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ABSTRACT techniques requires extensive time and training, limiting
their use in practical science and engineering applications.
Recent developments in computational fluid dynamicscCartesian-grid methods are a significant advancement
are enabling accurate simulations of full scale shifthe simulation of general fluid flows because they afford
hydrodynamic flow.  In particular, Cartesian-grighe capability of computing flows with engineering appli-
techniques such as volume-of-fluid and immersedtions without the limitations and difficulties associated
boundary methods expedite computational simulatiogsth non-orthogonal or unstructured grids. Recently,
of unsteady breaking wave flows around complicatefendrickson and Yue (2006) show the level-set method
ship geometries. However, there are still a number igf capable of high-resolution computations of unsteady
important numerical and modeling issues to overcorgmall-scale breaking waves. Dommermuth et al.
such as finite computational domains, moving bodies, ai05) use the volume-of-fluid method to simulate full-
dynamic slip conditions which are required in order fafcale ship breaking waves at high Froude numbers on
Cartesian-grid methods to achieve their full potential &artesian grids and Dommermuth et al. (2006) present
a practical analysis tool. Additionally, systematic studiefigh-resolution unsteady predictions of the free-surface
of the accuracy and applicability of numerical techniquesevation and wave making resistance of a model 5415
are key for their use in quantitative engineering appliull.
cations. In this work we develop a new method for while the move to Cartesian-grid methods is a step in
the enforcement of general boundary conditions on g correct direction, there are still many issues which
arbitrary body as well as a new exit condition to allowayve not received a simple and general treatment. These
for Significantly smaller domains and a volume of ﬂUi%Chniques must be Comprehensive' robust, and well
algorithm to preserve the free surface characteristics. Wgidated before Cartesian-grid methods will be useful
consider a number of canonical problems to establighan engineering setting. This paper forwards such
quantitative comparisons and assessments of these gg¢ancements in free surface tracking, exit boundary
methods. We use these new Capabilities to preform ﬂQ‘{ynditionS and body boundary treatment. These new
simulations with naval applications and compare themt@:hniques are devek)ped using a flow solver based on

experimental results. the algorithms described in Dommermuth et al. (2005)
such that they will be easily incorporated into similar
INTRODUCTION large-scale commercially ready codes. The techniques

N : . . o . are verified with two and three-dimensional canonical
Scientific and engineering investigation into ocean . P
L : : -~ simulations. They are then used to preform initial inves-

systems give rise to a wide variety of complex nonllneﬁr

. . . . . i i ian-gri i i +
fluid dynamics problems. Historically the solutlonsgatlons into Cartesian-grid simulations of 2D+t bow

wgves. A wave maker test based on this methodology

techniques used to solve these problems were of limite : . . .
X i used to validate the code and motivate discussion of
accuracy and applicable only to a very small subset of the

complete system. Even with the continuing increase %@ctlcal models of tangential flow for Cartesian-grid
. : . methods.

availability of computational resources, producing quahﬂ'/1

solutions with modern computational fluid dynamic



PROBLEM FORMULATION AND GENERAL are treated conservatively using central differences and
SOLVER DESCRIPTION a preconditioned conjugate-gradient method is used to
iteratively solve the Poisson equation. The convective
Our physical system is the general fluid flow near an aterms in NFA are treated with a slope-limited QUICK
water interface. For our model it is required that the fluistheme for stability and accuracy.
velocity u satisfy the conservation of momentum for an The NFA code is well documented as providing
incompressible inviscid fluid, given by the Euler equatiogkcellent high fidelity turnkey solutions to ship flows.
as i . 1. However, there are still a number of challenging issues
— 4+ (@-V)i=—--Vp—g (1) which must be overcome for Cartesian-grid methods
ot P to robustly simulate completely general two and three-
wherep is the total pressurgj is the gravitational accel- dimensional free-surface flows. First, the free surface
eration vector, ang is the local fluid density. For conve-must be tracked accurately and consistently for simulated
nience, the vector is defined as the combination of theesults to compare well with experiments. Existing
convective and gravitational terms, such that (1) beconmagthods for the advection of the volume fractigh
. describing a three-dimensional free surface are highly
9u - _lﬁp 47 (2) complexand do not conserve fluid volume at the interface.
ot P This can lead to free surface “stepping” as well as the
g{%gneration of flotsam and jetsam. In the next section
e present a list of requirements for an operator-split

Taking the divergence of (2) results in a variab@9orithm to conserve fluid volume to machine precision

coefficient Poisson equation for the pressure of the forrialm,j present a simple d|.menS|onaIIy independent method
which meets these requirements.

R 1. - (. 0u The second advancement which we investigate in this

A <pr> =V <7’ - 8t) : 3) work is an improvement to exit boundary conditions.

For some types of flows a simple numerical exit,

The pressure field resulting from the solution of thisuch as a free-stream exit, can be implemented with
equation is used to project the velocity field onto orenly moderate corruption of the solution. However,

The effects of surface tension are ignored for the lar
scale flows studied in this work.

satisfying the divergence free constraint a general fluid system may have such characteristics
_— as a lack of underlying free-stream flow or nontrivial
Vi =0. (4) domain boundaries which prohibit the use of currently

We use a volume-of-fluid method to model free—surfadeocumem(ad exit conditions. This work proposes a new
%oundary condition with the potential for general and
ccurate simulations of external flows in two or three
dimensions.
p = puf +pa(l—f) (5) A thirc_:j challenge i_s the_proper treatment of body
boundaries in Cartesian-grid methods. Because they
wherep,, andp, are the densities of water and air respe@0 not require complex boundary fitted grids to be
tively. The field f is the fraction of water filling each created, Cartesian-grid solvers have the potential to
cell and our scheme for determining this field will b@enerate solutions to more complicated problems orders
discussed in detail in the following section. of magnitude faster than conventional fitted-grid solvers.
Our basic implementation of these equations followét, this speed and generality must not result in a lack of
the method of the Numerical Flow Analysis (NFA) cod@ccuracy in the flow around bodies immersed in the fluid
(Dommermuth et al. 2004). The discrete forms &fomain. A new and general formulation of this problem is
equations (2) and (3) are posed on a Cartesian geigsented whereby the analytic form of the fluid equations
covering the fluid domain. Staggered variable placemég altered to ensure exact enforcement of the boundary
is used. The time derivatives are treated with &®nditions.
explicit low storage second-order Runge-Kutta method This formulation produces equations which are a
(Dommermuth et al. 2004). The pressure terngsiperset of those solved in boundary-fitted methods and

flows. In this framework the local fluid density is
calculated as



could be used to derive adjustments to the discretenust satisfy the condition
algebraic equations as in Cut-Cell methods. Instead of
altering the discrete form of the equations we present 0<f<1 (6)

a simple implementation akin to Immersed—Bounda%/ I i Thi dition is difficult t intai d
methods which automatically maintains the solver’s ord | all imes. IS condition 1S dificult to maintain an
tandard advection methods result in cells which are less

of accuracy. While any type of body geometry repré—
sentation could be incorporated into this method, NoW—an empty and more than full. Vglume m'ust b.e a'd'ded or
Uniform-Rational-Basis-Splines (NURBS) are used i_rr?moveda_d-h_ocfrom these c_ells introducing significant
this work which allow for increased efficiency and flexilnaceuracies into th_e S|mu|a_t|o_ns at _the free sunface.

The volume fraction of fluid in an incompressible flow

bility in immersing the body on the grid. s ad 4 bv solvina th . .
In the fourth section of this paper an assessmentis m&d8d vected by solving the conservative equation

of the ability of the current Cartesian-grid method to use of = .
“slender ship”, or 2D+t, assumptions to preform reduced 2TV (fa)=0. (7)
simulations of bow wave flows. Completely resolving
naval hydrodynamic flows using brute force techniqué&dlliod and Puckett (2004) present one of many suggested
is impossible due to the required computing expenstsplit advection algorithms to solve (7) for two-
2D+t models offer a simple alternative which reducémensional flows based on geometric flux integrations
that cost by multiple orders of magnitude. Within thiglong approximated characteristics of the velocity field
framework, experimental wave maker results are usediéo These methods do not typically conserve volume and
validate the code. Limitations due to this method as wélfe very complicated, particularly for three-dimensional
as practical tangential boundary conditions for Cartesidifws.
grid methods are discussed and one viable solution isThe standard simplification is to use an operator-split
presented. advection method. In an operator-split algorithm, the non-
When proposing these modeling advances it §@nservative advection equations
important to retain the inherent advantages of Cartesian- f P Ouy
grid methods. The proposed solutions fjrffee surface — 4+ — (fuq) = f=—
advection, i) exit boundary conditions, andii solid- ot~ dzq Oxq
body treatment are as simple and general as possible solved sequentially for progressive updateg @br
These capabilities are developed with general largesch of theA spatial dimensions. By treating only
scale simulations in mind and have benefits which allayhe velocity component at a time, the calculation of
comprehensive simulation of ship hydrodynamic flows qRe advected volume fraction through each face can be
Cartesian grids. analytically determined with relative ease, even for planar
surface reconstructions in three dimensions (Scardovelli
FREE SURFACE ADVECTION METHOD and Zaleski 2000). A typical two-dimensional recon-

. . struction is shown in Figure 1. In this figure the
Volume-of-Fluid (VOF) methods allow topologically clocities are scaled b)Agt/Ax making then? local

complex surfaces to be treated generally by tracking the

. . ° Courant numbers. With this scaling a donating region
volume of each fluid instead of the interface location. . . : .
. upwind of each face can be defined with width equal to
Current methods to propagate the fluids allow volum . : PR )
. N . 1he velocity magnitude. The dark fluid within each region
to be lost at the free surface leading to “stepping” oOf. ; . e
. . . will be fluxed into the next cell. In Figure 1, the fluid in
the interface and spurious flotsam and jetsam. In this . N :
. . ; . the bottom-right corner of cellé, j) is in two donating
section a simple set of requirements are detailed 10 . . S . .
C . ... regions. To avoid the possibility of fluxing the same fluid
avoid this problem, and a general advection algorlthm.|st .
. . into two different cells the surface must be reconstructed
proposed which exactly conserves the total fluid volum .
S . : after each sweep of an operator-split method.
and maintains a sharp air-water interface.

VOF techniques use a fielfito specify the fraction of The divergence termis not canceled from (8) because at

each finite volume which is filled with one type of fluid ineach step of the algorithm the volume fraction is advected

L . In a one-dimensional flowvhich is not divergence free
order to track the free surface. By definition, the fraCt'quithout the velocity stretching term there is no way to

ford=1...N (8)



splitting without the Lagrangian flux calculation. Rider
and Kothe (1998) propose integrating first explicitly, then
implicitly.

Aulisa et al. (2003) demonstrate by two-dimensional
algebraic mapping that the EI-LE scheme is the only one
of the three that is volume conserving. It also shows
that this is dependant upon a strictly two-dimensional
divergence free velocity field. The mathematical analysis
1 in that work is straightforward but does not help suggest a
general solution for three-dimensional flows.

Breaking the problem of conservation into a short list
Vit of requirements clarifies the issues. Given that

Vi

i)
Uiap ! u

1.The flux terms are conservativand

2.The divergence term sums to zemd

3.No clipping or filling of a cell is needed due to

. . , . violation of (6) at any stage
Figure 1: 2D diagram of a typical linear VOF surface

reconstruction on a 3x3 block of cells with scaled velocitfien the algorithnmustconservef to machine precision.
components. Using the standard operator-split treatmeftg first requirement ensures that any fluid going into
the donating regions are right-cylinders upwind of eacte cell is coming out of another and the second ensures
face. that there is no net source term added to the advection
equation. Along with the third requirement, it is then
aranteed that there is no net changef im the fluid
omain regardless of the dimensionality of the system.
By multiplying the divergence term by in the explicit
step and therf™*! in the implicit step, Rider and Kothe

Scardovelli and Zaleski (2003) investigate this effect 99.8? greate a net source term., violating requwgment 2.
detail geometrically and develop a fairly simple tWo_mpllcn integration violates requirement 1 by scaling the

dimensional operator-split Eulerian implicit Lagrangiaﬂux‘zf‘S by a Io_cal stretchlng term, bracket_ed in (9). This
caling term is not consistent on both sides of the cell

explicit (EI-LE) method which conserves the globeﬁ ing the effective flux i i tive. Th
volume fraction exactly. In that method, (8) is integrate ce, meaning the efiective TIUX 1S not conservative. 1he
I-LE scheme maintains global conservation despite this

implicitly with for d = 1 and explicitly with Lagrangian : . ) :
flux treatment ford = 2. Using the same velocity scalinqiy using the Lagrangian flux calculations and relying on

ensure that (6) is met after each step of the algorith
In Figure 1 more fluid is being fluxed in from cegll —
1,7) than space left after fluxing out to cell + 1, ),
meaning that cel(7, j) would overfill in the first sweep.

as above, the discrete form of the implicit and explic pe bracketed t_erm in (9) to be ex_actly (_:anceled _by _the
integrations are given by racketed term in (10) due to two-dimensional continuity.

This cancelation is not extendable to three dimensions.
fro- (F," _pn ) However, these requirements are not insurmountable
f:j“/Q - A (9) and a simple operator-split algorithm which meets them
1= ulyye =y s

fo=f—AF;+g " Aguy  ford=1...N (11)

n+l _ pn+1/2 n n
USRI {1 AT vj_m} where A, denotes differences in thé direction andg
_ (G"Ll//j _ G”jll//g) (10) is a function to be determined. Theand a super-
! ! scripts indicate theurrentandupdatedvalue of f respec-
where F' and G are the fluxed dark fluid in the first andively. As in equations (9) and (10), the fluxes are always
second directions. Puckett et al. (1997) propose the saratulated using the current value fofo avoid fluxing the



same fluid twice. The key features of this scheme are the¢
use of conservative fluxes and the constgntield multi-
plying the divergence term. Thus requirements 1 and Z
are met, and it only remains to examine requirement 3.
The form of (11) emphasizes that the divergence
correction term is offsetting the dark fluid flux with
an approximate flux proportional to the stretching. A
definition of ¢ is needed which maintains (6) for any
configuration, and we propose the simple form

n{l it fm>1/2 12)

9 =1 0 else

to letg™ = f", but setting the approximate flux propor-
tional to the fraction in the central cell does not guarantee X v
conservation. Scardovelli and Zaleski (2003) give a
detailed example of this for essentially the situation in

Figure 1. Using™ = f™ for this case results in overfilling _. e
in the first step because the dilatation is small and the [igure 2: Visualization of the free surface for the 3D wave

flux is large. Using the definition of above enhances thef®St at’;]: 0.5. ?o_ntogrs |r:jd|catﬁ elevatlfor;]. The nonlm_ear |
influence of the stretching term and with the restriction ave has nearly impinged on the top of the computationa
domain in this image.

making g a sharp version of. It might seem intuitive /é\

lual , |Agual < 2/\[%2 for all d (13)
guarantees that (6) is met at all stages of the algorithm.
The velocity restriction limits the acceptable time step;
yet our experience has shown that it is conservativeecond (I-I-E) uses implicit integration of the form of (9)
particulary for three-dimensional flows. for the first two steps. Next is the current method usjng
Even with the restriction on the time step, all threas defined in (12) and then usigty = f™ for comparison.
requirements are met and the algorithm will conserdéne results are shown in Table 1. The first two columns
volume fraction to machine precision. A series dfive thel; and L., norms of the global volume loss in
canonical three-dimensional simulations were run te domain after each use of the advection method. The
verify this capability and quantify errors in other methodshird column gives the percentage change in total water
The test case is a high amplitude standing air-water wax@ume in the domain after one wave period. The baseline
and the Cartesian-grid solver described in the previogises by far the worst performance, with a net mass loss
section was used to run the tests. The computation&ll2% after only one wave period. The second and third
domain is a cube, witi\z/L = 0.025, At/T = 0.005 rows show around an order of magnitude decrease in error
and reflection boundary conditions set on all walls. fompared to neglecting the stretching term altogether but
sinusoidal free surface witlh = 0.3L, A = 2L and still leave room for improvement.
an average elevation of = 0.5L is used as the initial The current method demonstrates nearly exact conser-
condition. The slope is well above the Stokes limit andation of mass after each step and overall. The average
results in a highly nonlinear fully three-dimensional wavealues of|u|,,,q. and|Aul,,... at the interface are around
with overturning as seen in Figure 2. 1/3 in this test. Despite this violation of (13), the volume
Five advection methods were tested, the first beindaoss is negligible. The final row shows the results when
baseline test with no stretching term included. The secosetting g = f™. While the volume of water is not
two are extensions of methods such as that of Rider ar@hserved exactly, there is still an order of magnitude
Kothe (1998) to three-dimensional flows. The first (E-Elecrease in error as compared to the second and third
E) uses all explicit integrations of the form of (10) and thews.



Algorithm | L, norm | L, norm | % Change Orlanski-type boundary condition applied to the velocity
Baseline | 2.53e-3| 1.40e-2 | -12.63% vector is

E-E-E 3.03e-4 | 2.51e-3 -1.42% 0 0\ .

I-I-E 1.22e-4 | 1.34e-3 | +0.81% (at + Cax) =0 (14)
Current 1.34e-12| 6.83e-12| -0.00% ) )

gt = fn 969e-6| 1.5le-4 | +0.04% where ¢ is the, as yet undetermined, wave speed and

the xz-coordinate represents the direction normal to the
Table 1: Global mass loss measurements for a high slépé. When using this condition, the mass flux through
3D standing wave test case. The first two columns ref8e boundary is prescribed and a compatible Neumann
to the volume loss at each step, and the final column giggdition must be set on the pressure. Reasonable choices
the total change after one wave period. of the wave speed are the free-stream velocity or some
other natural velocity metric, such aggL. In Hurt
(1999), a field of exit speeds are determined by solving
(14) for ¢ one point interior to the exit. However,
this method is unstable if the momentum equations are

. " . . . integrated explicitly.
Exit conditions are required for external incompressible . .
X . . o Regardless of how the wave speed is chosen, if there are
flow simulations and are notoriously difficult to enforce

) . o : multiple waves with differing speeds exiting the domain,
accurately. In practice poor exit conditions require lar

) : : . X 94) will produce reflections for waves with speeds not
computational domains and short simulation times ) P P

(0] . . .
avoid corrupting the solution. This reduces the comp qual toc. The Higdon condition (Higdon 1994) has been

: o . : - devel ircumvent this difficulty. Th ndition i
tational efficiency and reliability of the simulation. Inthlse eloped to circumvent this difficulty. The condition is a

. . e ‘Wave product
section a new exit boundary condition is presented whl\é\h P

EXIT CONDITION

minimizes reflections for general fluid systems. 7
Unlike the free surface or a no-slip wall, an “exit” Hy: H (é) 18) Z=0 (15)
is a purely numerical boundary. The ideally semi- =1 on  c; Ot

infinite domain of an external flow is truncated by the
exit boundary to make the solution trackable. In estalwherec; are the set of exiting wave speeds. Increasing
lishing an exit boundary, we are inherently assuming ththe number of wave speeds reduces the energy reflected
the flow phenomena of interest are within the numeridaack into the domain. Derivation and implementation
domain and independent of the flow beyond the exif this conditions for the two-dimensional wave equation
Exit conditions must be set despite this assumption isf given by Givoli et al. (2003), but applying this
independence because the pressure Poisson equatidrousidary condition to incompressible free-surface flows
elliptic and requires information on every boundary tis nontrivial.
ensure a globally divergence-free velocity field. Additionally, the requirement of maintaining the
One method of modeling an exit is to construct divergence-free condition on the velocity means that
numerical beach to absorb the energy out of exitimgither (14) nor (15) can be applied to the exiting
waves. Such methods are often ineffective and requa@mponent of the velocity in their current form. This is
large buffer regions, lowering computational efficienchecause a velocity boundary condition that determines the
In Dommermuth et al. (2004) a body force method mass flux through the exit must be globally compatible
developed to drive the flow at the exit to match the fregith the other boundaries. There is no value: tfiat will
stream conditions, and Ferziger and Peric (2002) suggessure this global conservation, and so regardless of the
using 1D extrapolation to set the velocity profile at thehoice of wave speed (or speeds) the calculated velocities
exit. While these methods can be applied in limited casesist be adjusted. The standard solution is to integrate
they rely on a strong underlying convective flow to washe mass fluxes on the other domain boundaries and make
away the errors resulting from their modeling inacc@an ad-hocadjustment to the exit velocity field such that
racies. global conservation is maintained. This is only possible
A more advanced unsteady condition is a wave exitthe mass fluxes on all other boundaries can be readily
such as developed by Orlanski (1976). The typicdetermined priori, which is not true for general cases.



Formally, this adjustment to the-component of the in the corrector step. These equations are substituted

velocity vector can be written as into the pressure equation to eliminate references to the
P P exterior pressure value. While modifying the pressure
(6t +ca) U= —« (16) equation at the exit in this manner does entail some

xr

additional complexity it is the only method presented
wherea is some, hopefully small, deviation from a trugvhich can be used to model any general free-surface flow.
exiting wave form. The terms above are readily correlatedTo quantify the performance of these exit condition
to those of thec-component of the momentum equationa series of tests are run using two-dimensional Cauchy-

o - 10p P.oisso.n waves. The domain has an aspect ratio of 2 and is

(815 + - V) u = o (17) discretized using\z/L = 0.04 andAt/T = 0.02. The

exit conditions are set on the far right boundary at 4L
The time derivatives match am%g is a one-dimensional and free-slip conditions are set on all other boundaries.
model of the convective acceleration. The remainirighe initial free-surface elevation is set#¢z)/L = 1 +
term is the pressure force, which leads us to formulajexp(—7xz/L). To measure the error induced by the exit,

a boundary condition of the form a reference solution is generated by doubling the length of
P 9 10p th_e numerical domain and using the standard Orla_n_sl_<i exit
( + c) U=———— (18) with ¢ = 1.5L/T atxz = 8L. Figure 3 shows the initial
o~ Oz pox condition fromz = 0..4L along with subsequent snap-

for the exiting component of velocity. Adjusting theshots in a waterfall plot for this reference solution. In this
standard Orlanski exit in this way allows the pressure fidigure, time progresses by moving down the page, and the
to fulfill it's normal role of projecting the velocity onto awaves travel from left to right. Four nonlinear waves of
solenoidal field. Therefore, no global flux integrations adeecreasing amplitude, wavelength and speed can be easily
required and the system will conserve mass locally amtgntified in the figure. The figure also shows that there
globally to the tolerance of the pressure solver. is little reflection into the domain during this time period
When using (18) a Dirichlet boundary condition mugustifying our use of this solution to estimate errors in the
be set on the pressure equation. Hydrostatic presssiraulations on the truncated domain.
could be set at the exit, but a wave condition for the Four types of exiting conditions are tested, the first of

pressure which is a baseline case using a free-slip wall condition.
(8 +08> _g (19) This condition will give pure reflection. The second
ot oz )P~ exit condition uses linear extrapolation to determine the

is the most consistent option. The boundary condition\glocity profile at the exit. ~Theu component was
applied at the exit using linear interpolation corrected in by global flux integration to ensure mass
1 conservation. The third condition is the standard single-
P, = 3 (Pg + Pr) (20) speed Orlanski exit described by (14) using a global

integration adjustment to determine The last condition
where P, is the interpolated exit value anfl; and P; is the pressure adjusted wave exit using (18) and (19). The
are the cell-centered values to the exterior and interiorwéve speed is set to= 1.5L/T for all the wave cases.
the exit respectively. Second-order central differences dfigure 4 shows the results from all of these tests along
Runge-Kutta integration in time then give the boundawyith the reference solution as the second wave reaches

equations as x = 4L att = 3.367. Contours of% are plotted within
YN the water to aid in comparing the methods. By this time,
P, =P - Pe—Fr) (21) the large first wave has reflected back across the domain in

Figure 4(b) and the comparison to the reference solution is

in the predictor step and already poor. The extrapolation exit condition is observed

Bl _ 1 B Pt /2 to give essentially the same solution as the reflection exit.
e T2 [ e T The two wave exits compare much better to the reference
B gAt (Pnﬂ/g B PnH/Qﬂ (22) solution.
Ax \FE I To establish a quantitative comparison, thg norm



Figure 3: Free surface elevation waterfall plot of the
reference solution. Each line @&\t = 0.127 later than
the line above it. The view is truncated at the= 4L

of the error in the free surface elevation in the truncate =
domain is calculated as a function of time. The results are
shown in Figure 5 for each exit condition and for a range
of ¢ values. The error in the pure reflection condition is
seen to fluctuate in time as the waves reflect from one end
of the truncated domain to the other. The Euler equatiof
generate no physical dissipation to damp out the way -
energy yet the magnitude of error remains well bounded
time. This is in contrast to the extrapolation exit which ha
similar characteristics to the reflection boundary initiall ‘
but rapidly becomes unstable and diverges completely at (d) Wave exit with global-integration adjustment
t = 97'. This instability in the extrapolation exit demon-
strates that spurious information generated at the exit has
fully corrupted the solution. ,
The next six lines of Figure 5 show the wave exi, |
with global-integration correction (labeled Wave 1) an

of ¢ = 0.5,1.0 and1.5L/T. All six wave exits show
a significant decrease in error and a fast overall trend
towards zero error in time. By = 107 nearly all

waves have traveled out of the truncated domain, and the

(e) Wave exit with pressure adjustment

remaining error is likely indicative of reflections in thd-igure 4. Contours Ofg—ﬁ in the water for the exit
reference solution. For all choices of wave speed, we s@#ditions att = 3.367". A wave speed of = 1.57'/L

that the pressure corrected exit has comparable erroryvas used for all wave cases.
the exit corrected by global-integration. As (18) is more



Thus far, two primary methods exists in the literature
to enforce the effects of solid bodies in Cartesian-

reflection grid simulations: Immersed-Boundary methods and Cut-

014 . dtapolation Cell methods. The Ir.nmersed—Bo.undary. method was
012 ——— Wauelo=10 deve!qped for' use in fIU|d'—structure.mteractlon'problems,
Wave? o=05 specifically biological fluid dynamics. Peskin (2002)

01 T avezemid gives a detailed review. In general, the elastic body
equations are solved on an explicitly defined surface

mesh, while the fluid equations are solved on a Cartesian
grid. The two simulations are linked by applying the
reaction force of the body on the fluid and advecting the
body in the resulting flow. The localized forces and body
velocities are calculated using a smoothed approximation
of the Dirac delta function. Because the body is advected
o by the flow the interactions are restricted to flexible bodies

2 N % s 10 1 and systems that are not mathematically stiff.

The so called Cut-Cell methods alter the discrete form
) ) of the fluid equations of motion near the body to account
Figure 5: Measurements of the, spacial norm of free for jis presence. There are a great variety of these
surface error as a function of time. The wave exit Withethods, and the body may either be explicitly defined
global-integration corr_ectlon are labeled Wave 1, and t[39 a mesh or implicitly defined by a field (Udaykumar
pressure corrected exits are labeled Wave 2. et al. 2001). The changes to the discrete equations
often involve interpolating boundary values such as in

physically relevant than (16) and allows comprehensi\cl:eh'mera methods and altering the local grid metrics such

) as with non-orthogonal grids. Other alterations have
treatment of free-surface flows, we conclude it to be . .
o also been researched such as locally changing the grid
significant advancement.

However, the measurements shown in figure 5 Stfggm staggered to collocated (Gilmanov and Sotiropoulos
show reflections which could corrupt solutions. The 05) and setting up extrapolated "ghost-cells” (Tseng

Higdon condition may be used to extend the method ?gd Ferziger 2003) within the domain. ~The diffi-

. . . ulties with these methods are their complexity, compu-
multiple wave speeds but solution algorithms for such.. N )
. . . ational expense and maintaining the flow solver’s order
methods are complicated, particularly for variable densi

L . ) ; accuracy and stability (Ye et al. 1999).
flows. Simplifying these numerical methods is a topic 0 Dommermuth et al. (1998) avoids these issues in
current research.

developing a simple body force method suitable for rigid
BODY BOUNDARIES no-slip bodies such as ships. A body force term is added
to the discrete momentum equations within the body
Treatment of body boundaries are of particular concernffPportional to the velocity error. This force drives the
Cartesian-grid methods. The methods currently availablocity of the fluid within the body to the prescribed body
have limitations in applications or accuracy or hawelocity exponentially in time. As such, the boundary
complicated implementations. A general framework g9ndition is treated as a goal-state rather than an instan-
presented in the next two sections to formulate equatidageous restriction on admissible velocity fields.
of motion which accurately simulate complex flows Expanding upon that work, a new method is presented
around solid geometries. A simple implementation 18 constrain the flow to the known instantaneous velocity
proposed which automatically maintains the order-ofonditions on a general, dynamic bod for two and
accuracy of the general flow solver. While any surfa¢Bree-dimensional flows. A distance based normalized
representation could be used with this method, we
present a representation which increases ease of use and
efficiency.
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delta function, or switch function, defined as used to transition the equations to an enforcement of
~ the no-slip condition. Technically speaking, the above

§(7) = { (1) forlall TeB (23) equations enforce the time derivative of (24), but when

eise the momentum equation is integrated in time, the exact

is used to alter the analytic form of the governin ounplgry condition IS recovereq aB. This analytic
equations. This is in contrast with Cut-Cell metho ansition fr(_)m the_ f'.e.ld equations to the boundary
which change the discrete form of the equations near ditions differs significantly from the standard body
body. By directly imposing constraints on the velocit r\;:\;ahor In;]mersed-Bqundary formul!azons. he boundari
field the body will drive the flow instead of being advected en these equations are applied to the boundaries

by it, allowing for the treatment of high-stiffness bodiegf the pumerical domain, .they produce. exactly the
such as ship hulls. same discrete formula obtained by applying boundary

conditions to a boundary fitted grid. This demonstrates
No-Slip Condition that equations (26) and (27) are generalizations of the
equations used in fitted grid methods, allowing the body
In this subsection equations to enforce the no-slip botty lay anywhere in the domain instead of restricting it
boundary condition on a general topological bofly to coincide with the domain boundary. Because of this
immersed in the fluid domaiR are derived. We are givengenerality the above equations can be formulated for any
the velocity vectoi/ of B as well as the distance from anyiumber of arbitrary bodies with any given velocity. Also,
fluid point in the domain to the body surface. The no-sligs B need not be a material surface, the inflow and
condition is then stated as outflow boundaries can be modeled with this formulation
. by setting/ appropriately.
u=U forall ¥ € B. (24)
No-Penetration Condition
To derive a no-slip equality for use in the momentum
equation, (24) is substituted into (2) to give The method is next extended to the no-penetration
. condition, given by
ou 1o . S .
EE+;VP_T:0 forallz € B, (25) i-i=U-7n forallzeB (28)

which is commonly used as a starting point for derivinvg\jlhereﬁ IS the unit normal vector of the surface f
This boundary condition is substituted into the normal

solid-body boundary conditions for the pressure. In this . . .
method we instead multiply (25) by the functiéh Its projection of (2) to give
definition ensures that this product is zero throughout the o 1= O /-
domain and therefore may be added to (2) resulting in the [ﬁ ((‘% + ;VP - 77) t o0 (U - ﬁ)] =0
altered momentum equation

forall# € B (29)

oi =(1-19) (F— 16}9) + 6’8—[]. (26) where the second term within the brackets is arbitrary and
ot P ot can be set to zero. To see this, note that the length of
Taking the divergence gives the corresponding pressiirdS constant, meaning its time derivative must lies in
equation as the tangent plane to the body surface. As the tangential
velocity of U is arbitrary it can always be set so that the
. (1 — 5/5 ) _ inner product vanishes.
P p)= Using the same procedure as in the previous section,

or o (29) is multiplied by 4’ and added to the governing
€~Q1yw+y>. (27)

equations. The resulting no-penetration momentum and
ot ot pressure equations are

Equations (26) and (27) are identical to equations 9w L 1o ou
(2) and (3) except o3 where the switch function is 9t (I='N) <T - pr> T (YNE (30)



and In this work a smoothed approximation of the analytic
delta will be used instead of altering the discretization

V. <(| — 5’N)lﬁp) - scheme. Similar to the form used by the Immersed-
p Boundary method, we define the smoothed switch
. oU  oi function as
\4 ((I d'N)7+ 0’'N 5 8t> . (31

5 () = 3 (14 cos (dZ)) forall |d| <e
0 else ’

where | is the identity tensor andN = #n is the
normal dyad. Although similar in form to the no-slip ) . . (32)
equations, the no-penetration equations feature ten¥G€red is the distance from the point to the surface,
products instead of simple multiplication. This addition@nd¢ IS the width of the numerical delta function. This
complexity arises because (28) is a scalar equality d#fefinition is used to allow modeling of thin sheets in
can therefore only make a rank-one adjustment to tAg" Solver. An alternate definition more akin to the
governing equations. The adjustment is made throu%ﬁ‘oc’the_d heavy side function would be appropriate for
the rank-one dyadN, leaving the (' — 1) tangential t_ |cl_<_sol|d boo!les. Because of the use of (32), dlscqn-
components of the momentum equation unchanged by #iiities resulting from the presence of the body will
presence of the body. These tangential equations are tRérsmoothed over the width The current method is

free to carry any user defined slip model including tH8erefore not a “sharp-interface” method, and care must
no-slip condition. This topic is explored further in th&€ t@ken in the setting of such that accuracy is not
following sections. lost. The smoothing width was set éo= 2Az+/N for

The tensor products make numerical solution of the ! t€sts in this work and is demonstrated below not to
penetration equations more laborious. The source tef@quCce solution accuracy. The benefit of this method is
of (31) is easily constructed, but the Poisson coefficierts fivial and general implementation. Also, because the
give rise to cross derivatives. These cross derivatiy@§thod does not alter the calculation of derivatives the

are needed to cancel out the normal component of gyder-of-accuracy of the bulk flow solver is automatically

pressure gradient. As they arise in this general formftrintained.

lation they must be treated regardless of the implemen-WO Simple tests are presented to demonstrate the

tation being Cut-Cell, fitted-grid, or the method describéPility of this boundary condition enforcement technique
in the next section. In this work, the cross derivativd® accurately simulate unsteady free-surface flows. In
have been treated with differed-correction whereby offth, @ two-dimensional tank with aspect ratio 2 is
values of the cross derivatives are used and then corredgulated usingAz = 0.0125L and At = 0.00267T.

after the pressure field is calculated. This maintaifd€ first case is a high amplitude standing wave test with

the simplicity of the pressure solver and allows generdl= 0-2L andA = L. Animage of the resulting nonlinear
treatment of the equations throughout the domain. wave at' t|m.et =Tis shown in Flgurg 6(a). Note that the
simulation is symmetric on either side of the= 0.5L.

Numerical Implementation To test the proposed method a vertical wall is placed at
that location and a constant free surface heighi.05L

In a flow solver the momentum equation is evaluatésl set on the right side while the wave initial condition is

at discrete points in the domain which, in general, doaintained on the left. This simulation will thus test the

not exactly coincide with the surfacB, allowing the method’s ability to enforce the no-penetration condition

surface to “hide” from the flow. There are many ways tand quantify the errors due to smoothing the boundary.
overcome this issue, the best established of which is to 0$e result using the current method is shown in Figure
a non-orthogonal boundary-fitted grid. Another option 8b). For comparison the result for the same simulation
to alter the discretization of the momentum and presswsing the body force method is shown in Figure 6(c).

equations near the body, as in Cut-Cell methods. Amlike the body force method, no fluid is transmitted

example is the slip condition presented in Dommermutirough the wall, and errors due to smoothing are very
et al. (2005), which is derivable by integrating (31) ovesmall.

each finite volume. In the second case a tank half filled with water is



quickly displaced to the right by.2L. and then held

steady. This can be modeled using a frame of reference

that moves with the tank, accounting for the acceleration

by the application of a uniform body force. It can also N
be simulated by enforcing the no-penetration condition on
the moving vertical walls of the tank using a stationary
frame of reference. Therefore, the same result shoulg
be generated using a fitted grid or moving immersed
boundaries, allowing for a direct comparison. Figure 7(a)
and 7(b) show the result for the fitted and immersed grid
respectively att = 2.47. The images show that the
comparison between the methods is excellent, even fo
this highly complex flow with dynamic boundaries. (a) Symmetric standing wave in full tank

Advanced Body Representation

All flows with bodies must describe the geometry in
some way and the most useful description is proble
dependant. When solving biological fluid-dynamics
problems with the Immersed-Boundary method, a simpl
algebraic mesh representation is logical because th
elastic body equations need to be solved on a mes
However, when solving flows with the method described
in the previous section a more powerful set of functions
can be chosen to describe the geometry.

NURBS (Non-Uniform Rational B-Splines) are one of
the most popular tools used to represent lines and surfaces
in computer aided design and graphics, and are the
backbone of such programs as Rhino and FastShip. Thi
is because of their efficient implementation, their intuitive
control point interface, and the smoothness properties
of the resulting forms. In this work, the NURBS
description used to design a solid body is maintained in
the computational analysis of the flow around that body.
This eliminates all need for gridding and assures th
designer that WYSIWYG@G. Another consideration is that
NURBS surfaces have far fewer parameters than algebraic  (c) standing wave in split tank using body force method
grids making them better suited for shape optimization

(b) Standing wave in split tank using current method

problems. Figure 6: Images of high amplitude standing waves in a
In order to enforce body boundary conditions on @nk. Cells full of water are colored blue, cells full of air
Cartesian grid every point on the grid must know thghite, and partially filled cells green. Figure (a) shows the
distanced to the nearest point on the body. Additionallypaseline case with no immersed surface. The domain has
topological parameters such as the normate required. peen split in two by a vertical wall in figures (b) and (c),
Although nowhere near as time consuming as creatifi§ing the current formulation and the body force formu-

a fitted mesh, determining these values can be a sl@ion respectively.
process. On an algebraic mesh the distance to the body
is found by an exhaustive search of every point, line,

lwhat You See Is What You Get



R/Axz | NURBS time | Mesh time| Mesh Error
32 0.301e-1 0.201e-1 | 0.119e-2
64 0.121e+0 0.660e+0 | 0.178e-3
128 0.181e+1 0.202e+2 | 0.453e-4
256 0.127e+2 — —

Table 2: Distance calculation statistics for immersed
sphere using mesh and NURBS based surface represen-
tations.

(a) Fitted Grid Simulation

and normal using a structured surface mesh. Table 2
shows these results. The distance function and normal
vector were found using a single processor computer, and
the times (given in seconds) are only meant for relative
comparison. The valu®/Az is the sphere radius over
the grid spacing and therefore proportional to the number
of grid points in one direction. The average error in the
parameters using the NURBS solver was less than le-
7. The mesh-based method was stopped after 45 minutes
on the finest grid and the results are not shown for this

. ) ¢ sloshi . case. The table shows that the cost of determining the
F'9¥"e 7 Image of sloshing waves in a tank generat_ed Héframeters scales linearly with the number of points when
rapid sideways displacement using the same coloring

rapt _ _ _ N9 Fng the Gauss-Newton solver, but at least quadratically
in Figure 6. Figure (a) shows the baseline using a fitt§fpon |sing an exhaustive search on the mesh. This is

grid formulation and Figure (b) shows the result using ﬂéespecially important when the geometry is continually

current method. changing as the simulation progresses, such as in hull
shape optimization and the flexible wave maker problem

and planar surface on the mesh. The parametric NURB®sented in the next section.
representation allows the use of a gradient based searchn additional advantage of this representation is that it
for the distance function that is orders of magnitude fastean be easily adjusted to compute distance function to the
Formulating the squared distance from a painin the cross-sectional lines of any surface. When the distance
domain to the point{ on the body as a function of thefunction is found using a gradient method a lagrange
surface parametatas multiplier can be constructed which constrains the set
of admissible points on the surface to a particular cross
qu(gj = ‘f — )Z'(g) (33) section with no increase in computing time. To create the
same distance function using a meshed geometry would
allows the minimum distance function to be defined by require expensive and complicated preprocessing of the
) o body geometry. Figure 8 shows a containership bow with
d” = miny (%) (34) the cross sectional lines. Though the lines are discon-

) ) tinuous at the bulbous bow the current method can handle
which can be solved with the Gauss-Newton meth%s discontinuity with no special treatment.

for non-linear least squares which has a second-order
convergence rate. NAVAL SHIP HYDRODYNAMICS APPLICATION

To quantify the speed-up observed by using this
method, the signed distance function and normal vectstr this point, simple and general methods for treating
for a spherical test geometry are computed on a setiles free surface, numerical exit boundary, and body have
of background grids. This is compared to the averaeen developed and tested. In this section we will
accuracy and speed of calculation of the distance functid@monstrate the ability of these advanced Cartesian-grid

(b) Current Method Simulation

2
)




Figure 8: Bow of a general containership hull-form with
bulb. The lines are cross sections of the surface with
planes, as would be required for 2D+t simulation.

. . o Iﬁgure 9: 3D image of the 5415 bow wave flow at 30 knots
methods to simulate flows with naval applications and”_.
simulated by NFA

use comparisons of those solutions to experimental restits
to discuss possible reduced models of bow flows and
proper tangential boundary conditions for Cartesian-gfidw solver.
methods. The pertinent issues may be addressed with a brief
Figure 9 shows the bow wave flow of the model 54%atroduction to the 2D+t methodology. Using the
hull in a 30 knot simulation generated using standagdip lengthZ and draftD as the relevant dimensional
NFA methodologies. This simulation is preformed oparameters gives the laplace equation for the velocity
massively parallel machines using nearly 30 milliopotentialg close to the body as
grid points and grid stretching on the Cartesian mesh.
Comparison of these simulations to experimental results ( » 0 n fi n 52) =0 (35)
for the same test case demonstrate generally good T 952 092 0z2 N
agreement, but the experiments show that the run-up of ) .
the bow wave is under-predicted by NFA even for thigheres = ?”/L’ y=vy/D,z=z/Dandy = D/L. I_f
high resolution run. This error is due to the seven orddf€ vessel is very slender then< 1 and the equation
of magnitude disparity in relevant length and time scal§@S Noz-dependance to leading order. The kinematic
in naval ship hydrodynamics which can not be resolvé@id .dynamlc free-surface boundary conditions set the
directly even with the most advanced brute force methd@guirement that )
(Weymouth et al. 2006). vUi > 0(1) (36)
One interesting proposal to deal with the demands gL
of resolving full-scale naval hydrodynamic flows is t@nd impose a downstreamdependance on the solutions,
adopt the “slender ship” assumptions, modeling the thrémit no upstream influence (Fontaine and Cointe 1997).
dimensional system as a 2D+t flow. 2D+t models simplifiherefore, the problem is parabolic and may be posed as
the simulation of ship bow waves by assuming thah unsteady two-dimensional nonlinear system instead of
changes in the longitudinal direction are small comparadhree dimensional one.
to changes in the transverse directions. Historically, While potential flow solvers are typically used to
this allowed potential flow simulations of the bow wavesolve the resulting unsteady two-dimensional flow, the
around slender vessels to be generated with ordersasgumptions of potential flow theory prevent it from
magnitude savings in computational expense. Fontamedeling steep and overturning ship waves such as those
et al. (2000) provide a thorough derivation of the methathown in Figure 9 for a number of reasons. Firstly,
and present results generated using a nonlinear poterggathe run-up is dependant on the near-wall flow it can




not be assumed that the flow is inviscid. Additionally,
plunging breakers such as those of Figure 9 are highly
rotational. Therefore, a potential function may not be
used to describe the velocity field and other means mus
be used to simulate the flow within this 2D+t framework.

Geometrically, the 2D+t assumptions reduce the three
dimensional fluid problem to a two-dimensional cross
section of the flow which moves along the length of the
body in time. This models the hull as a deforming curve
which can be though of as a flexible wave maker, pushing
out the 2D+t representation of the divergent wave systen
generated by the body. Shakeri (2005) presents exper
mental results for a physical realization of this geometric
interpretation. In those experiments, a large (3m taffjgure 10: Image of the flexible wave maker and
wave maker was actuated by hydraulics to sweep out H@culated flow on the finest grid. The dark solid line is
bow of the 2D+t representation of a modified model 54%Re wave maker surface, the arrows are velocity vectors
hull traveling at 25 knots. The sonar dome was removeggld the blue coloring denotes water. Every third velocity
from the representation of that hull due to limitations igector is shown for clarity. The no-penetration condition
the wave maker experimental apparatus. This shows tRaénforced on the body
while these experimental results bypass the limitations of
potential flow they introduce limitations of their own.

Cartesian-grid methods overcome these shortcomingshe previous section. The wave maker is simulated
and those of potential flow and afford the opportuniyith the body treatment of the previous section and the
to study the effect of 2D+t modeling on breaking boosition of the wave maker in time is set to exactly
waves generated by realistic ship geometries. As depicirgblicate the experimental conditions. A computational
in Figure 8, hulls with bulbs, chines and appendagg@smain of3m by 6m is defined for the simulations and a
hulls give rise to discontinuous and multiply connectegkries of time steps and grids spacings are used to judge
“wave makers” that only the NURBS body represefheir influence on accuracy. Coarse, medium and fine
tation and Cartesian-grid methods have the capability gdckground grids with spacings &fz = 0.04m, 0.028m
modeling simply and generally. Such hull features wiind0.02/m respectively are used. The pressure corrected
generally violate the slenderness assumptions of the 2ixtve exit developed above is used with= 1™ Figure
framework, and the errors incurred by these effects cani® shows a snap-shot of the wave maker and simulated
quantified with detailed simulations. flow using the no-penetration condition on the finest grid

Additionally, Cartesian-grid methods offer the uniqurwvel. As can be seen from the velocity vectors in that
capability to quantitatively determine the bounds on th@age, the wave maker is sweeping from left to right
validity of 2D+t models for complex bow flows. 2D+twith the lower end pined. In this simulation, fluid was
methodologies demand that a hull with lengthnd speed allowed to flow in behind the wave maker using a one-way
U will produce the same wave as a stretched geomeriodic condition, ensuring that the continuity condition
with length 10L and speedlOU. A series of three- js metin that region. The flow behind the wave maker has
dimensional simulations can be run varying the lengfd influence on the flow exterior to the wave maker. The
scale and Froude number of the vessel to determine wi@age demonstrates that the fluid has been allowed to run
stream-wise variations become important. Because #ifioothly up the side of the body boundary and that the
methods proposed in this paper are general enough#penetration condition has been exactly enforced in the
model free surfaces, exits and bodies in two or thrgermal direction.
dimensions, comparisons of simulations with different Figure 11 shows a multiple exposure image of the wave
numbers of dimensions can be made with confidence. maker position and free surface elevation at sequential

As a first step the data provided by Shakeri (2005) fignes in the simulation. The wave resulting from this
used to validate the Cartesian-grid capabilities describ@@tion is highly energetic and goes through a series of




be added to the no-penetration condition to model the
Experiments gﬁects of qear-wgll viscosity on this wave maker_flow and
No-Slp BC: Fine its three—d|men_S|onaI cc_)unterpart. _Addmg a slip modgl
No-Pen BC: Medium for the tangential equations of motion using the analytic
No-Pen BC: Coarse development given in the previous sections is straight-

forward and the momentum equation takes on the form

z/D

aﬁ_ / - l" / 67(7 1 _ e
5 = (1-9) <r_ pr)+5N 5 T 1-N)E. (37)

K is the user defined slip model which can be set
as a function of fluid velocity, pressure, density, wall
roughness, and any other pertinent parameters. (37) is the
most general slip model formulation with proper choice

Figure 12: Experimental and simulated wave mak@f & recovering the no-penetration and no-slip conditions

free surface contact lines. Coarse, medium and fiidd many possibilities between. ,
background grids use spacingssi — 0.04m, 0.028m A promising compromise between the no-penetration
and0.02m respectively. and no-slip condition is to use a body force correction

similar to that developed in Dommermuth et al. (1998)

to model the tangential flow. In that formulatiods

would reintroduce the tangential momentum equations
breaking events. Note that the two-dimensional natureasfd include a body force term proportional to the slip
this simulation does not allow the breaking wave to fullyelocity at the body surface. The force is scaled by a
close and the plunger instead skips off of the free surfaégction coefficient and in Dommermuth et al. (1998) that

Because the no-penetration condition has been usaskfficient is set very high to enforce the no-penetration
the point of contact between the free surface and tbendition on the hull. However, used in the framework of
wave maker moves freely in this simulation, raising near{87) the coefficient could be tuned based on experimental
0.4m at it's peak. Figure 12 shows the experimentavidence such as shown in Figure 12. More detailed
measurements of the point of contact on the wave makaperimental measurements and numerical studies will
surface along with four sets of simulated results. The frabow further investigation of this slip condition, with the
surface run-up is denoted (z) and is normalized by thgeal of a simple and general formulation for free-surface
wave maker depth (D). The figure shows that all of tHews.
simulations have good general correlation with the exper-Another serious modeling concern which must be
imental measurements. In particular, the no-penetratiadressed is the strictly two-dimensional divergence-free
conditions accurately predict the rates of run-up and rusi¥ flow. Unlike potential flow simulations, our VOF
down compared to the measurements for all resolutiorethod models the air flow in addition to the water flow
levels, but they overshoot the maximum height substaamrd air trapped inside two-dimensional breaking waves
tially. In contrast the no-slip condition accurately predictsgas nowhere to escape. The breaking wave in Figure
the run-up and maximum height but the run-down is mudi. displays this effect, and does not fully close but skips
too slow, leaving the hull wetted for longer than the expeuoif of the free surface. In three-dimensions, the majority
imental result. The no-slip result shown in Figure 1@f air escapes from within a collapsing breaking wave
is for the finest grid only. The coarse and medium grisy moving much faster than the bulk flow in the longi-
simulations did not sufficiently resolve the near-wall flomudinal direction. This violates the fundamental 2D+t
to give accurate results and have not been shown. assumptions and models accounting for this effect must
The results of Figure 12 and practical limitations obe developed to allow 2D+t simulations to be accurately

computational resources suggest that a slip model mestended to their three-dimensional analogs.
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Figure 11: Multiple exposure image of the flexible wave maker and calculated free surface on the finest grid. The
black lines are the wave maker surface, and the blue lines are the contgues 6f5. The no-penetration condition
is enforced on the body.

CONCLUSION the bounds on the 2D+t slenderness assumptions were
made and the need for a method to allow variation of flow
This work has shown that Cartesian-grid methogs the air was introduced. With the capabilities presented
are capable simulating flows with engineering applin this paper highly accurate simulations of general ship
cations without the difficulties associated with fitteciows are achievable.
grid methods. New capabilities have been developed torhis work was supported by the Office of Naval
further extend the usefulness and generality of CartesRasearch under grant NO0014-01-1-0124 through Dr. L.
grid methods. A free surface advection algorithm whighatrick Purtell. The computational resources for this
conserves the volume of fluid at the interface even f@lork were provided through a Challenge Project grant
complex three-dimensional flows has been presentg@m the Depart of Defense High Performance Computing
Exit boundary conditions for the velocity and pressuigodernization Office (Project C1V). The authors wish to

have been derived which allow for accurate simulatiQqfank J. Duncan and M. Shakeri for the use of the experi-
of general external flows. A body boundary formulatiomental wave maker data.
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