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Miranda and Umbriel have passed through the 3 : 1 mean-motion commensurability if 
the specific dissipation function (Q) of Uranus is less than about 39,000. There are three 
second-order inclination resonances associated with this commensurability. Temporary 
capture into either of the resonances involving the orbital inclination of Miranda can 
account for the anomalously high (--4*) current inclination of Miranda. As the satellites 
approach the commensurability at low orbital inclinations, the coupling between the 
resonances is very weak, and capture into either of the resonances involving the orbital 
inclination of Miranda is likely. The evolution of the system after capture into one of 
these resonances is initially described well by the standard theory of evolution through 
isolated mean-motion resonances. However, as the orbital inclination of Miranda in- 
creases, and the coupling between the resonances becomes stronger, the separatrices 
associated with the resonances broaden into chaotic zones and eventually merge, creating 
a sizable chaotic region. Escape from resonance occurs via a qualitatively new dynamical 
mechanism. The trajectory encounters low-order commensurabilities between the libra- 
tion frequency of the resonant argument and other fundamental frequencies in the sys- 
tem. If the trajectory is captured into any of these secondary resonances, it is dragged 
into the chaotic region, whereupon the system can escape the mean-motion commensura- 
bility. Miranda retains a high orbital inclination comparable to the current value. Since 
the anomalously large inclination of Miranda is a natural outcome of passage through the 
3 : 1 commensurability, the requirement that the satellites have encountered this reso- 
nance constrains the Q of Uranus to be less than 39,000. © 1989 Academic Press, Inc. 

1. I N T R O D U C T I O N  

Some of  the dynamical properties of  the 
Uranian satellite system, such as the anom- 
alously high orbital inclination of  Miranda 
and the anomalously high orbital eccentrici- 
ties of  the inner large satellites, cannot 
be explained by the current interactions 
between the satellites (Dermott and 
Nicholson 1986, Laskar  1986), and there- 
fore suggest origins in past dynamical  inter- 
actions. In addition, the relatively young 
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surfaces of  Miranda and Ariel (Smith et al. 
1986) suggest that tidal heating may have 
been important in the thermal histories of 
these satellites. If  the orbits of  the satellites 
have evolved significantly due to tidal fric- 
tion, they may have passed through low- 
order mean-motion commensurabilities. 
We are investigating the past resonant in- 
teractions of  the satellites to determine if 
they can account  for the above observa- 
tions, as well as allowing the satellite sys- 
tem to reach its present nonresonant  config- 
uration. 

In cases where the motion near a reso- 
nance is dominated by the perturbations of  
a single resonant argument, for instance, 
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where the resonances near a mean-motion 
commensurability are well separated by a 
large planetary oblateness, the dynamics 
can be described by the standard integrable 
theory of evolution through resonances 
(Goldreich and Peale 1966, Counselman 
and Shapiro 1970, Yoder 1979, Henrard 
1982, Henrard and Lemaitre 1983, Borde- 
ries and Goldreich 1984, Lemaitre 1984). 
However, in cases where there are many 
essential contributions to the motion near a 
resonance, for example, where there is a 
significant coupling between resonances 
and/or a strong secular interaction, the as- 
sumptions made in deriving the single-reso- 
nance formulae may not apply. Specifi- 
cally, the motion in a relatively large region 
of phase space near the separatrix at a reso- 
nance may be chaotic and therefore nonin- 
tegrable. In the Uranian system, where the 
satellite-to-planet mass ratios are relatively 
high and the planetary oblateness is small, 
there are significant chaotic zones at the 
resonances. 

The authors (Tittemore and Wisdom 
1988, henceforth referred to as Paper I) 
have studied the most recently encountered 
of these resonances, the 5:3 commensura- 
bility involving Ariel and Umbriel, and 
have found that the presence of a large cha- 
otic zone significantly affects the mecha- 
nisms and outcomes of resonance passage. 
It is expected that other resonances in the 
Uranian system will show chaotic behav- 
ior, since the same conditions of small J2 
and strong secular coupling apply. We have 
found this to be the case in the Miranda- 
Umbriei 3 : 1 mean-motion commensurabil- 
ity, which is a second-order resonance with 
properties similar to those of the 5 : 3 reso- 
nance. In particular, the anomalously high 
current inclination of Miranda can be ex- 
plained as a result of passage through this 
commensurability. 

In Section 2, the resonant Hamiltonian is 
discussed. We begin by studying the circu- 
lar-inclined approximation, in order that we 
may attempt to gain some understanding of 
the dynamics of the 3 : I mean-motion reso- 

nance that are relevant to the evolution of 
the inclinations of the orbits of these two 
satellites. The circular-inclined Hamilto- 
nian can be reduced to two degrees of free- 
dom, allowing us to study the phase space 
of the problem in detail, using the Poincar6 
surface of section technique. 

In Paper I, the authors discovered that 
the simulated rate of tidal evolution through 
the Uranian resonances must be extremely 
slow (h/a < l0 -u° per orbit period) to avoid 
rate-induced dynamical artifacts. At such 
slow orbital expansion rates, it is necessary 
to integrate the equations of motion of or- 
der l08 orbit periods to properly explore the 
evolution of satellites through a mean-mo- 
tion commensurability. Using classical in- 
tegration techniques for this purpose would 
require prohibitively large amounts of com- 
puter time. The algebraic mapping tech- 
nique for integrating orbital equations, first 
developed by Wisdom (1982, 1983) for the 
study of resonant asteroid motion, provides 
a method with which the evolution through 
a mean-motion commensurability may be 
explored with reasonable amounts of com- 
puter time. A mapping for second-order 
resonant motion involving two satellites of 
comparable mass was developed in Paper I, 
and has been employed for the calculations 
presented here. 

Numerical integrations of the evolution 
through this commensurability (Section 3) 
reveal very interesting behavior. As the sat- 
ellites approach the commensurability at 
low inclinations, the system behaves as if 
the resonances are isolated, with a signifi- 
cant probability of capture into either of the 
second-order resonances involving the or- 
bital node of Miranda. Following capture 
into one of these resonances, the evolution 
of the system is temporarily quasiperiodic. 
The trajectory occupies a region of phase 
space in which one of the resonant argu- 
ments involving the orbital node of Miranda 
librates, and the evolution can initially be 
described well by the single-resonance the- 
ory. However, as the orbital inclination of 
Miranda increases, the separatrix associ- 
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ated with the resonance broadens into a siz- 
able chaotic zone. Large-scale chaos en- 
sues after the separatrices of the individual 
second-order resonances merge. The onset 
of large-scale chaos is well predicted by the 
resonance overlap criteria. The presence of 
a large chaotic region does not by itself 
guarantee that the trajectory will become 
chaotic, though, since the chaotic zone 
does not fully engulf the libration regions. 
However, there is another dynamical 
mechanism at work in this system. As the 
system evolves within one of the reso- 
nances, the frequency of small-amplitude li- 
bration of the resonant argument increases. 
The system encounters low-order commen- 
surabilities between the libration frequency 
and other fundamental frequencies. These 
form a secondary resonant structure in the 
pendulum-like phase space of this dynami- 
cal system. If the system is captured into 
one of these secondary resonances, the tra- 
jectory is eventually "dragged" away from 
the center of the libration region and into 
the large chaotic zone, and the system can 
escape from the primary resonance, with 
the orbit of Miranda retaining a relatively 
high inclination comparable to its current 
value. The results of our numerical experi- 
ments agree well with analytic predictions 
of the width of the chaotic separatrix, the 
onset of large-scale chaos accompanying 
the overlap of primary resonance regions, 
and the locations of the secondary reso- 
nances between degrees of freedom in this 
problem. 

In Sections 4 and 5, the investigation of 
this resonance is generalized to include 
other dynamical perturbations occurring in 
the Uranian satellite system. We investi- 
gate the effects of the eccentricity-type res- 
onances, and the effects of the secular in- 
teractions between Ariel and the satellites 
involved in the inclination resonances. The 
interesting mechanisms found in the circu- 
lar-inclined problem are present in both of 
these models--the orbital inclination of 
Miranda still jumps to a high value before 
the system escapes from the resonance. 

The final section discusses the implica- 
tions of our results for the Uranian system. 
Passage through the Miranda-Umbriel 3 : 1 
commensurability provides a convincing 
mechanism by which Miranda attained its 
present anomalously high orbital inclina- 
tion. Thus the requirement that the system 
encountered this resonance can be used to 
constrain the specific dissipation function 
(Q) of Uranus to be less than 39,000. 

2. THE RESONANT HAMILTONIAN 

In this paper, we consider the interaction 
between Miranda and Umbriel near the 3 : 1 
mean-motion commensurability, which in- 
volves three second-order inclination reso- 
nances and three second-order eccentricity 
resonances. The spherical harmonic J: of 
Uranus is small, so the resonances cannot 
be considered individually. Since the reso- 
nant and secular interactions take place on 
timescales which are generally much longer 
than the orbit periods, we average over 
high-frequency contributions involving 
nonresonant combinations of the mean lon- 
gitudes. The masses of the two satellites are 
within about an order of magnitude of each 
other, so the orbits of both satellites will be 
influenced by the interaction. In this sec- 
tion, we consider the circular-inclined 
problem as a first approximation to the res- 
onant evolution of the inclinations of 
Miranda and Umbriel. This reduces to a 
two degree of freedom problem, similar to 
the planar eccentric problem developed in 
Paper I for the Ariel-Umbriel 5:3 reso- 
nance, which is of second order in eccen- 
tricities. The development of the Hamilto- 
nian is very similar in both cases, and we 
refer the reader to Appendix I of Paper I for 
a more formal development of a second- 
order resonant Hamiltonian than is de- 
scribed here. The subscript M refers to 
Miranda and the subscript U to Umbriel in 
the following development of the Hamilto- 
nian. 

Expressing the contributions to the Ham- 
iltonian in terms of Keplerian elements, 
where ai is the semimajor axis, ii is the incli- 
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nation, ~i is the mean  longitude, and ~ i  is 
the longitude of  perihelion, the Keplerian 
contribution to the motion is 

GMmM GMmu 
~fK - (1) 

2aM 2au 

Keeping only the J2 te rms to second or- 
der in inclination in the express ion of  the 
potential for an oblate planet,  

GMmM jg (a~)2 [I - ~i~] 
~o - 2aM - 

_ 3 . ,  

2au 

and f rom the express ion for the disturbing 
function (Leverr ier  1855), the secular con- 
tribution is 

~s - GmMmu [(l)")) + (ll)m) 

( i u l : -  2.0 iM iu }l 
+ ~ 2 i T ~ COS(~M -- ~U) 

and the resonant  contribution is 

(3) 

~ R  -- 

where 

GmMmu (212)o I 
a u  

It'M; x ~ cos(3Xu --  hM -- 2 ~ M )  

iM iu 
- 2 . 0 ~ - ~  cos(3)~u - ~M -- ~]M -- ~] tJ )  

+ ( i u ]  2 C O S ( 3 A u  --  ~t M -- 2[~u)], (4) 
~ 2 /  A 

{ I )" '  = ½b~',?{c0 

( I l)10~ = __½ab/ /2(o l )  

(212)13~ = i , ~ a b ~ / 2 ( a )  (5)  

and ~ is the ratio of  semimajor  axes,  and 
b~(c0 are Laplace  coefficients. 

We choose  as resonance coordinates 

O-M = ~(3Xu - aM -- 2 [~M)  

O-u = ½(3~,u - )KM - -  2~t,)  (6) 

which with the mean longitudes hM and hu 
form a comple te  set of  canonical variables 

for our problem.  In terms of  the Delaunay 
momen ta  Li  "~" mi Gk/~Tiai and Hi = Li 
cos(ii), the momen ta  conjugate to o-M and 
CrM are 

EM = LM -- HM 
Y'u = Lu - Hu (7) 

The momen ta  conjugate to YM = hM and Yu 
= h t j  , 

FM = L M  + I ( Z M  + Y'U) 
Fu = Lu - .~( u + Eu), (8) 

are integrals of  the motion,  since we are 
averaging over  motion on t imescales of  the 
orbit periods.  Note  that Y,i -~ FdJ2. 

The Hamil tonian is expanded in powers  
of  ~,i/['i t o  order  rn~i~, resulting in 

= 2 A ( E M  + Z u )  + 4 B ( Z M  + E u )  2 

+ 2CZM + 2DZu 

+ 2EX/EMZu cos(¢rM - ~ru) 

+ 2 F E M  COS(20"M) 

+ 2GV-ZMZU COS(O-M + O-U) 

+ 2HZu cos(2o'u). (9) 

The express ions  for the coefficients A - H 
are given in Appendix 1. 

For low inclinations, A ~ ](3nu - riM). 
Because of  the differential expansion of the 
orbits due to tidal dissipation in Uranus,  nM 
decreases  relative to nu, and A = 0 where 
the mean motions are exact ly commensu-  
rate. We define the pa ramete r  in the prob- 
lem, 8, to be the angle-independent  contri- 
butions to 3nu - n M  -- I)M -- hU, or 4A + 
2(C + D). It provides us with a measure  of  
distance f rom the resonance,  and changes 
sign in the middle of  the resonance region. 
During resonance passage,  the fractional 
change in 8, proport ional  to the fractional 
change in A, is much larger than the frac- 
tional changes in the other  coefficients, 
which are proport ional  to changes in the 
semimajor  axis ratio as it appears  in the 
Leverr ie r  coefficients. We therefore ignore 
changes in the coefficients other than A. 

The units chosen are as follows: distance 
is measured  in units of  the radius of  Uranus 
R, mass is measured  in units of  the mass of  
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Uranus M, and time is measured in years.  
In these units, the masses of  Miranda and 
Umbriel are, respectively,  mM = 8.6 × 10 -7 
and rnu = 1.47 × 10 -5 (Stone and Miner 
1986). The coefficients were evaluated at 8 
= 0 for ii = 0 and au = 10.1179R (the value 
of  the semimajor axis of  Umbriel at which 
the resonance was encountered) ,  which 
corresponds to aM = 4.8645. The numercial 
values for  the coefficients thus obtained are 
(see Appendix I): B = -5167.54,  C = 
0.043832, D = -0.121057,  E = -0.0006756, 
F = -0.0009765, G = 0.0003934, and H = 
-0.00003961. For  these physical parame- 
ters, the integrals of  motion are FM = 
0.033946 and Fu = 0.836831. 

In terms of  the Cartesian coordinates 

Yi = V ~ / s i n ( o - i )  ~ iiX/-Fii sin(ori) (10) 

and the conjugate momenta  

X i =" ~ COS(Or/) ~ i i~ii  COS(Or/) (1 1) 

the Hamiltonian is expressed by 

~ =  I(8 - 2(C + D))(x  2 + YM + x2 + y2)  

+ B(x~  + y ~  + x 2 + yu)  2 

+ C(X2M + y 2 )  + D(x  2 + yau) 

+ E(XMXU + YMYu) 
+ F(x~  - y ~ )  + G(XMXu -- y~vu) 

+ n(x~j - y~j). (12) 

This Hamiltonian has two degrees of  free- 
dom. The state of  the system is determined 
by its coordinates xi and Yi and the parame- 
ter 8. 

In Paper I, the authors developed an 
algebraic mapping to study the Ar ie l -Um-  
briel 5 :3  commensurabil i ty,  analogous to 
the map developed by Wisdom (1982, 1983) 
to study the motion of asteroids near the 
3 :1  Kirkwood gap. The Hamiltonian (Eq. 
(12)) is of  the same form as that used in 
Paper I, and the same mapping can be used 
to study the Miranda-Umbrie l  3 :1  reso- 
nance, though with a different identification 
of the variables and different coefficients. 
The use of  the algebraic mapping, which 
speeds numerical computat ions by about 3 
orders of  magnitude over  direct integra- 

tions and even more than an order  of  
magnitude over  the analytically averaged 
differential equations,  allows us to study 
evolution through the resonance with suffi- 
ciently slow simulated tidal dissipation 
rates. As was discovered by the authors in 
Paper I, the rate of simulated tidal evolu- 
tion through the Uranian mean-motion 
commensurabil i t ies must be extremely slow 
(ida < 10 -1° per orbit period) in order  for 
the the numerical simulations to be free of  
dynamical artifacts. The algebraic mapping 
provides the most practical way to study 
the evolution through these resonances.  

3. EVOLUTION THROUGH THE RESONANCE 

Tidal dissipation within Uranus results in 
differential decreases  in the satellite mean 
motions.  During passage through the reso- 
nance, the fractional change in the parame- 
ter 8 is large compared to the fractional 
changes in the other  coefficients, which will 
therefore be taken to be constant.  The time 
rate of change of  3 is 

= 4A ~ (3hu - hm) -- 16B(EM + ~,u). 
(13) 

Due to tidal dissipation in the planet, the 
orbits of  the satellites expand (e.g., 
Goldreich 1965), 

a_L.i = 3 k 2 n i m i ( ~ )  5 1 
ai ~ ~ ,  (14) 

and the inclinations damp at a rate (Darwin 
1880, Kaula 1964, MacDonald 1964) of 

t.j/~_ 1 ~/i 
ii 4 ai' (15) 

where k: and Q are, respectively,  the poten- 
tial Love  number  and specific dissipation 
function for Uranus. Using numerical val- 
ues appropriate for the Uranian satellites 
(Stone and Miner 1986), 

3hu 3 m u  (aM) 8 
hm mm ~a--uuJ ~ 0.12, (16) 

so the orbit of  Miranda expands relative to 
that of  Umbriel. The inclination damping 
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timescales are very  long, at minimum of or- 
der 1011 years  of  Miranda and 1012 years for 
Umbriel .  The t imescales  of  inclination 
damping due to the obliquity of  the satellite 
in Cassini state 1 are even longer (see Titte- 
more  1988). Inclination damping is there- 
fore not important  during resonance pas- 
sage, or even during the subsequent  
evolution on t imescales  comparab le  to the 
age of  the Solar System.  

The mos t  significant term in Eq. (13) is 
therefore 

3G2M2m 3 aM (17) 
= --hM --~ 2F 3 aM 

The rate of  evolution through the reso- 
nance depends  on the specific dissipation 
function Q of  Uranus.  Q is constrained by 
the dynamical  history of  the satellite sys- 
tem (see Peale 1988). The lower limit of  
6600 places Miranda and Ariel at the same 
distance f rom Uranus  at the time of forma- 
tion of  the Solar System.  Upper  limits on Q 
can be establ ished if the current  orbital con- 
figuration can only result f rom passage 
through a part icular  resonance.  The upper  
limit for Q is the value that would allow 
passage of  that resonance  near  the time of  
format ion of  the Solar System.  

Numerical  explorat ion of  this sys tem is 
constrained by availability of  compute r  
time. L o w e r  dissipation rates (higher Q) re- 
quire longer integration times. It may not 
be feasible to integrate a t rajectory through 
a resonance  with an effective dissipation 
rate which is within the constraints  de- 
scribed above.  We parameter ize  the effec- 
tive dissipation rate as script 9", to distin- 
guish the numerical  pa ramete r  which 
determines  the rate of  evolution in our sim- 
ulation f rom the physical  parameter .  We 
desire a value of  9. low enough that we can 
adequate ly  study the system,  but high 
enough that art ifacts in the dynamics  do not 
appear .  In Paper  I, it was found that arti- 
facts appeared  in the dynamics  of  the 5 : 3  
resonance  even at very  slow dissipation 
rates. We have carried out a similar study 

to determine the influence of  the rate on the 
dynamics  of  the 3 : 1 resonance.  

This s tudy involved integrating identical 
sets of  trajectories through the resonance at 
different simulated dissipation rates. The 
initial coordinates  for each trajectory in a 
set were  determined as follows. For  an ini- 
tial t rajectory,  with physical  parameters  aM 
= 4.8642R, au = 10.1179R, iM = 0.005 tad, 
iu = 0.005 rad, O'M = 7r/2, and o-t; = 3~r/2, 
we compute  the coordinates  XM = 0.0, YM 
= 0.0009212, XU = 0.0, and Yu = 
-0.004574,  and the pa ramete r  6 = 
-0.364003. These  initial inclinations are 
comparab le  to the current  inclinations of  
the Uranian satellites excluding Miranda. 
F rom this initial point,  the coordinates  of  19 
additional points,  spaced in t ime by 66 map- 
ping periods (T = 27r/40 year),  were com- 
puted. These 20 points formed the initial 
coordinates  of  the trajectories,  each start- 
ing with the same energy,  6, and action 
(area enclosed by a trajectory in phase 
space),  but with different phases.  From 
these initial coordinates ,  the trajectories 
were numerical ly integrated through the 
commensurabi l i ty  using the algebraic map- 
ping. 

Figure 1 shows the distributions of  time- 
averaged final inclinations for Miranda and 
Umbriel  for a set of  20 trajectories inte- 
grated through the 3: l mean-mot ion  com- 
mensurabil i ty with a very slow simulated 
tidal dissipation rate (~ = 110, hM/aM = 6 × 
10 -~2 per  orbit  period). There  is a distinct 
bimodal distribution of  iM: some trajectories 
escape  f rom all of  the resonances  to lower 
inclinations, but most  trajectories are tem- 
porarily captured into resonance,  and the 
orbital inclination of  Miranda reaches at 
least a few degrees  before the trajectory es- 
capes f rom the resonant  interaction. It  is 
clear f rom this figure that there is a signifi- 
cant probabil i ty that Miranda could have 
escaped f rom the 3 : 1 resonance with Um- 
briel with an orbital inclination close to the 
present  value of - 4  ° . Clearly, the orbit of  
Umbriel  can be significantly affected by the 
resonant  interaction as well. The restricted 
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FIG. 1. Distributions of  escape orbital inclinations of Miranda (a) and Umbriel (b) for an ensemble of 
20 trajectories evolved through the resonance with 9~ = 110, or hM/aM = 6 × 10 -~2 per orbit period. 
Initially, iM = iv = 0°.29 (see text). Both orbits are affected by the resonant interaction. An orbital 
inclination of about 4 ° for Miranda can clearly be attained during passage through the 3 : l commensu- 
rability with Umbriel. 

1.0 

t h r e e - b o d y  p r o b l e m  w o u l d  no t  be  a g o o d  
a p p r o x i m a t i o n  fo r  th is  s y s t e m .  

F i g u r e  1 s h o w s  the  t y p i c a l  o u t c o m e s  o f  
t r a j e c t o r i e s  n u m e r i c a l l y  e v o l v e d  t h rough  
the  r e s o n a n c e  wi th  e x t r e m e l y  s low s imu-  
l a t ed  t ida l  d i s s i p a t i o n  ra tes .  F i g u r e  2 sum-  
m a r i z e s  h o w  this  b e h a v i o r  c h a n g e s  as  the  
s i m u l a t e d  r a t e  o f  t ida l  e v o l u t i o n  is in- 
c r e a s e d .  In  th is  f igure ,  the  m e a n  final incl i-  
na t ions  o f  t e m p o r a r i l y  c a p t u r e d  t r a j e c t o r i e s  
a re  p l o t t e d  as  a func t ion  o f  the  s imu la t ed  
ra te  o f  e v o l u t i o n ,  e x p r e s s e d  in t e r m s  o f  the  
e f f ec t ive  spec i f ic  d i s s i p a t i o n  func t ion  o f  
U r a n u s  9~. T h e  e r r o r  ba r s  a r e  the  s t a n d a r d  
d e v i a t i o n s  o f  the  m e a n .  F o r  9_ > 3.3 (hM/aM 

< 2 × 10 -I°  p e r  o rb i t  pe r iod ) ,  the  m e a n  final 
o rb i t a l  i nc l ina t ion  o f  M i r a n d a  is c lo se  to  the  
c u r r e n t  va lue ,  m u c h  h ighe r  t han  the  m e a n  
ini t ia l  va lue  o f  0.°29. F o r  s m a l l e r  9~ (h igher  
d i s s i p a t i o n  ra tes ) ,  the  m e a n  final iM de-  
c r e a s e s  s h a r p l y  wi th  i nc r ea s ing  ra t e ,  and  
for  ~ < 0.33, the  m e a n  final o rb i t a l  inc l ina-  
t ions  o f  M i r a n d a  and  U m b r i e l  a r e  the  s a m e  
as  the  ini t ia l  va lues :  t hey  have  b e e n  
d r a g g e d  t h r o u g h  the  r e s o n a n c e  w i t h o u t  dis-  
p l ay ing  any  i n t e r e s t i n g  b e h a v i o r .  

T h e  s u d d e n  c h a n g e  in m e a n  final inc l ina-  
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FIG. 2. Mean escape orbital inclinations of Miranda 
( t )  and Umbriel (D) for temporarily captured trajecto- 
ries as a function of the simulated tidal dissipation 
rate, expressed in terms of the effective specific dissi- 
pation function of Uranus 9`. Error bars are standard 
deviations of the mean; typical distributions of the or- 
bital inclinations for slow simulated tidal evolution 
rates can be seen in Fig. 1. For 9. > 3.3 (hM/aM < 2 X 
10 -~° per orbit period), many trajectories are tempo- 
rarily captured into resonance, and escape with a high 
value of the orbital inclination of Miranda. For 
smaller 9~, rate-induced artifacts appear in the dynam- 
ics; at much higher simulated dissipation rates (9  ̀< 
0.33), the trajectories are dragged through the reso- 
nance without displaying any interesting behavior. 
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tion with rate can be unders tood in the fol- 
lowing way.  At low inclinations, the reso- 
nance behavior  is described well by the 
theory of  evolution through isolated mean- 
mot ion resonances  (see below). This theory 
assumes  that the t imescale of  evolution of 
the pa ramete r  8 is much  longer than the pe- 
riods of  the fundamental  frequencies in the 
problem. These  frequencies are the secular 
frequencies and the frequencies of  small- 
ampli tude libration in each of the reso- 
nances.  The libration f requency of a given 
resonance  increases as a captured trajec- 
tory evolves  within the resonance,  whereas  
the nonresonant  frequencies  remain nearly 
constant  over  the t imescale of  resonance 
passage.  We can express  the rate of  tidal 
evolution as the change of libration fre- 
quency in one libration period divided by 
the libration f requency (ACOL/COL). I f  this di- 
mensionless  quanti ty is of  order  unity, it is 
expected  that the assumpt ion of  adiabatic 
invariance of the action will no longer be 
valid, since the t imescale of  simulated tidal 
evolution is similar to the dynamical  time- 
scales. 

The resonance  involving only the orbital 
node of  Miranda is the first resonance en- 
countered and we shall refer to it as reso- 
nance 1. The Hamil tonian for this reso- 
nance considered independently includes 
only one of  the angle-dependent  terms in 
Eq. (9): 

~ j  = ½(8 + 2(C - D) + 16BZu)ZM 

+ 4BZ~ + 2FEM COS(20-M)). (18) 

To find the libration f requency,  we expand 
the Hamil tonian about  the resonance  libra- 
tion center  (pendulum approximat ion)  and 
consider  the mot ion near  the stable fixed 
point. The f requency  of  small-amplitude li- 
brat ions for  this resonance  can thus be ex- 
pressed as 

CO~ = - 4 F ( 8  - 80), (19) 

where 80 = - 2 ( C  - D) + 4F - 16BZu is the 
value at which the libration zones first ap- 
pear  in the phase  space of resonance 1 (see 

Appendix  I I I  of  Paper  I for details of  these 
calculations). The change in the libration 
f requency in one period is AojL ~ - 4 ~ F 8 /  

co[. From Eq. (17), with aM/aM = 9.4 × 
l0 14 per  orbit period for Q = 6600, 8 = 4.1 
× 10 4/~ in our units. For  iM = iu = 0.005 
tad well before the resonance is encoun- 
tered, 80 = 0.531. At the point that the tra- 
j ec tory  is captured into the resonance,  8 -- 
0.563, and Acoc/coL = 3.6/~. Therefore ,  for 
)~ ~ 3.6, artifacts should begin to appear  in 
the dynamics .  In the numerical experi- 
ments,  significant artifacts appear  for )~ < 
3.3 (aM~aM > 2 × 10 -m per  orbit period), in 
excellent agreement  with the analytic pre- 
diction. 

The slowest rate used to integrate many 
trajectories,  :~ = 110 ( a M / a M  = 6 x 1 0  -12 per 
orbit period), with AwL/COt, = 0.03 (see Fig. 
1), is slow enough that this artifact does not 
influence the dynamics .  This has been veri- 
fied by integrating individual trajectories 
through the resonance with lower dissipa- 
tion rates ( a M / a M  = 9 × 10 13 per orbit pe- 
riod). 

In Fig. 3, the Hamil tonian energies of  the 
trajectories with ~ = 110 (see Fig. I) are 
plotted vs 8. We have parameter ized  the 
energy in a manner  analogous to that used 
in Paper  I: AE = g - E l ,  where % is the 
value of  the Hamil tonian,  and 

0, 8 < 2 ( C -  D) + 4H 

El = - ( 6  - 2(C - D) - 4tt)2/64B, 

6 -> 2(C - D) + 4H. 

(20) 

Positive AE indicates the appearance  of  an 
excluded region near  the origin of  that sur- 
face of  section which plots YM vs xM when 
Xu = 0. As in the surfaces of  section de- 
scribed in Paper  I, the quartic nature of  the 
Hamil tonian means  that the section condi- 
tion Xu = 0 can have two or four values of  
yu conjugate to xtj, forming four root " f am-  
i l ies." Associa ted  with the excluded region 
on the surface of  section is a region on the 
energy surface of  the Hamil tonian which 
connects  the " o u t e r "  families of  roots and 
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the " i n n e r "  root  families via the chaotic 
separatr ix.  Therefore ,  with posi t ive AE, a 
t ra jectory can evolve  into the quasiperiodic 
zone on the inner root families, which al- 
lows it to escape  f rom the resonance.  As in 
Paper  I, the heavily shaded region in the 
upper  part  of  the 8, AE plot (Fig. 3) is the 
region in which evolut ion is not allowed. 
The region where  " m a c r o s c o p i c "  chaotic 
regions may  be found, which is most  of  the 
accessible  region with posit ive AE, is 
lightly shaded. 

The dynamical  significance of  the param- 
eterizat ion used in Paper  I was that posit ive 
AE indicated forced libration of  one of  the 
resonant  a rguments ,  due to the division of 
the energy surface into two regions. In the 
Mi randa -Umbr i e l  3 :1  problem,  the phase  
space is not as compl ica ted  (see below). 
The phase  space more  nearly resembles  the 
pendulum-like phase  space of  the single- 
resonance  theory.  Librat ion is possible on 
quasiperiodic islands surrounded by a cha- 
otic separatr ix.  There  is a tiny region of pa- 
rameter  space near  the boundary  of  the pro- 
hibited region in Fig. 3 where  the energy 
surface divides the phase  space into librat- 
ing regions,  but it does not appear  to be 
significant (it is not even visible at this 
scale). The new mechan ism of  capture dis- 
covered  in the program of  research de- 
scribed in Paper  I does not appear  to be 
important  in the M i r a n d a - U m b r i e l  3 : 1 res- 
onant  interaction. 

In the 8, AE pa rame te r  space,  captured 
trajectories are linear, and escaping trajec- 
tories decrease  quadratically to large nega- 
tive AE. For  the set of  trajectories shown 
in Fig. 3, evolut ion occurs  along three 
" b r a n c h e s . "  Quasiperiodic evolution is 
shown as solid lines, and chaotic behavior  
is shown as dashed lines. There  are two 
linear (capture) branches  and an escape  
branch.  Trajector ies  on the escape  branch 
escape  f rom all three of  the resonances ,  and 
evolve to large negat ive AE. 

The upper  linear branch involves capture 
into resonance  1. Ha l f  of  the trajectories in 
this set were  captured  into this resonance.  

4e-0 

2e-0 

-2e-0 

-4e-0 

-2.0 0 2.0 4.0 6.0 8.0 10,0 12.0 14.0 

FIG. 3. Trajectories in 3, AE parameter space with 9_ 
= 110 (see Fig. 1). Solid lines indicate quasiperiodic 
behavior and dashed lines indicate chaotic behavior. 
Evolution occurs along one of three "branches." The 
upper linear branch involves temporary capture into 
resonance 1 (i~), and the lower linear branch involves 
temporary capture into resonance 2 (ir~itJ). Trajecto- 
ries escape to large negative AE. The units of 8 are 
year-~. 

The s ingle-resonance theory predicts a cap- 
ture probabil i ty of  0.42 for iM = 0.005 be- 
fore the resonance  is encountered.  

The lower  linear branch involves capture 
into the mixed resonance,  which we will 
refer to as resonance  2. Seven of  the ten 
trajectories not captured into resonance 1 
were  captured  into resonance  2. For  low 
values of  the inclinations, when the reso- 
nance is first encountered ,  the inclination of 
Umbriel  can be approx imated  as constant ,  
since the mass  of  Umbrie l  is much greater  
(a factor  of  about  17) than the mass  of  
Miranda. The mixed resonance  then takes 
the form of  a first-order resonance  (see 
Peale 1988), and the probabil i ty of  capture 
can be es t imated (see, e.g.,  Henrard  and 
Lemai t re  1983). In this approximat ion,  the 
s ingle-resonance theory predicts  a capture 
probabil i ty of  -~0.69 for iM ~ 0.003 after 
escaping f rom the first resonance,  and iu = 
0.005. 

None  of  the trajectories in this set were 
captured  into the resonance  involving only 
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the orbital node of  Umbriel, or resonance 3. 
The single-resonance theory predicts a very 
low probability of  capture into this reso- 
nance of  only 0.017 for iu = 0.005 before 
the resonance is encountered.  The orbital 
inclination of  Umbriel does not decrease 
significantly upon escape from the reso- 
nances involving the orbital node of  Um- 
briel. 

In both of  the resonances involving the 
node of  Miranda, captured trajectories 
evolve within the resonance for some pe- 
riod of  time, become chaotic, then escape 
to large negative AE. In both cases, escape 
is only possible within certain ranges of  8, 
rather than occurring randomly. The dy- 
namical explanation for this is given below. 

The energy of  the Hamiltonian evolves 
slowly as 3 changes. Since the evolution of 
the Hamiltonian energy is slow compared 
to the dynamical  timescales, we can 
" f r eeze"  the Hamiltonian energy and 8 at 
any point in the evolution and study the 
structure of  the phase space by computing 
surfaces of  section, in order to understand 

the qualitative behavior of the trajectory. 
The surface of  section that was chosen for 
study plots yu vs XM when Xu = 0. As indi- 
cated earlier, the phase space of this prob- 
lem is not as complicated as the phase 
space of  the Ariel-Umbriel  5 : 3 resonance. 
The interesting behavior takes place on the 
outer pair of  root families, until the trajec- 
tory escapes into that part of  phase space 
including the inner pair. The structures of 
the phase space on the two root families 
forming the outer pair are similar. There- 
fore, the evolution of  the trajectory through 
the resonance can be adequately studied on 
the root family with the largest numerical 
value. Furthermore,  we have chosen to plot 
EM vs O'M rather than YM VS XM, in order to 
better display the pendulum-like structure 
of  the phase space. 

Figure 4 shows the evolution of  the incli- 
nations with 8 for a trajectory captured in 
resonance I. The maximum and minimum 
inclinations of  the satellites within a short 
interval of  8 (//8 ~ 0.004) are plotted vs 3. 
Before the resonance is encountered,  the 
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Fro. 4. Variations in the orbital inclinations of Miranda (a) and Umhriel (b) for a trajectory captured 
into resonance 1 (itM/aM = 6 × 10 t: per orbit period). The maximum and minimum inclinations of each 
satellite are plotted in intervals of A~ ~ 0.004, where the units of 8 are year f. The evolution is regular 
and quasiperiodic at low inclination, but secondary resonances between the fundamental frequencies 
pull the trajectory into the chaotic zone at high inclination. The trajectory can escape from the mean- 
motion resonance via the chaotic zone, leaving the orbit of Miranda with an inclination comparable to 
its present value. 
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FIG. 5. Surface of section showing the phase space 
of the trajectory shown in Fig. 4 just after capture into 
resonance 1 (8 = 0.578). The evolution at this point is 
well described by the single-resonance theory: there 
are two libration regions surrounded by a regular-look- 
ing separatrix. The trajectory generates the loop in the 
libration region on the right of the figure. 

secular  interaction be tween  the satellites is 
weak,  and the inclinations are nearly con- 
stant. When the resonance  is encountered  
at low inclination, the t rajectory crosses  a 
narrow separatr ix  into one of  two libration 
zones.  In Fig. 5, the t rajectory generates  
the closed loop in the region of  libration 
corresponding to posit ive O'M, which it oc- 
cupies until escaping f rom the resonance.  
The separatr ix  is also displayed in this fig- 
ure and in subsequent  surfaces of  section, 
in order  to illustrate the phase  space 
through which the t rajectory tidally 
evolves.  After  capture  into the resonance,  
the average  orbital inclination of  Miranda 
increases proport ional  to the square root of  
8, as predicted by the single-resonance the- 
ory. During the quasiperiodic evolution 
within the resonance ,  the inclination oscil- 
lates smoothly  about  a gradually increasing 
mean value. Meanwhile ,  the averge orbital 
inclination of  Umbrie l  s tays nearly con- 
stant, but with gradually increasing oscilla- 
tions about  the mean value. As the inclina- 
tion increases,  per turbat ions  due to the 
other  resonances  broaden the separatr ix 
into a chaotic region (Fig. 6). The libration 
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region of  the mixed resonance  has appeared  
in the phase  space,  also surrounded by a 
chaotic separatr ix.  In this figure, the trajec- 
tory generates  the closed loop in the libra- 
tion region corresponding to posit ive O'M. 

At ~ ~- 2.4 in Fig. 4, there is a small but 
noticeable decrease  in the magnitude of  the 
oscillations about  the mean  value of  the or- 
bital inclination of  Miranda. Figure 7 dis- 
plays a surface of  section showing the tra- 
j ec to ry  at this point in the evolution. The 
f requency  of  small-amplitude librations has 
been increasing as 8 increases,  and at this 
point there is a 1 :4  commensurabi l i ty  be- 
tween the libration f requency  and the fre- 
quency of  circulation of  cru. Note  that the 
chaotic regions have  continued to increase 
in width, and the libration regions of  the 
two resonances  are nearly overlapping.  A 
secondary  resonant  s t ructure with four is- 
lands has formed within the libration zone 
of  resonance  1, due to the fact that there is 
a 1 :4  commensurabi l i ty  be tween the fre- 
quency of  libration of  O'M and the f requency 
of  circulation of o-u. As 8 evolves ,  the chain 
of  islands moves  away  f rom the libration 
center ,  eventual ly  encounter ing the trajec- 
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FIG. 6. Surface of the section for the trajectory 
shown in Fig. 4 at 8 = 1.206. The trajectory generates 
the loop in the libration region on the right of the fig- 
ure. The libration zone of the mixed (i~io) resonance 
has appeared on the section. The chaotic separatrix 
has become significantly wider. The width of the cha- 
otic separatrix agrees well with analytic estimates. 
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FIG. 7. Surface o f  sect ion for the trajectory shown in 
Fig. 4 at 8 = 2.358. The chaotic zones  have  cont inued 
to increase in width. The  trajectory has  jus t  encoun-  
tered a secondary  1 : 4 resonance  be tween the libration 
f requency in the i~ resonance  and the f requency of  
circulation of  O-u, and it therefore traces out  the pe- 
riod-4 separatr ix associa ted  with this secondary  reso- 
nance in the libration zone on the right of  the figure. 
This part icular trajectory is not captured into the sec- 
ondary  resonance .  

tory. In Fig. 7, the trajectory traces out the 
separatrix associated with this secondary 
resonance in the libration region on the 
right of  the figure. The trajectory must 
cross the separatrix, and may either be- 
come trapped in the island structure or es- 
cape to the region near  the libration center.  
The trajectory in Fig. 4 passes through the 
secondary commensurabil i ty  without be- 
coming trapped on the islands, but as it 
does so, the area enclosed by the trajectory 
on the phase plane decreases from a value 
corresponding to the area enclosed by the 
outer  boundary of  the separatrix at the 
point of  transition to a value corresponding 
to the area enclosed by the inner boundary 
of  the separatrix at the point of  transition. 
When the area enclosed by the trajectory 
decreases,  so does the amplitude of oscilla- 
tion of  the inclination about the mean value 
in the libration region, as seen in Fig. 4 at 8 

2.4 
At a somewhat  higher value of 8 (8 

3.7), the t rajectory encounters  a 1:3 com- 
mensurabili ty between the same two fie- 

quencies (Fig. 8). This time, the trajectory 
is t rapped in the island structure, and as 8 
increases, the islands are pulled away from 
the libration center  (Fig. 9). As this takes 
place, the amplitude of the oscillations of 
the inclination of  Miranda increases (see 
Fig. 4) as the trajectory visits each island on 
the surface of  section sequentially. At the 
same time, the mean orbital inclination of 
Umbriel decreases  slightly. 

Figure 10 shows the phase space just be- 
fore the trajectory enters the chaotic zone. 
The three loops generated by the trajectory 
seen in Fig. 9 have themselves been broken 
into chains of islands: the trajectory has 
been captured into a yet higher order  reso- 
nance. In Fig. 11, we see the neighborhood 
of one set of  these islands in Fig. 10 at an 
expanded scale, with other trajectories 
plotted as well to illustrate the structure of  
the surrounding phase space. The trajec- 
tory shown in Fig. 4, which is still quasipe- 
riodic at this point, generates the seven 
star-shaped islands, which are now fully 
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FIG. 8. Surface of  sect ion for the trajectory shown in 
Fig. 4 at 8 = 3.614. The chaotic zones  surrounding the 
two libration regions have merged,  in agreement  with 
the predict ions of  the resonance  overlap criterion. The 
trajectory has  jus t  encounte red  a 1 : 3 secondary  reso- 
nance between the libration f requency in the i~ reso- 
nance and the f requency of  circulation of  o-u, and 
traces out  the period-3 separatr ix in the libration zone 
on the right o f  the figure. The trajectory is captured 
into this secondary  resonance .  
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FIG. 9. Surface of  section for the trajectory shown in 
Fig. 4 at 8 = 4.242. The trajectory, which generates the 
three quasiperiodic islands in the libration region on 
the right of  the figure, is being dragged away from the 
libration center due to capture into the 1 : 3 secondary 
resonance.  

surrounded by the chaotic zone.  The 
shapes of  these islands are characteristic of 
a period-4 instability bifurcation (see, e.g. ,  
Hrnon 1969). This cascade of  higher and 
higher order resonances  is characteristic of  
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the development  of  chaotic instabilities in 
nonlinear dynamical  systems.  

At 6 ~ 4.8, the trajectory becomes cha- 
otic. During evolut ion through the chaotic 
region, the variations of  inclination are ir- 
regular, but the average inclination of 
Miranda continues to increase. The chaotic 
zones  surrounding the libration zones  of  the 
i ~  and iMitj resonances  now overlap, and 
the chaotic zone  is a dominant feature of 
the phase space. Although escape from the 
orbital resonance is possible during this pe- 
riod of  chaotic evolution,  the trajectory 
shown in Fig. 4 enters the libration zone of 
resonance 1 again at 8 ~ 5.0 and becomes 
quasiperiodic, with a much larger ampli- 
tude of  oscillation than it had before en- 
countering the I : 3 secondary commensu-  
rability. 

At 8 -~ 8.0 there is a short period of cha- 
otic behavior when the trajectory encoun- 
ters the 1 : 2 commensurability between the 
same two frequencies (Fig. 12). The chaotic 
separatrix associated with this secondary 
commensurabil ity has a visible width. As 
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FIG. 10. Surface of section for the trajectory shown 
in Fig. 4 at 8 = 4.766. The trajectory generates  the 21 
tiny islands in three groups near the boundaries of  the 
stable regions associated with the 1 : 3 secondary reso- 
nance,  near the edge of  the libration zone  on the right 
of  the figure. The trajectory has been dragged out of  
the secondary resonance  by a yet higher order reso- 
nance.  
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FIG. 11. This is a portion of the phase space shown 
in the previous figure, but at a larger scale and with 
more trajectories plotted. The still-quasiperiodic tra- 
jectory generates the seven star-shaped islands in the 
chaotic zone ,  which are themselves  undergoing a pe- 
riod-4 instability bifurcation. This cascade of higher- 
order resonances  is characteristic of  the development  
of chaotic instabilities in nonlinear dynamical systems.  
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FIG. 12. Surface of  section for the trajectory shown 
in Fig. 4 at 8 = 8.011. The trajectory, having returned 
to the libration region from the large chaotic zone,  has 
just encountered the 1 :2  secondary resonance be- 
tween the libration frequency in the i~ resonance and 
the frequency of circulation of o'u. The trajectory 
traces out the separatrix associated with this second- 
ary commensurabil i ty,  which is visibly chaotic.  As the 
trajectory becomes  chaotic briefly while crossing this 
narrow chaotic zone ,  it causes  the feature at 6 = 8.0 in 
Fig. 4. The trajectory is captured into this secondary 
resonance and is again dragged into the large chaotic 
zone,  from which it escapes  the mean-motion reso- 
nance. 

the trajectory crosses this narrow chaotic 
zone,  it exhibits the brief period of  chaotic 
behavior seen in Fig. 4. It is then trapped 
into the island structure. The oscillation 
amplitude of  Miranda's orbital inclination 
again increases with 6, while the mean or- 
bital inclination of  Umbriel decreases 
slightly. The trajectory is eventually 
dragged by the 1 :2  islands into the large 
chaotic zone associated with the primary 
resonance at 6 ~ 9.8. Shortly thereafter the 
trajectory shown in Fig. 4 escapes from the 
resonance,  with orbital inclinations of 
about 4?6 for Miranda and 0?26 for Umbriel. 

Figure 13 shows the behavior of  the incli- 
nations for a trajectory captured into reso- 
nance 2. Again, well before the resonance 
is encountered,  the mutual perturbations 
are weak, and the inclinations are nearly 
constant.  This time, the trajectory escapes 
from the first resonance,  and the mean or- 
bital inclination of  Miranda decreases sud- 
denly as it crosses the separatrix. The tra- 
jectory is then captured into the mixed 
(/M/U) resonance,  and both inclinations os- 
cillate about mean values that increase 
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FIG. 13. Variations in the orbital inclinations of Miranda (a) and Umbriel (b) for a trajectory captured 
into resonance 2 (hM/aM = 6 × 10 ~2 per orbit period). The maximum and minimum inclinations of each 
satellite are plotted in intervals of 46  ~ 0.005, where the units of  6 are year ~. The inclinations of both 
orbits increase during the temporary quasiperiodic phase of evolution within the resonance.  Secondary 
resonances  between the degrees of freedom pull the trajectory into the chaotic zone at high inclination. 
The trajectory can escape  from the mean-motion resonance via the chaotic zone,  leaving the orbit of 
Miranda with an inclination comparable to its present value. 
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FIG. 14. Surface of  sect ion showing the phase  space 
of  the t rajectory shown  in Fig. 13 at ~ = 12.512, jus t  
before escaping  f rom the resonance .  The trajectory 
genera tes  the three  quasiperiodic is lands in the libra- 
tion region o f  the mixed  resonance ,  and is being 
dragged away f rom the libration center .  It is possible 
for a trajectory to j u m p  f rom one libration region to 
another  via the  chaotic  zone.  

with time (~5). At 3 ~ 6.0 and 8 -~ 7.8 there 
are sudden changes in the oscillation ampli- 
tudes similar to those described above in 
Fig. 4. Figure 14 shows the surface of  sec- 
tion for this t rajectory at ~ ~ 12.5, just  be- 
fore it enters the chaotic region. Note that 
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the t rajectory generates three islands, 
which are being pulled away from the libra- 
tion center  of  the iMiu resonance as 8 in- 
creases.  These  islands occupy a region of  
phase space in which the argument of the 
mixed resonance (CrM + O'U)/2 librates, al- 
though this is not obvious in the variables 
plotted. At 8 ~ 12.7, the trajectory is 
dragged into the chaotic zone, which also 
surrounds the neighboring libration zone 
for resonance 1. It is possible for a trajec- 
tory,  after entering the chaotic region, to 
temporari ly enter  the librating region of res- 
onance 1. The trajectory in Fig. 13 escapes 
shortly after entering the chaotic zone, 
leaving Miranda with an average orbital in- 
clination of  about  3.°7 and Umbriel with an 
average orbital inclination of about 0.°79. 

Figure 15 shows the inclinations of 
Miranda and Umbriel during evolution 
through the 3 : 1 commensurabil i ty,  with a 
higher initial inclination for Miranda (iM = 
1.0°). Even  with this high initial value, the 
trajectory is captured into the mixed (/M/U) 
resonance,  and escapes with an iM compa- 
rable to the current  value. 

The mechanism of escape in all cases of  
temporary  capture appears to require the 
presence of the secondary resonances be- 
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FIG. 15. Variat ions in the  orbital inclinations of  Miranda (a) and Umbriel  (b) for a trajectory with 
initial iM = 170 (hM/aM = 6 × 10 -12 per orbit period). The m a x i m u m  and min imum inclinations of  each 
satellite are plotted in intervals  of  A8 ~ 0.0036, where  the units of  8 are year  t. Even  with the large 
initial value of  iM, this trajectory is captured into the mixed (iMiu) resonance,  and the orbital inclination 
of  Miranda evolves  to a relatively high value.  
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tween the libration f requency and other  
fundamental  frequencies.  The points in the 
evolution at which these secondary  com- 
mensurabil i t ies are encountered  can be esti- 
mated by compar ing  the frequencies of  
small-amplitude iibration for the reso- 
nances considered independent ly to the 
fundamental  f requencies  of  the nonreso-  
nant part  of  the Hamil tonian.  

The largest  contr ibut ions to the nonreso-  
nant Hamil tonian  are given by the expres-  
sion 

~o = ½(a + 2(C - D))~]M + ½ ( a  

- 2(C - D))Yu + 4B(Y,M + Eu) 2. (21) 

Therefore ,  the "ze ro th -o rde r  frequencies 
of  the sys tem are 

6-M = = ½(a + 2(C - D)) 
0EM 

+ 8B(EM + Eu) 

6-u - - - -  ½ ( 6 -  2 ( C -  D)) 
OEu 

+ 8B(EM + Eu) 

= 6-M -- 2(C - D). (22) 

For  resonance  I, the average value of 6-M 
is zero.  Therefore ,  6-u ~ - 2 ( C  - D), which 
has the same magnitude as the difference 
between the frequencies  of  resonance 1 and 
resonance 2, or, equivalently,  the differ- 
ence be tween the frequencies of  regression 
of OM and Ou.  The commensurabi l i t ies  be- 
tween the degrees  of  f reedom should occur  
where the libration f requency of  resonance 
1 (Eq. (19)) and &u form integer ratios. The 
most  important  of  these commensurabi l i -  
ties, and the values of  6 and iM at which 
they occur,  are summar ized  in Table I. 

T A B L E  ! 

FREQUENCY RATIOS: 
RESONANCE | 

oil. : &u  a iM 

1 : 4 2 . 3  2 . 0  ° 

! : 3 3 . 6  2 . 7  ° 

1 : 2  7 . 5  4 . 1  ° 

AND WISDOM 

TABLE II 

FREQUENCY RATIOS: RESONANCE 2 

O~L : (&M -- & o )  ~ iM iL 

1 : 5 5 . 8  2 . 4  ° 0 . 5  ° 

1 : 4 8 . 6  3 . 0  ° 0 . 6  ° 

I : 3 14 .6  4 . 0  ° 0 . 8  ° 

There  is a good correlation between the 
analytical predictions and the numerical 
results. 

As indicated earlier, the mixed resonance 
can be approximated  as a first-order reso- 
nance when it is first encountered by the 
trajectory,  and the inclination of Umbriel  is 
nearly constant  (EM ~ Ev). After  the trajec- 
tory is captured,  the phase space of the 
mixed resonance  is quite complicated (see 
also Sinclair 1974) as both inclinations in- 
crease.  For  large 8, the mixed resonance 
can be approximated  as a second-order  res- 
onance in (O-M + O'U)/2, and EM = Xu. In 
this approximat ion,  the Hamil tonian for 
resonance  2 becomes  

~2 = (6 + 16BEu0)YM + 16BE~ 

+ 2GEM COS(O'M + CrU). (23) 

The f requency of libration of the mixed res- 
onance argument  (O'M + 0-0/2 is therefore 

oJ~ = 2G(6 + 2G + 16BYu0). (24) 

The average  value of  &M + 6-U is zero in the 
mixed resonance,  so the f requency of circu- 
lation of the other  degree of  f reedom 6-M -- 
6-V = 2(C - D). The most  important  com- 
mensurabil i t ies be tween these two degrees 
of  f reedom are summar ized  in Table II. 
Again, the correlat ion be tween these pre- 
dicted values and the results of  the numeri-  
cal simulations (e.g., Figs. 13 and 15) is 
very good. Note  that the values of  6 and iM 
at which the t ra jectory enters the chaotic 
zone are larger than the values at which the 
secondary  resonances  are encountered,  
due to the time it takes for the islands to be 
dragged away f rom the libration center  and 
into the chaotic zone. 
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The full Hamiltonian of  this problem is 
coupled through both linear and nonlinear 
terms. The strength of the coupling in- 
creases as the inclination(s) increase during 
temporary  capture into one of  the reso- 
nances. Therefore ,  the " ze ro th -o rde r "  fre- 
quencies described above are modified, and 
the motion becomes more complicated. 
Secondary  resonances  between the libra- 
tion f requency and various f requency com- 
ponents  of  this more complicated motion 
are possible, but do not appear  to signifi- 
cantly affect the evolution. 

Because the chaotic zone does not com- 
pletely engulf the libration regions, it is pos- 
sible for a t rajectory to be permanent ly  cap- 
tured into a resonance,  if it passes through 
all of  the secondary commensurabili t ies be- 
tween the degrees of  freedom. 

The limited extent  of  the chaotic region 
can be unders tood by considering the theo- 
retical estimate of  the width of  a per turbed 
separatrix (Chirikov 1979). The half-width 
of  the separatrix is expressed in terms of  
the chaotic variation of  the energy integral 
for the per turbed resonance,  

A% - -  = 47reX3e -Trx/2, (25) 
~sx 

where h is the ratio of  the perturbation fre- 
quency to the f requency of  small-amplitude 
librations and the perturbat ion parameter  e 
is the ratio of  the coefficients of  the perturb- 
ing term to the coefficients of  the perturbed 
term. 

For  perturbations of  resonance 1 by reso- 
nance 2, the per turbed Hamiltonian can be 
written 

= ~1 + e~ ,  (26) 

where ~ l  is given in Eq. (18) and 

e°l f = 2GN/~MY~u COS(ffM "b flU)" (27) 

Therefore  

(~'M --  0"U 

COL 

and 

e - f 

where 

C - D  
(28) 

V ' - F ( 8  - 80) 

G x ~ - ~  iu, 
F ~ 8 - 8 0  

(29) 

(8 - 80) 
EM,R -- -- 16B (30) 

is the libration center  of  resonance 1. Due 
to the secular interaction, e and h are time- 
dependent  in the full problem. However ,  
since the secular interaction is weak, the 
variations are small. 

For  small values of  ;5 the separatrix width 
is exceedingly small, but it increases expo- 
nentially as the libration f requency in- 
creases. However ,  for  large values of  8, the 
exponential  contribution in Eq. (25) ap- 
proaches 1 asymptotical ly,  while the fac- 
tors out front decrease quadratically with 8, 
so A%l%,x decreases.  Note  that the pertur- 
bation parameter  e is linear in iv. 

However ,  because of  the overlap of the 
libration regions of  resonance 1 and reso- 
nance 2 at large values of  8, the chaotic 
zone will be larger than predicted by Eq. 
(25). The resonance overlap criterion 
(Chirikov 1979) predicts large-scale chaos 
where the sum of  the half-widths of  the li- 
bration regions plus the half-widths of  the 
chaotic separatrices exceeds the spacing 
between libration centers.  The point at 
which the libration regions overlap can be 
estimated, using the formulae for the reso- 
nances considered independently.  The ex- 
tent of  the libration region for resonance 1 
is given by 

EM, = EM,R ----- A~,M,, (31) 

where I ~MIR , 

AEMI = X/--F(--4BEM.R + F) 
- 2 B  

80--< 8 <  - 2 ( C -  D ) -  4 F +  16BEu 

8 >- - 2 ( C  - D) - 4F + 16BEu. 

(32) 
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For  large 8, the ex ten t  of  the l ibra t ion 
region  for  r e s o n a n c e  2 can  be expressed  as 
(see Eq. (23)) 

EM~ = Y'MzR -+ AY'M,. 

N / G ( -  16BEM:R -- G) 
~M2R -~- - 8 B  

(33) 

Fo r  a t ra jec tory  cap tu red  into r e s o n a n c e  1, 
CrM is osci l la t ing,  whi le  the a r g u m e n t  of  res- 
o n a n c e  2, (O'M + 0-0 /2 ,  c i rcula tes  with a 
f r e q u e n c y  - ( C  - D) ~ - 0 . 1 6 5  year  -~. 
There fo re ,  at the c e n t e r  of the r e s o n a n c e  2 
is land,  6-M = C - D ~ 0.165 year  ~. Since 
6-M = 0 ~ / 0 E M  for r e s o n a n c e  1, this fre- 
q u e n c y  di f ference  can  be re la ted to a differ- 
ence  in EM b e t w e e n  l ib ra t ion  centers .  The  
s table  equ i l ib r ium on the surface of  sect ion 
c o r r e s p o n d i n g  to the largest  quar t ic  root  
(Crv= 7r/2) is at O-M = --~r/2, SO O-M + Cru = 
0. There fo re ,  for a t ra jec tory  cap tured  into 
the l ibra t ion  zone  of  r e s o n a n c e  1, the cen te r  
of  l ibra t ion  of  r e s o n a n c e  2 is at 

(8 - (6o + 2(C - D))) 
Y'a4~R = - 16B (34) 

for 8 --> 80 + 2(C - D). EMiR ma in t a in s  a 
near ly  c o n s t a n t  separa t ion  f rom EM,R on  the 
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FIG. 16. Analytic predictions of the positions and 
widths of the libration zones of the i~ and iMiu reso- 
nances (solid lines) relative to the libration center of 
the i~ resonance, and the width of the chaotic separa- 
trix of the i~ resonance (dashed lines). Large-scale 
chaos is present when the libration regions merge. 
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FIG. 17. Surface of section showing the phase space 
of the trajectory shown in Fig. 4 shortly after capture 
into resonance 1 (8 = 0.788), with A~/%sx = 8.3 × 10 -4. 
The region near one of the unstable fixed points is 
shown. The bar denotes the analytic prediction of the 
width of the chaotic separatrix near the unstable fixed 
point. Although the boundary of the chaotic region is 
not well defined, the distances of the points furthest 
from the center of the chaotic zone at its narrowest 
extent agree well with the predicted width. The fact 
that the invariant curves just outside the large chaotic 
zone are slightly further from the center than the pre- 
dicted width supports this result. 

phase  p lane  def ined by O'M and  EM unti l  the 
chaot ic  separa t r ices  merge.  

F o r  the case where  r e s o n a n c e  I is per- 
tu rbed  by r e s o n a n c e  2, the u n p e r t u r b e d  li- 
b ra t ion  widths ,  as well as ~%/%~x for reso- 
na nc e  1 (iu = 0.005), are p lot ted  in Fig. 16. 
The  l ibra t ion  width  p lo t ted  for r e sona nc e  2 
is f rom the s econd -o rde r  r e s o n a n c e  approx-  
imat ion  desc r ibed  above ,  which is a good 
a p p r o x i m a t i o n  only  for the larger va lues  of 
8 r ep resen ted .  The  pred ic ted  value  of  8 at 
which the l ibra t ion zones  should over lap  is 
abou t  4.3. For  the t ra jec tory  shown in Fig. 
4, the two l ibra t ion zones  over lap  for 8 
3.6. In  the real sys tem,  of course ,  the shape 
of each l ibra t ion  zone  is d is tor ted  by the 
p re sence  of the other .  The  width of each 
chaot ic  separa t r ix  tends  to be larger on the 
side nea res t  the o the r  l ibra t ion region.  

F igure  17 i l lus t ra tes  the accu racy  with 
which the Chi r ikov  fo rmula  (Eq. (25)) can 
be used to predic t  the width of  the chaot ic  
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separatrix. The phase space in the neigh- 
borhood of  one of the unstable fixed points 
predicted by the single-resonance theory is 
displayed. The trajectory (not shown on the 
figure at this scale) has been captured into 
the resonance, but is at a point in the evolu- 
tion well before the value of 8 at which res- 
onance overlap is predicted. The bar in the 
figure denotes the analytic estimate of the 
width Atr of  the large chaotic zone near the 
unstable fixed point. There is good agree- 
ment between the predicted width and the 
maximum Atr at which points appear in the 
large chaotic zone at its narrowest extent. 
Note, however,  that the edge of the chaotic 
region is ill-defined: it breaks up into nar- 
row connected bands surrounding chains of 
quasiperiodic islands, and forms a very 
complicated filamentary structure. Outside 
of the large chaotic zone, the narrow cha- 
otic separatrices surrounding chains of is- 
lands are isolated by invariant curves. The 
predicted width is close to but within the 
Atr at which the invariant curves appear on 
the figure at the edge of the large chaotic 
zone. The accuracy of  the analytic formula 
in predicting the width of the chaotic zone 
has been similarly verified over 5 orders of 
magnitude of A%/%,~. 

The success of the single-resonance the- 
ory in describing this system at low inclina- 
tions can be understood by considering the 
width of the chaotic zone at the point of 
capture into the resonance. Equation (25) 
predicts that the relative width of the sep- 
aratrix at the point of capture is approxi- 
mately A%l%,x -~ 5.0 x I0 -15 . For Q = 6600, 
the change in the Hamiltonian energy of the 
trajectory relative to the separatrix in one 
libration period is about 12 orders of magni- 
tude larger than the separatrix width. The 
trajectory is very quickly pulled across this 
narrow separatrix by the tidal action. 
Therefore, chaotic behavior does not affect 
the process of initial capture into the reso- 
nance, if the inclinations of the satellites 
were comparable to the values we have 
chosen prior to encountering the reso- 
nance. 

4. RESONANT PERTURBATIONS 

In this section we consider the effect of 
the eccentricity-type resonances associated 
with the Miranda-Umbriel  3:1 mean-mo- 
tion commensurabili ty on the evolution of 
the inclinations. 

In the development of the Hamiltonian 
for the eccentric-inclined problem, the fol- 
lowing eccentricity-dependent terms are 
added to the terms given in Eqs. (1)-(4): 

GMmM (R)21 3 , ]  
2aM J2 ~MM 1 + ~ e ~  

GMmu R 2[  3 e ~ ]  
- 2au J2(a--uu) 1 + ~  

GmMmu [(1)(0 ) + (2)(0)(eM] 2 
au 2 - /  

+ (3) (0) (eu) 2 
~T 

+ (21)(_ u e__~ e___E COS(OSM -- O3U)] 
2 2 

GmMmu [(172)(3) (2)2 
8U 

cos(3hu - h M - -  203M) 

eM eu  
+ (182)(2) 2 2 

cos(3hu - hM -- O3M -- t~U) 

+ (192)(') (~-E) 2 

cos(3hu - h M - -  2o3u)]. 
(35) 

The first set of terms is due to the planetary 
oblateness, the second set is due to the sec- 
ular interaction, and the final set is due to 
the eccentricity-dependent resonant inter- 
action. Note that (see Leverrier 1855) 

1 
(1)(o) = ~ b°/2(°O 

d 2 d 1 a2 b 0/2(a ) (2)(0) = ~ ~ b°/z(°O + $ 

(3)(o) = (2)(0) 
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d 
(21) { '~ = 2bI/2(o0 - 2a  ~ b]/2(oO 

d 2 
- -  O~ 2 ~ b 1/2(O0 

(172) ~3) = b3/2(o0 + 5 a - - ~  

d 2 
10t 2 - -  b~/2(o0 

+ 5 do~ 2 

(182) a! = -20bT/2(eO - 10c~ ~ bT/2(a) 

d 2 
- -  0~2 "~ b i/2(a) 

(192) <j~ = - -  b]/z(a) + 5a ~ b[,,2(eO 

d 2 27 1~2__bI/2(~) T ~ - - -  
+ -~ do~2 
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3 1 
2 ol 2 

(36) 

and a is the ratio o f  semimajor  axes,  and b~ 
(a) are Lap lace  coefficients.  The last two 
terms in the express ion  for  (192) "1 are due 
to indirect  te rms  in the dis turbing funct ion,  
and arise because  the p lane t -cen te red  co- 
ordinate  sy s t em is not  an inertial one.  

We define toi 1 - -  nM = ~(3nu - 2o3i), q~i 

(Fi/2)e~, FM = LM + ½(XM + Ev + q~M + q%), 
and Fu = L u  - ~ (EM + E u  + attM + ~lYu). 

E x p a n d e d  in te rms  o f  these canonica l  co- 
ordinates ,  the eccent r ic- inc l ined Hamil to-  
nian may  be expressed  as 

= 2A(EM + Eu + q~M + WU) 

+ 4B(EM + Eu + ~M + q~U) 2 

+ 2CEM + 2DEu 

+ 2EX//-EMY~U COS(O'M -- crt3) 

+ 2FEM COS(2O'M) 

+ 2G~E-MEU COS(O'M + O'u) 

+ 2 H E y  cos(2o-u) 

+ 21~M + 2 J ~ u  

+ 2KX/~-Mq~U COS (toM -- toU) 

+ 2L~M COS(2toM) 

+2M~,/-~-M~U COS(t0M + toU) 

+ 2 N ~ u  COS(2tou). (37) 

The  express ions  for  the coeff icients  A - N 
are given in Append ix  I. 

This is now a four  degree  o f  f r eedom 
Hami l ton ian  p rob lem with slow time de- 
pendence .  There  are three eccent r ic i ty  res- 
onances ,  three incl inat ion resonances ,  and 
secular  in teract ions .  The  eccentr ic i t ies  are 
coupled  to the incl inat ions th rough  the non- 
l inear terms.  8 is redefined to be the non- 
r e sonan t  con t r ibu t ions  to 3nu - n M  -- ~M -- 
~U -- (~M -- I)U. The  coefficients  are de- 
fined a t 8  = 0 f o r i i =  0, e l =  0, a n d a u  = 
10.1179, which  co r r e sponds  to aM = 4.8662. 
The  numerica l  values o f  the coefficients for  
this sys t em are (see Append ix  I): B = 
-5164 .15 ,  C = 0.043833, D = -0 .120829 ,  
E = -0 .0006763 ,  F = -0 .0009778 ,  G = 
0.0003939, H = -0 .00003967,  I = 
-0 .312892 ,  J = 0.1482294, K = 0.0003939, 
L = -0 .007068 ,  M = 0.0052597, and N = 
0.0006012. FM = 0.03395267 and Fu = 
0.836831. An  algebraic  mapping  has been 
deve loped  for  this sys tem,  ana logous  to the 
two degree  o f  f r e edom mapping.  

The  inclination r e sonances  are encoun-  
tered first. Since 3nu - n M  is negative be- 
fore  the commensu rab i l i t y  is reached,  and 
the secular  cont r ibu t ions  to the ~'~i a r e  retro- 
grade,  while those  o f  d)i are prograde ,  the 
condi t ion  3nu - n M  -- 21)i = 0 will be met 
before  the condi t ion  3nu - nM -- 2~i = 0. 

Figure 18 shows  the inclinations (a and b) 
and eccentr ic i t ies  (c and d) for  a t ra jec tory  
c o m p u t e d  for  this sys tem.  Before  the reso-  
nances  are encoun te r ed ,  the secular  inter- 
act ions  o f  the eccentr ic i t ies  and the in- 
cl inat ions are weak.  W h e n  the t ra jec tory  
encoun te r s  the inclination r e sonances ,  it is 
cap tu red  into r e sonance  1. The evolut ion 
th rough  r e sonance  1 does  not  appear  to be 
significantly af fec ted  by the p resence  o f  the 
non re sonan t  eccent r ic i ty  variat ions.  At  
first, the evolu t ion  is quasiper iodic ,  show- 
ing the same fea tures  as were  seen in the 
circular- incl ined case.  At  8 ~- 2.4, the am- 
plitude o f  osci l lat ion o f  the orbital inclina- 
tion o f  Miranda  dec reases  slightly during 
passage th rough  the 1 : 4  commensurab i l i t y  
be tween  the degrees  o f  f reedom.  At 8 
3.6, the t ra jec tory  is cap tu red  into the sec- 
onda ry  1 : 3 commensurab i l i ty .  As the tra- 
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FIG. 18. Variations in the orbital inclinations (Miranda (a), Umbriel (b)) and eccentricities (Miranda 
(c), Umbriel (d)) of a trajectory evolved through the 3 : 1 Miranda-Umbriel mean-motion commensura- 
bility (itM/aM = 6 x 10 ~2 per orbit period). The units of 8 are year-k The inclination resonances are 
encountered first, and evolution within them is similar to the evolution in the circular-inclined approxi- 
mation. There is a large chaotic zone associated with the eccentricity resonances. The orbital eccen- 
tricity of Miranda varies significantly within this chaotic zone, but the orbital inclination of Miranda 
remains high. 

15.0 

15.0 

j e c t o r y  further e v o l v e s ,  the osc i l la t ion  am-  
pl i tude o f  the orbital  inc l inat ion o f  Miranda 
i n c r e a s e s ,  wh i l e  the m e a n  orbital  incl ina- 
t ion o f  U m b r i e l  d e c r e a s e s  s l ightly.  B e t w e e n  
8 ~ 4.8 and 8 ~ 5 .2 ,  the trajectory  b e c o m e s  
chaot ic .  The  trajectory  s h o w n  in Fig.  18 es-  
c a p e s  f rom the inc l inat ion r e s o n a n c e s  wi th  
average  orbital  inc l inat ions  o f  about  3?2 for 
Miranda and about  0?28 for U m b r i e l .  

A s  the trajectory  approaches  the reso-  
nan ces ,  the ampl i tudes  o f  osc i l la t ion  o f  the 

orbital  e c c e n t r i c i t i e s  increase  s l ightly.  Dur-  
ing the quas iper iod ic  phase  o f  e v o l u t i o n  
through incl inat ion r e s o n a n c e  1, the osc i l la-  
t ion ampl i tudes  o f  the orbital  e ccentr i c i t i e s  
are a p p r o x i m a t e l y  cons tant  until the trajec- 
tory  b e c o m e s  chaot i c  at 8 ~ 4 .8 ,  and then 
the e c c e n t r i c i t i e s  vary  irregularly.  After  the 
trajectory e s c a p e s  f rom the incl inat ion res- 
o n a n c e s ,  the e c c e n t r i c i t y  r e s o n a n c e s  are 
e n c o u n t e r e d .  At  8 ~ 5.4,  the trajectory 
p a s s e s  through the r e s o n a n c e  invo lv ing  
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only the orbital per icenter  of  Umbriel  (see 
Ti t temore  and Wisdom 1989). Between 8 

5.4 and 8 --~ 6.6, the trajectory is most ly  
quasiperiodic,  except  for a burst  of  chaotic 
behavior  at 8 -~ 6. The quasiperiodic phase 
is associated with t empora ry  capture into 
the resonance  involving both orbital peri- 
centers  (see Ti t temore  and Wisdom 1989). 
The t rajectory eventual ly  encounters  a 
chaotic region associa ted with the eccen- 
tricity resonances .  The relative variations 
of  the eccentrici t ies within the chaotic zone 
are large: the orbital eccentr ici ty of  
Miranda oscillates irregularly between 
nearly zero and about  0.04, compared  with 
the initial eccentr ici ty of  0.005. The inclina- 
tions also vary chaotically,  but the varia- 
tions are not significant compared  to the 
mean values,  particularly for the orbit of  
Miranda. This t ra jectory eventual ly es- 
capes f rom the eccentr ic i ty- type reso- 
nances,  with an orbital eccentr ici ty for 
Miranda of  about  0.027 and an orbital ec- 
centricity for Umbriel  of  about  0.0065. The 
final inclinations of  the orbits do not change 
much: Miranda retains a high orbital incli- 
nation of about  3?4. Other  trajectories show 
similar behavior .  The orbital eccentrici ty 
variations of  Miranda within the chaotic re- 
gion are larger if the orbital inclination of 
Miranda is high due to passage through the 
inclination resonances .  

The orbital eccentr ici ty variations of  
Miranda are spectacular ,  and eM may reach 
a value of  about  0.06 or higher before the 
satellites escape  f rom the 3 • I commensura -  
bility. Tidal heating during this phase of  the 
evolution may  have had a significant effect 
on the thermal  history of  Miranda. This 
result is to be descr ibed in detail in a future 
paper  (Ti t temore and Wisdom 1989). 

5. S E C U L A R  PERTURBATIONS 

In this section we consider  the perturba-  
tions on the inclination-type resonances  
produced by the secular variations due to 
the other  satellites. To get a qualitative idea 
of the effects of  secular perturbat ions,  we 
consider  only the per turbat ions on the cir- 

cular-inclined problem due to Ariel as a first 
approximat ion,  since they are the most  sig- 
nificant (see Dermot t  and Nicholson 1986, 
Laskar  1986). The deve lopment  of  the 
Hamil tonian is somewhat  different, in order 
to keep secular  variat ions distinct f rom res- 
onant  variat ions (see Wisdom 1982). I f  we 
define 4) = XM - 3,ku, Pi ~ ifk/'Li C O S ( - ~ i ) ,  

and qi ~ iiV~ii sin(-l?li), and expand the 
Hamil tonian about  the resonant  value of LM 
(pendulum approximation) ,  then the mo- 
men tum conjugate to ~b is qb = LM -- LMR. 
The Hamil tonian for the Mi randa -Umbr ie l  
3 :1  resonance  problem can then be ex- 
pressed as 

+ C ' (p~  + qh) + D (Pb + qo) 

+ E(pMpu + qMqu) 

+ F((p~a - q~) COS ~h + 2pMqM sin ~b) 

+ G((PMpu -- qMqu) COS q5 

+ (PMqtJ + qMPU)sin oh) 
+ H((p~ - q~) cos ~b + 2puqu sin ~b), 

(38) 

where  a ~ 32B, and where C'  and D'  con- 
tain only secular contributions.  

To include the per turbat ions due to Ariel, 
we add the te rms in the disturbing function 
involving Ariel and its interactions with 
Miranda and Umbriel .  We end up with the 
following express ion for the Hamiltonian:  

~OL(IO- 
t!  2 "~ 

+ C (PM + q~) + D"(P2J + qb) 

+ E(PMPu + qMqu) 
+F((p~ - q~) cos ~b + 2pMqM sin ~b) 

+ G((PMPu -- qMqu) COS q5 

+ (PMqu + qMPu) sin ~b) 
~) + H((p~ - qb cosq5 + 2puqu sin~h) 

7) + U(pA + q-A + V(pMPA + qMqA) 

+ W(PAPu + qAqu). (39) 

The express ions  for the coefficients c~ - W 
are given in Appendix  1. 

In the units defined in Section 2, mM = 
8.6 × 10 -7, mA = 1.55 × 10 5, and mu = 
1.47 x 10 ~ (Stone and Miner 1986). The 
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FIG. 19. Variations in the orbital inclinations of Miranda (a), Ariel (b), and Umbriel (c) for a 
trajectory perturbed by the secular variations of Ariel (hM/aM = 6 × 10 t2 per orbit period). The units of 

are year ~. The variations in the orbital inclinations of Miranda and Umbriel are larger than those due 
only to their mutual perturbations. Again, the orbital inclination of Miranda increases considerably 
during temporary capture into resonance 1, and the orbital inclinations of the other satellites remain 
relatively unaffected by passage through the resonance. 

n u m e r i c a l  v a l u e s  o f  the  coef f i c ien t s  a re  ( see  
A p p e n d i x  I): a = - 1 6 5 3 7 7 . 3 3 ,  C" = 
0.189147, D" = 0.0193986, E = -0 .0006755 ,  
F = - 0 . 0 0 0 9 7 6 3 ,  G = 0.00039327, H = 
- 0 . 0 0 0 0 3 9 6 ,  U = 0.054396, V = 
- 0 .00451298 ,  and  W = - 0 . 0 1 2 1 3 3 .  LMR = 
0.033945497. 

W e  h a v e  d e r i v e d  a m a p p i n g  for  this  H a m -  
i l ton ian ,  a n a l o g o u s  to  the  m a p p i n g  d e r i v e d  
b y  W i s d o m  (1982) to  s t u d y  the  3 : 1  
K i r k w o o d  gap.  In  th is  m o d e l ,  e v o l u t i o n  due  

to  t ida l  d i s s i p a t i o n  c h a n g e s  the  va lue  o f  
a t  a ra te  OfLM = 1LMR(hM/aM). T h e  va lue  o f  
qb can  be  c o n v e r t e d  into  a va lue  for  & 

F i g u r e  19 s h o w s  the  inc l ina t ions  for  a t ra-  
j e c t o r y  c o m p u t e d  us ing  this  mode l .  A w a y  
f rom the  r e s o n a n c e ,  bo th  the  inc l ina t ion  o f  
M i r a n d a  and  the  inc l ina t ion  o f  U m b r i e l  a re  
s t rong ly  p e r t u r b e d  b y  Ar ie l ,  r e su l t ing  in 
m u c h  l a rge r  va r i a t i ons  o f  the  inc l ina t ions  
a b o u t  the  m e a n  va lue s  than  we re  found  in 
the  c i r c u l a r - i n c l i n e d  case .  Th is  t r a j e c t o r y  is 
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captured into resonance 1. Again, there is a 
phase of quasiperiodic evolution within the 
resonance,  during which various commen- 
surabilities between the degrees of  freedom 
are encountered.  During this period, the 
amplitude of  the variations in the orbital in- 
clination of Ariel increases slightly, while 
the orbital inclination of  Umbriel remains 
relatively unaffected. At 6 ~ 4.2, the trajec- 
tory encounters  the 1 : 3 commensurabil i ty 
between the libration f requency and the fre- 
quency of  circulation of cru. The trajectory 
is pulled into the chaotic zone at 6 ~ 5.4, 
and the inclinations of  all three orbits vary 
chaotically until 6 ~ 6.8. The trajectory es- 
capes from the resonance,  leaving Miranda 
with an average orbital inclination of just 
over  4 degrees,  and leaving the orbital incli- 
nations of  Ariel and Umbriel virtually un- 
changed. 

Other trajectories show similar behavior. 
The presence of another  degree of freedom 
provides a new set of  secondary commen- 
surabilities. The presence of Ariel compli- 
cates the structure of  the resonance,  and 
there appear  to be resonant  interactions in- 
volving the inclination of Ariel. However ,  
the mechanisms that allow evolution to 
high orbital inclination for Miranda in the 
circular-inclined two-satellite approxima- 
tion are still present  in this model. 

6. DISCUSSION 

When Miranda and Umbriel encountered 
the 3 :1  mean-motion commensurabil i ty,  
there was a significant probability that the 
system was captured into one of the inclina- 
tion resonances involving the node of 
Miranda. Evolut ion within either of  these 
resonances is described well by the single- 
resonance theory up to the point that the 
chaotic zone is encountered.  The presence 
of  this chaotic zone,  along with the exis- 
tence of  commensurabil i t ies between the li- 
bration frequencies and other  fundamental 
frequencies in the system, allows the sys- 
tem to escape from the resonance with a 
high orbital inclination for Miranda. Since 
the timescale of  damping of  the inclinations 

is long, this can explain Miranda's  current 
high inclination. This is a significant new 
result, underscoring the importance of 
chaos in the dynamics of the solar system. 
The integrable theory of  passage through 
isolated mean-motion resonances is useful 
up to a point, but it certainly cannot be used 
to predict the interesting features of  the 
passage through this resonance.  The inter- 
action between resonances must be consid- 
ered in order  to adequately describe this 
problem. 

The dynamical evolution of this problem 
is quite beautiful. Nonlinear dynamical sys- 
tems have a self-similar structure at all 
scales (see, e.g., H6non 1969), showing res- 
onance within resonance within resonance,  
ad infinitum. The Miranda-Umbrie l  3:1 
mean-motion commensurabil i ty illustrates 
a physically important manifestation of  this 
seemingly esoteric quality of dynamical 
systems: during evolution through the incli- 
nation resonances in this problem, trajecto- 
ries will enter  the chaotic zone in general 
only as a result of  the slow evolution of the 
secondary resonances in phase space. 

Since the mechanism described in this 
paper is a plausible explanation for the high 
orbital inclination of Miranda, the require- 
ment that Miranda and Umbriel have 
passed through the 3:1 resonance also al- 
lows us to place an upper limit of 39,000 on 
the specific dissipation of  Uranus (Q). The 
minimum value of  Q which allows for rea- 
sonable evolution of the satellite system us- 
ing the nominal masses of  the satellites (see 
Stone and Miner 1986) is Q = 6600 (Peale 
1988). However ,  we have found (Tittemore 
and Wisdom 1989) that permanent  capture 
into the 2 :1  mean-motion commensurabil-  
ity involving Ariel and Umbriel is very 
likely even if the orbital eccentricities ap- 
proaching the resonance were considerably 
larger than their current  values. It is there- 
fore unlikely that the satellites ever  encoun- 
tered this resonance,  further constraining 
the Q of  Uranus to be greater than 11,000. 
Therefore,  11,000 -< Qu -< 39,000. The 
Arie l -Umbrie l  2 :1  commensurabil i ty will 
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be described in detail in an upcoming paper 
(Tit temore and Wisdom 1989). 

We conclude that the current  anoma- 
lously high orbital inclination of  Miranda 
can be accounted for by temporary  capture 
into the 3 : I resonance with Umbriel,  and 
that it is therefore  likely that the orbits of 
the satellites have tidally evolved at least 
enough to have allowed passage through 
this resonance.  

7. A P P E N D I X  I: AVERAGED RESONANT 
HAMILTONIAN COEFFICIENTS 

7.1. Circular-Inclined Hamiltonian 
Coefficients 

The expressions for the coefficients in 
the circular-inclined Hamiltonian (Eq. (9)) 
are 

1 G2M2m~mh 3 G2M2m~m{j 
A -  + 

4 F 3 4 F 3 

3 G2M2m~mh 27 G2M2m2um{j 
O ~ - -  

32 V 4 32 F~ 

1 [9m4m{j3 l 
C = -~ G4M4R2J2 L 2F7 J 

GZMmMm2m~ [ 3 
+ 4r 2 ~ b°/2(a) 

d mu m[j (F_~uM 3r~] 
- -  ___-77- - - ~ u  / + ~ b°/2 (cO + 
mM m M 

I'M ] 

1 [6m4m{j3 4 :3 3mhmM.] 
D =~G4M4R2J2 L F 7 2F 7 ] 

G2MmMm~mb I 3 
+ 4F~ ~ bl°/2(°t) 

d rnu ' + ~ b°/2 (O0 mY 
mM m~ 

+ (rM 3rh] (1_1) (°)] 

G2MmMmZm• 
E =  2 r ~  (ll)(°) 

F = - G2MmMm2m'u (212) (3) 
4r~rM 

G2MmMm~m~ 
G = 2r~rv'r-ff~v% (212)(3) 

G2MmMm~mb 
H = - 4F~ (212)(3)" (40) 

7.2. Eccentric-Inclined Hamiltonian 
Coefficients 

The expressions for the coefficients A - 
H in Eq. (37) are the same as those given 
above,  with FM and Fu defined in Section 4.  
The expressions for the coefficients I - N 
in the Hamiltonian ( E q .  (37) )  are 

1 [9m4m~3 4 t3 3m~imM] 
I = ~ G4M4RZJ 2 [ 2F 7 F 7  j 

G2MmMm~m{j [ 3 
+ 4F 2 ~uu b°/2(°0 

d mu '(r__y_M 3r 2] 
+ ~ b°/z(a) --mu m~l m----E \F~; + F 30 / 

(2) (0) ] 

1 [3m4m•3 4 ,3 3m~mM ] 
J = 2 G4M4R2J2 [ F 7 2F 7 j 

G2MmMm~m~ [ 3 
+ 4r~ ~ b°/z(a) 

d mu ' 
+ ~ b°/2 (a) mu 

triM rn~! 

(rf_~, + 3r~] (3)( °,] 
J - - r T J  

G2MmMm2mb 
K = -  4F2 FV~MFu (21) ( -"  

GZMmMmZm~ 
L = - 4F~FM (172)(3) 

M = - G2MmMm2mu 
4F2 FV~--~uF~ (182) (2) 

GZMmMm~m~ 
N = - 4F 3 (192) m (41) 

7.3. Secularly Perturbed Hamiltonian 
Coefficients 

The expressions for the coefficients in 
the secularly per turbed circular-inclined 
Hamiltonian (Eq. (39)) are 
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_3G2Al2m2m~l 2 -  - 2  "~ , _ 27G ~a m~rn U 
o~ = L 4  ( L u  - 3LM) 4 

~ 4  A . 4 4 ~ 4  ~ t 3 D  2 I  
_ u l v l  H t M r t ~ U l ~  J 2  C" 3 
4 L 7 

G2MmMm~m'~ ( l 1)~?A 
4L 2 LM 

G 2 M m M m 2  m ~  (11)~)u 

4L 2 LM 

3 4 4 4 t 3  2 G M mumuR J2 
D t t  ~ _ 

4 LYu 

G2MmMm2m'u (1 l)~u 
4L 2 Lu 

G2MmAm2m'u (11)~ 
4L~j Lu 

G2Mmum2 m'u (11)~)u 
E =  2L~ LX/-L-~MLu 

G 2 M m M m ~ m  'u 
F = - 4 L ~ L M  (212)~u 

G 2 M m M m 2  m'u 

G = 2L2 LVT-~ML ~ (212)~u 

H = - G e M m M m 2 m u  
4L 3 (212)~9u 

3 G4M4m4Am'A3R2J2 
U z - 

4 L 7 
2 .  ~ .) ! G MmMm'AmA ( l  I ) ~ ) A  

4L2A LA 
G2MmAm2mO (11)~ 

4L2j LA 

G 2 M m M m ~ m ' A  
V =  4 L A ~  ( l l ) ~ A  

2 1 ~  ,) ! G MmAmbm v ) ~  
w =  4 G c~-~ L% ( l l . 
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