) resulting in the
altered momentum equation

∂~u

∂t
= (1− δ′)

(
~r − 1

ρ
~∇p

)
+ δ′

∂~U

∂t
. (26)

Taking the divergence gives the corresponding pressure
equation as

~∇·
(

1− δ′

ρ
~∇p

)
=

~∇ ·
(

(1− δ′)~r + δ′
∂~U

∂t
− ∂~u

∂t

)
. (27)

Equations (26) and (27) are identical to equations
(2) and (3) except onB where the switch function is

used to transition the equations to an enforcement of
the no-slip condition. Technically speaking, the above
equations enforce the time derivative of (24), but when
the momentum equation is integrated in time, the exact
boundary condition is recovered onB. This analytic
transition from the field equations to the boundary
conditions differs significantly from the standard body
force or Immersed-Boundary formulations.

When these equations are applied to the boundaries
of the numerical domain, they produce exactly the
same discrete formula obtained by applying boundary
conditions to a boundary fitted grid. This demonstrates
that equations (26) and (27) are generalizations of the
equations used in fitted grid methods, allowing the body
to lay anywhere in the domain instead of restricting it
to coincide with the domain boundary. Because of this
generality the above equations can be formulated for any
number of arbitrary bodies with any given velocity. Also,
as B need not be a material surface, the inflow and
outflow boundaries can be modeled with this formulation
by setting~U appropriately.

No-Penetration Condition

The method is next extended to the no-penetration
condition, given by

~u · ~n = ~U · ~n for all ~x ∈ B (28)

where~n is the unit normal vector of the surface ofB.
This boundary condition is substituted into the normal

projection of (2) to give
[
~n ·

(
∂~U

∂t
+

1
ρ

~∇p− ~r

)
+

∂~n

∂t
·
(

~U − ~u
)]

~n = 0

for all ~x ∈ B (29)

where the second term within the brackets is arbitrary and
can be set to zero. To see this, note that the length of
~n is constant, meaning its time derivative must lies in
the tangent plane to the body surface. As the tangential
velocity of ~U is arbitrary it can always be set so that the
inner product vanishes.

Using the same procedure as in the previous section,
(29) is multiplied by δ′ and added to the governing
equations. The resulting no-penetration momentum and
pressure equations are

∂~u

∂t
= (I − δ′N)

(
~r − 1

ρ
~∇p

)
+ δ′N

∂~U

∂t
(30)



and

~∇·
(

(I − δ′N)
1
ρ

~∇p

)
=

~∇ ·
(

(I − δ′N)~r + δ′N
∂~U

∂t
− ∂~u

∂t

)
, (31)

where I is the identity tensor andN ≡ ~n~n is the
normal dyad. Although similar in form to the no-slip
equations, the no-penetration equations feature tensor
products instead of simple multiplication. This additional
complexity arises because (28) is a scalar equality and
can therefore only make a rank-one adjustment to the
governing equations. The adjustment is made through
the rank-one dyadN, leaving the (N − 1) tangential
components of the momentum equation unchanged by the
presence of the body. These tangential equations are then
free to carry any user defined slip model including the
no-slip condition. This topic is explored further in the
following sections.

The tensor products make numerical solution of the no-
penetration equations more laborious. The source term
of (31) is easily constructed, but the Poisson coefficients
give rise to cross derivatives. These cross derivatives
are needed to cancel out the normal component of the
pressure gradient. As they arise in this general formu-
lation they must be treated regardless of the implemen-
tation being Cut-Cell, fitted-grid, or the method described
in the next section. In this work, the cross derivatives
have been treated with differed-correction whereby old
values of the cross derivatives are used and then corrected
after the pressure field is calculated. This maintains
the simplicity of the pressure solver and allows general
treatment of the equations throughout the domain.

Numerical Implementation

In a flow solver the momentum equation is evaluated
at discrete points in the domain which, in general, do
not exactly coincide with the surfaceB, allowing the
surface to “hide” from the flow. There are many ways to
overcome this issue, the best established of which is to use
a non-orthogonal boundary-fitted grid. Another option is
to alter the discretization of the momentum and pressure
equations near the body, as in Cut-Cell methods. An
example is the slip condition presented in Dommermuth
et al. (2005), which is derivable by integrating (31) over
each finite volume.

In this work a smoothed approximation of the analytic
delta will be used instead of altering the discretization
scheme. Similar to the form used by the Immersed-
Boundary method, we define the smoothed switch
function as

δ′(~x) =
{

1
2

(
1 + cos

(
dπ

ε

))
for all |d| < ε

0 else
,

(32)
whered is the distance from the point~x to the surface,
andε is the width of the numerical delta function. This
definition is used to allow modeling of thin sheets in
our solver. An alternate definition more akin to the
smoothed heavy side function would be appropriate for
thick solid bodies. Because of the use of (32), discon-
tinuities resulting from the presence of the body will
be smoothed over the widthε. The current method is
therefore not a “sharp-interface” method, and care must
be taken in the setting ofε such that accuracy is not
lost. The smoothing width was set toε = 2∆x

√N for
all tests in this work and is demonstrated below not to
reduce solution accuracy. The benefit of this method is
its trivial and general implementation. Also, because the
method does not alter the calculation of derivatives the
order-of-accuracy of the bulk flow solver is automatically
maintained.

Two simple tests are presented to demonstrate the
ability of this boundary condition enforcement technique
to accurately simulate unsteady free-surface flows. In
both, a two-dimensional tank with aspect ratio 2 is
simulated using∆x = 0.0125L and ∆t = 0.00267T .
The first case is a high amplitude standing wave test with
A = 0.2L andλ = L. An image of the resulting nonlinear
wave at timet = T is shown in Figure 6(a). Note that the
simulation is symmetric on either side of thex = 0.5L.
To test the proposed method a vertical wall is placed at
that location and a constant free surface height of0.05L
is set on the right side while the wave initial condition is
maintained on the left. This simulation will thus test the
method’s ability to enforce the no-penetration condition
and quantify the errors due to smoothing the boundary.
The result using the current method is shown in Figure
6(b). For comparison the result for the same simulation
using the body force method is shown in Figure 6(c).
Unlike the body force method, no fluid is transmitted
through the wall, and errors due to smoothing are very
small.

In the second case a tank half filled with water is



quickly displaced to the right by0.2L and then held
steady. This can be modeled using a frame of reference
that moves with the tank, accounting for the acceleration
by the application of a uniform body force. It can also
be simulated by enforcing the no-penetration condition on
the moving vertical walls of the tank using a stationary
frame of reference. Therefore, the same result should
be generated using a fitted grid or moving immersed
boundaries, allowing for a direct comparison. Figure 7(a)
and 7(b) show the result for the fitted and immersed grid
respectively att = 2.4T . The images show that the
comparison between the methods is excellent, even for
this highly complex flow with dynamic boundaries.

Advanced Body Representation

All flows with bodies must describe the geometry in
some way and the most useful description is problem
dependant. When solving biological fluid-dynamics
problems with the Immersed-Boundary method, a simple
algebraic mesh representation is logical because the
elastic body equations need to be solved on a mesh.
However, when solving flows with the method described
in the previous section a more powerful set of functions
can be chosen to describe the geometry.

NURBS (Non-Uniform Rational B-Splines) are one of
the most popular tools used to represent lines and surfaces
in computer aided design and graphics, and are the
backbone of such programs as Rhino and FastShip. This
is because of their efficient implementation, their intuitive
control point interface, and the smoothness properties
of the resulting forms. In this work, the NURBS
description used to design a solid body is maintained in
the computational analysis of the flow around that body.
This eliminates all need for gridding and assures the
designer that WYSIWYG1. Another consideration is that
NURBS surfaces have far fewer parameters than algebraic
grids making them better suited for shape optimization
problems.

In order to enforce body boundary conditions on a
Cartesian grid every point on the grid must know the
distanced to the nearest point on the body. Additionally,
topological parameters such as the normal~n are required.
Although nowhere near as time consuming as creating
a fitted mesh, determining these values can be a slow
process. On an algebraic mesh the distance to the body
is found by an exhaustive search of every point, line,

1What You See Is What You Get

(a) Symmetric standing wave in full tank

(b) Standing wave in split tank using current method

(c) Standing wave in split tank using body force method

Figure 6: Images of high amplitude standing waves in a
tank. Cells full of water are colored blue, cells full of air
white, and partially filled cells green. Figure (a) shows the
baseline case with no immersed surface. The domain has
been split in two by a vertical wall in figures (b) and (c),
using the current formulation and the body force formu-
lation respectively.



(a) Fitted Grid Simulation

(b) Current Method Simulation

Figure 7: Image of sloshing waves in a tank generated by
rapid sideways displacement using the same coloring as
in Figure 6. Figure (a) shows the baseline using a fitted-
grid formulation and Figure (b) shows the result using the
current method.

and planar surface on the mesh. The parametric NURBS
representation allows the use of a gradient based search
for the distance function that is orders of magnitude faster.
Formulating the squared distance from a point~x in the
domain to the point~X on the body as a function of the
surface parameter~s as

ψ2(~s) =
∣∣∣~x− ~X(~s)

∣∣∣
2

, (33)

allows the minimum distance function to be defined by

d2 = min
~s

ψ2(~s) (34)

which can be solved with the Gauss-Newton method
for non-linear least squares which has a second-order
convergence rate.

To quantify the speed-up observed by using this
method, the signed distance function and normal vector
for a spherical test geometry are computed on a series
of background grids. This is compared to the average
accuracy and speed of calculation of the distance function

R/∆x NURBS time Mesh time Mesh Error
32 0.301e-1 0.201e-1 0.119e-2
64 0.121e+0 0.660e+0 0.178e-3
128 0.181e+1 0.202e+2 0.453e-4
256 0.127e+2 — —

Table 2: Distance calculation statistics for immersed
sphere using mesh and NURBS based surface represen-
tations.

and normal using a structured surface mesh. Table 2
shows these results. The distance function and normal
vector were found using a single processor computer, and
the times (given in seconds) are only meant for relative
comparison. The valueR/∆x is the sphere radius over
the grid spacing and therefore proportional to the number
of grid points in one direction. The average error in the
parameters using the NURBS solver was less than 1e-
7. The mesh-based method was stopped after 45 minutes
on the finest grid and the results are not shown for this
case. The table shows that the cost of determining the
parameters scales linearly with the number of points when
using the Gauss-Newton solver, but at least quadratically
when using an exhaustive search on the mesh. This is
especially important when the geometry is continually
changing as the simulation progresses, such as in hull
shape optimization and the flexible wave maker problem
presented in the next section.

An additional advantage of this representation is that it
can be easily adjusted to compute distance function to the
cross-sectional lines of any surface. When the distance
function is found using a gradient method a lagrange
multiplier can be constructed which constrains the set
of admissible points on the surface to a particular cross
section with no increase in computing time. To create the
same distance function using a meshed geometry would
require expensive and complicated preprocessing of the
body geometry. Figure 8 shows a containership bow with
the cross sectional lines. Though the lines are discon-
tinuous at the bulbous bow the current method can handle
this discontinuity with no special treatment.

NAVAL SHIP HYDRODYNAMICS APPLICATION

At this point, simple and general methods for treating
the free surface, numerical exit boundary, and body have
been developed and tested. In this section we will
demonstrate the ability of these advanced Cartesian-grid



Figure 8: Bow of a general containership hull-form with
bulb. The lines are cross sections of the surface withx-
planes, as would be required for 2D+t simulation.

methods to simulate flows with naval applications and
use comparisons of those solutions to experimental results
to discuss possible reduced models of bow flows and
proper tangential boundary conditions for Cartesian-grid
methods.

Figure 9 shows the bow wave flow of the model 5415
hull in a 30 knot simulation generated using standard
NFA methodologies. This simulation is preformed on
massively parallel machines using nearly 30 million
grid points and grid stretching on the Cartesian mesh.
Comparison of these simulations to experimental results
for the same test case demonstrate generally good
agreement, but the experiments show that the run-up of
the bow wave is under-predicted by NFA even for this
high resolution run. This error is due to the seven orders
of magnitude disparity in relevant length and time scales
in naval ship hydrodynamics which can not be resolved
directly even with the most advanced brute force methods
(Weymouth et al. 2006).

One interesting proposal to deal with the demands
of resolving full-scale naval hydrodynamic flows is to
adopt the “slender ship” assumptions, modeling the three-
dimensional system as a 2D+t flow. 2D+t models simplify
the simulation of ship bow waves by assuming that
changes in the longitudinal direction are small compared
to changes in the transverse directions. Historically,
this allowed potential flow simulations of the bow waves
around slender vessels to be generated with orders of
magnitude savings in computational expense. Fontaine
et al. (2000) provide a thorough derivation of the method
and present results generated using a nonlinear potential

Figure 9: 3D image of the 5415 bow wave flow at 30 knots
as simulated by NFA

flow solver.
The pertinent issues may be addressed with a brief

introduction to the 2D+t methodology. Using the
ship lengthL and draftD as the relevant dimensional
parameters gives the laplace equation for the velocity
potentialφ close to the body as

(
γ2 ∂2

∂x̂2
+

∂2

∂ŷ2
+

∂2

∂ẑ2

)
φ = 0 (35)

wherex̂ = x/L, ŷ = y/D, ẑ = z/D andγ = D/L. If
the vessel is very slender thenγ ¿ 1 and the equation
has nox-dependance to leading order. The kinematic
and dynamic free-surface boundary conditions set the
requirement that

γ
U2

gL
À O(1) (36)

and impose a downstreamx-dependance on the solutions,
but no upstream influence (Fontaine and Cointe 1997).
Therefore, the problem is parabolic and may be posed as
an unsteady two-dimensional nonlinear system instead of
a three dimensional one.

While potential flow solvers are typically used to
solve the resulting unsteady two-dimensional flow, the
assumptions of potential flow theory prevent it from
modeling steep and overturning ship waves such as those
shown in Figure 9 for a number of reasons. Firstly,
as the run-up is dependant on the near-wall flow it can



not be assumed that the flow is inviscid. Additionally,
plunging breakers such as those of Figure 9 are highly
rotational. Therefore, a potential function may not be
used to describe the velocity field and other means must
be used to simulate the flow within this 2D+t framework.

Geometrically, the 2D+t assumptions reduce the three-
dimensional fluid problem to a two-dimensional cross
section of the flow which moves along the length of the
body in time. This models the hull as a deforming curve
which can be though of as a flexible wave maker, pushing
out the 2D+t representation of the divergent wave system
generated by the body. Shakeri (2005) presents experi-
mental results for a physical realization of this geometric
interpretation. In those experiments, a large (3m tall)
wave maker was actuated by hydraulics to sweep out the
bow of the 2D+t representation of a modified model 5415
hull traveling at 25 knots. The sonar dome was removed
from the representation of that hull due to limitations in
the wave maker experimental apparatus. This shows that
while these experimental results bypass the limitations of
potential flow they introduce limitations of their own.

Cartesian-grid methods overcome these shortcomings
and those of potential flow and afford the opportunity
to study the effect of 2D+t modeling on breaking bow
waves generated by realistic ship geometries. As depicted
in Figure 8, hulls with bulbs, chines and appendages
hulls give rise to discontinuous and multiply connected
“wave makers” that only the NURBS body represen-
tation and Cartesian-grid methods have the capability of
modeling simply and generally. Such hull features will
generally violate the slenderness assumptions of the 2D+t
framework, and the errors incurred by these effects can be
quantified with detailed simulations.

Additionally, Cartesian-grid methods offer the unique
capability to quantitatively determine the bounds on the
validity of 2D+t models for complex bow flows. 2D+t
methodologies demand that a hull with lengthL and speed
U will produce the same wave as a stretched geometry
with length 10L and speed10U . A series of three-
dimensional simulations can be run varying the length
scale and Froude number of the vessel to determine when
stream-wise variations become important. Because the
methods proposed in this paper are general enough to
model free surfaces, exits and bodies in two or three
dimensions, comparisons of simulations with different
numbers of dimensions can be made with confidence.

As a first step the data provided by Shakeri (2005) is
used to validate the Cartesian-grid capabilities described
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Figure 10: Image of the flexible wave maker and
calculated flow on the finest grid. The dark solid line is
the wave maker surface, the arrows are velocity vectors
and the blue coloring denotes water. Every third velocity
vector is shown for clarity. The no-penetration condition
is enforced on the body

in the previous section. The wave maker is simulated
with the body treatment of the previous section and the
position of the wave maker in time is set to exactly
duplicate the experimental conditions. A computational
domain of3m by 6m is defined for the simulations and a
series of time steps and grids spacings are used to judge
their influence on accuracy. Coarse, medium and fine
background grids with spacings of∆x = 0.04m, 0.028m
and0.02m respectively are used. The pressure corrected
wave exit developed above is used withc = 1m

s . Figure
10 shows a snap-shot of the wave maker and simulated
flow using the no-penetration condition on the finest grid
level. As can be seen from the velocity vectors in that
image, the wave maker is sweeping from left to right
with the lower end pined. In this simulation, fluid was
allowed to flow in behind the wave maker using a one-way
periodic condition, ensuring that the continuity condition
is met in that region. The flow behind the wave maker has
no influence on the flow exterior to the wave maker. The
image demonstrates that the fluid has been allowed to run
smoothly up the side of the body boundary and that the
no-penetration condition has been exactly enforced in the
normal direction.

Figure 11 shows a multiple exposure image of the wave
maker position and free surface elevation at sequential
times in the simulation. The wave resulting from this
motion is highly energetic and goes through a series of
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Figure 12: Experimental and simulated wave maker
free surface contact lines. Coarse, medium and fine
background grids use spacings of∆x = 0.04m, 0.028m
and0.02m respectively.

breaking events. Note that the two-dimensional nature of
this simulation does not allow the breaking wave to fully
close and the plunger instead skips off of the free surface.

Because the no-penetration condition has been used,
the point of contact between the free surface and the
wave maker moves freely in this simulation, raising nearly
0.4m at it’s peak. Figure 12 shows the experimental
measurements of the point of contact on the wave maker
surface along with four sets of simulated results. The free
surface run-up is denoted (z) and is normalized by the
wave maker depth (D). The figure shows that all of the
simulations have good general correlation with the exper-
imental measurements. In particular, the no-penetration
conditions accurately predict the rates of run-up and run-
down compared to the measurements for all resolution
levels, but they overshoot the maximum height substan-
tially. In contrast the no-slip condition accurately predicts
the run-up and maximum height but the run-down is much
too slow, leaving the hull wetted for longer than the exper-
imental result. The no-slip result shown in Figure 12
is for the finest grid only. The coarse and medium grid
simulations did not sufficiently resolve the near-wall flow
to give accurate results and have not been shown.

The results of Figure 12 and practical limitations on
computational resources suggest that a slip model must

be added to the no-penetration condition to model the
effects of near-wall viscosity on this wave maker flow and
its three-dimensional counterpart. Adding a slip model
for the tangential equations of motion using the analytic
development given in the previous sections is straight-
forward and the momentum equation takes on the form

∂~u

∂t
= (1−δ′)

(
~r − 1

ρ
~∇p

)
+δ′N

∂~U

∂t
+δ′(I−N) ~K. (37)

~K is the user defined slip model which can be set
as a function of fluid velocity, pressure, density, wall
roughness, and any other pertinent parameters. (37) is the
most general slip model formulation with proper choice
of ~K recovering the no-penetration and no-slip conditions
and many possibilities between.

A promising compromise between the no-penetration
and no-slip condition is to use a body force correction
similar to that developed in Dommermuth et al. (1998)
to model the tangential flow. In that formulation,~K
would reintroduce the tangential momentum equations
and include a body force term proportional to the slip
velocity at the body surface. The force is scaled by a
friction coefficient and in Dommermuth et al. (1998) that
coefficient is set very high to enforce the no-penetration
condition on the hull. However, used in the framework of
(37) the coefficient could be tuned based on experimental
evidence such as shown in Figure 12. More detailed
experimental measurements and numerical studies will
allow further investigation of this slip condition, with the
goal of a simple and general formulation for free-surface
flows.

Another serious modeling concern which must be
addressed is the strictly two-dimensional divergence-free
air flow. Unlike potential flow simulations, our VOF
method models the air flow in addition to the water flow
and air trapped inside two-dimensional breaking waves
has nowhere to escape. The breaking wave in Figure
11 displays this effect, and does not fully close but skips
off of the free surface. In three-dimensions, the majority
of air escapes from within a collapsing breaking wave
by moving much faster than the bulk flow in the longi-
tudinal direction. This violates the fundamental 2D+t
assumptions and models accounting for this effect must
be developed to allow 2D+t simulations to be accurately
extended to their three-dimensional analogs.
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Figure 11: Multiple exposure image of the flexible wave maker and calculated free surface on the finest grid. The
black lines are the wave maker surface, and the blue lines are the contours off = 0.5. The no-penetration condition
is enforced on the body.

CONCLUSION

This work has shown that Cartesian-grid methods
are capable simulating flows with engineering appli-
cations without the difficulties associated with fitted-
grid methods. New capabilities have been developed to
further extend the usefulness and generality of Cartesian
grid methods. A free surface advection algorithm which
conserves the volume of fluid at the interface even for
complex three-dimensional flows has been presented.
Exit boundary conditions for the velocity and pressure
have been derived which allow for accurate simulation
of general external flows. A body boundary formulation
based on the analytic alteration of the governing equations
has been presented which allows enforcement of general
boundary conditions and is easily implemented such that
the solver order of accuracy is maintained. A series
of simulations of a flexible wave maker were presented
which used all of these numerical advancements showed
good comparison to experimental results. Specifically,
the no-slip and no-penetration boundary conditions each
captured elements of the physical system, and a more
advanced tangential slip model will help improve the
comparison further. An outline of a method to quantify

the bounds on the 2D+t slenderness assumptions were
made and the need for a method to allow variation of flow
in the air was introduced. With the capabilities presented
in this paper highly accurate simulations of general ship
flows are achievable.
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