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Introduction

SHELXT is a program for solving relatively routine small molecule
structures, determining the space group and structure together. Most of the
methods it uses are well established, but they are combined in a way that
is designed to be robust, efficient and very easy to use.

SHELXT reads standard SHELX format name.ins and name.hkl files. The
CELL, LATT, SYMM, SFAC and HKLF cards are read but the input space
group and the rest of the .ins file are ignored. The Laue group is extracted
but may be overridden with the —L command line switch, e.g. —L15 to make
the program try all trigonal and hexagonal Laue groups. Other command
line options are possible but are rarely needed, for a full list run SHELXT
without a filename. SHELXT is a stand-alone executable, no other files,
DLLs, environment variables etc. are needed. To solve a structure enter:

shelxt name

Space groups for small and macro-molecules

For data collection and scaling, we must first establish the Laue group and
lattice type. To keep it simple, let us assume that we have an orthorhombic
crystal, i.e. Laue group mmm, and a primitive lattice.

If it is a protein, there will be 4 possible space groups — P2,2,2, (23.9%),
P2,2,2 (6.1%), P222, (0.04%) and P222 (0.01%). Note the very unequal
distribution in the PDB! We can simply ask a MR program such as
PHASER to try all 8 (!) possibilities, and if only one leads to a solution,
then it is the correct space group and orientation. Since three-quarters of
proteins are solved by MR anyway, this is a popular and reliable method of
determining their space groups.

If it is a small molecule, there are 30 orthorhombic-P space groups and 111
different possible combinations of space group and orientation for them, so
it is more interesting!

Small molecule example: [Co(OH)¢]?*[NH ]* [PO,]*

This is an example taken from Peter Miller's book. XPREP looks for the
highest metric symmetry, in this case orthorhombic P, and sets a<b<c. The
low R(sym) confirms Laue symmetry mmm.

Determination of reduced (Niggli) cell

Transformation from original cell (HKLF- matrix):
-1.0000 0.0000 0.0000 0.0000 0.0000 -1.000 0 0.0000 - 1.0000 0.0000
Unitcell: 6.112 6.941 11.196 90.00 90.00 90.00
Niggli form: a.a= 37.36 b.b= 48. 18 «c.c= 12535
bc= 000 ac= O 00 ab= 0.00
Search for higher METRIC symmetry
Identical indices and Friedel opposites combined b efore calculating R(sym)
Option A: FOM = 0.000 deg. ORTHORHOMBIC P- lattice R(sym)=0.022[ 1607]
Cell: 6.112 6.941 11.196 90.00 90.00 9 0.00 Volume: 474.97
Matrix:-1.0000 0.0000 0.0000 0.0000 0.0000 -1. 0000 0.0000 - 1.0000 0.0000

Option B retains original cell

Select option [A]:




XPREP space group determination

XPREP looks for a space group that fits the Laue group, lattice type,
systematic absences, intensity statistics and frequency of the space group
in the CSD. These last two factors have lower weight in CFOM. A and B
have different axial orientations but the same CFOM, so XPREP cannot
distinguish them. <|E2-1|> indicates non-centrosymmetric (or twinning).

Mean |E*E-1| = 0.677 [expected .968 centrosym and .736 non- centrosym]

Systematic absence exceptions:

b-- ¢- n-- 21-- -c- -a- -n- - 21- --a --b --n -- 21
N 508 508 580 22 438 445 429 29 319 316 311 39
NI>3s 205 205 O 19 391 435 384 0 302 276 264 O
<I|> 463.4464.0 3.1895.3565.6 621.6 568.7 2.8 892.6 542.6 833.4 2.3
<l/s> 10.4 104 0.4 153 16.3 194 16.4 0.4 17.7 158 14.8 0.5
Identical indices and Friedel opposites combined b efore calculating R(sym)
Option Space Group No. Type Axes CSD R(sym) N(eq) Syst. Abs. CFOM
[A] Pmn2(1) # 31 non- cen 2 53 0.022 1607 0.5/10.4 3.20
[B] Pmn2(1) # 31 non- cen 5 53 0.022 1607 0.5/10.4 3.20
[C] Pmmn #59 centro 3 42 0.022 1607 0.5/10.4 11.80

Select option [B]:

Structure solution with XT/SHELXT

SHELXT finds one solution. Both R1 and a (normalized mean square
phase error) are convincing. The Flack x may improve after anisotropic
refinement. All atoms are correctly assigned. Note that a change in cell
orientation is also involved. Total time on an i7 desktop was about 1 sec.

Try N(iter) CC R(weak) CFOM best Sig(min) N(P1) Vol/N

1 100 93.98 0.0278 0.9120 0.9120 2.422 2 7 17.59

2 100 94.27 0.0256 0.9172 0.9172 2.588 2 7 17.59

3 100 94.00 0.0278 0.9122 0.9172 1.898 2 7 17.59

4 100 94.26 0.0252 0.9174 0.9174 2.507 2 7 17.59

5 100 94.20 0.0250 0.9170 0.9174 2.507 2 7 17.59
5 attempts, solution 4 selected with best CFOM = 0. 9174, Alpha0 = 0.333
0 Centrosymmetric and 56 non-centrosymmetric space g roups evaluated

R1 Rweak Alpha Orientation Space group Flack_x Fil e Formula
0.0330.016 0.001 a'=c, b'=a, c'=b Pmn2(1) 0.23 t071_a O10P CoN

Output file from SHELXT (t071_a.res)

REM Solution 1 R1 0.033 Rweak 0.016, Alpha =0.0015 in Pmn2(1)
REM Flack x = 0.226 ( 0.012 ) from Parsons' quotients

REM Formula: O10 P Co N

TITL pmn21b in Pmn2(1)

CELL 0.71073 6.9410 6.1120 11.1960 90.000 90.000 90.000
ZERR 2.00 0.002 0.003 0.002 0.000 0.000 0.000

LATT -1

SYMM 1/2-X, -Y, 1/2+Z

SYMM 1/2+X, -Y, 1/2+Z

SYMM -X, Y, Z

SFACOHPCON

UNIT2032222

L.S.10

BOND

LIST 6

FMAP 2

PLAN 20 Electron count
ANIS

RIGU l
CO01 4 0.50000 0.86717 0.49884 10.50000 0.01068 27.98
P002 3 1.00000 0.49687 0.62660 10.50000 0.01000 16.12
0003 1 1.00000 0.51268 0.49086 10.50000 0.01200 7.76
0004 1 0.70713 0.97162 0.61863 11.00000 0.01877 7.71
0005 1 1.00000 0.72904 0.68051 10.50000 0.01325 7.62
0006 1 0.27539 0.76252 0.38884 11.00000 0.01556 7.60
0007 1 0.81857 0.37423 0.66825 11.00000 0.01396 7.50
0008 1 0.50000 0.54957 0.58052 10.50000 0.01833 7.14
0009 1 0.50000 1.18203 0.41591 10.50000 0.02240 6.92
NOOA 5 1.00000 0.12487 0.36067 10.50000 0.01931 5.92
HKLF 4

END

The P1 approach

It is well established that most direct methods often work best if the data
are first expanded to P1 [Sheldrick & Gould, Acta Cryst. B51 (1995) 423-
431] . This suggests the following approach:

1. Assuming the Laue group to be known, equivalent intensities are
averaged and the data then expanded to P1.

2. The phase problem is solved in P1. The result is an electron density
map and the corresponding phases.

3. The phases are used to determine the correct space group and the
translation necessary for the electron density map to fit it.

4. The phases are averaged in this space group and used to calculate an
improved density.

5. The maxima of the density are assigned to atoms.




Starting from the Patterson function

Unlike almost all direct methods of the last three decades, SHELXT is
(almost) deterministic. Although dual-space direct methods usually start from
random phases or atoms, in the presence of some heavier atoms a
considerable speed-up can be achieved by starting from a Patterson
superposition minimum function.

If two copies of the Patterson, displaced from one another by a vector
corresponding to a strong Patterson peak, are superimposed and their
minimum function calculated, it should correspond to a double image of the
structure with shifted origins in the effective space group P1.

So if we are planning to solve the structure first in P1 anyway, this is an
excellent starting point, and should never be worse than starting from
random phases.

Random OMIT maps

Omit maps were frequently used by protein crystallographers to reduce
model bias when interpreting unclear regions of a structure. A small part
(<10%) of the model is deleted, then the rest of the structure refined (often
with simulated annealing to reduce memory effects) and finally a new
difference electron density map is calculated.

A key feature of SHELXD when it is used to solve large equal-atom
structures is the use of random omit maps. About 30% of the peaks are
omitted at random each cycle and the remaining atoms used to calculate
phases. This can be regarded as a perturbation of the density, like charge

flipping.

Random omit maps are also employed in the dual-space recycling part of
SHELXT (making it somewhat less deterministic).

Random omit without atoms

The following dual space algorithm enables the random omit method to be
combined efficiently with FFTs in both directions. It achieves similar results
to charge flipping, but imposes more atomicity.

/\\/\ /\ A A Electron density p(X)

i\ o\ —X
A VA B VI ASIY A
X ﬁ|\/\ /‘\ AA R /l\ Peak-search and random omit
VTV WU

S A A S ~ Mask M(x) (Unit Gaussians at

peak positions)
0

The new density is calculated as p'(x) = p(x) -‘M(x). This also truncates
negative density and sharpens the remaining atoms!

A phase determination strategy

1. Generate starting maps in P1 by twofold and threefold Patterson
superpositions. This of necessity produces a trial structure in P1.

2. lterate using the random omit mask perturbation. Use sharpened
amplitudes Gy, = (EF)* { F,2/ [ F,2+ o%(F,) ] } and Fourier coefficients
3G,—2G, with phases @.

3. The phases with the best CFOM are used to find the space group
followed by further density modification. CFOM = 0.01CC — R(weak),
where R(weak) is the mean value of E_2 for reflections with smallest E 2.

Unlike most other direct methods, this algorithm works reasonably well with
heavy atoms on special positions and for pseudo-symmetric structures.
Because it indirectly assumes atoms it is less demanding on data quality
and completeness than charge flipping, but charge flipping should work
better for modulated and severely disordered structures, because it doesn’t
assume atoms.




Using phases to find the correct origin and space@up

PLATON can find the space group and place its origin correctly starting from
atom positions in P1. The disadvantage of this approach is that tolerances
are required to decide whether atom positions are the same within
experimental error in the higher space group.

Giacovazzo [J. Appl. Cryst 33 (2000) 307] and Palatinus [J. Appl. Cryst. 41
(2008) 975] suggested ways of finding the space group and the required
origin shift using only the phases. The two approaches are similar but
Giacovazzo finds the full space group directly (but at his own admission,
slowly) whereas Palatinus searches for individual symmetry elements and
then uses them to construct the space group.

An advantage of this approach is that it is possible to define a single figure
of merit to decide which possible space group is more likely.

The phases of equivalent reflections

The phase g, of the equivalent reflection h, is derived from the phase gof
the (prime) reflection h by:

@, = - 2t = @— 21 ( ht, + kt, + &t;)

For example in P3;: h,=0h +1k + 0 = k
(for symmetry k, =—-1h -1k + 0@ = —h—k
operator #2) €,=0h+0k+1€=2¢

So h, is k,—h-k, £ with phase:
@ = ¢-2mt, = ¢— 211(0h + Ok + Y38 ) = ¢— (%)

This relation is only valid if the space group is correct and the structure has
been shifted so that the origin is correctly placed.

Phases and translation
If the whole structure is shifted by Ax we can write: X;" = X; + AX
Thus Fy'= 2 f, exp(2mi hx' ) = 2, f; exp(21i (h(x;+AX))
=[ 2 f, exp(2Ti hx;)] exp(2 i hAX)
= F, exp(21 hAXx)
ie. @' = @+ 2nhAX

This provides us with a way to find the origin shift Ax using the phases, by
fitting the phase differences between equivalent reflections h’ and h to
2mhAx. This calculation has to be performed modulo 21

The a figure of merit

In my hands both the Giacovazzo and Palatinus figures of merit performed
well. | am using the a value defined by Palatinus because it has a more
direct physical meaning (the normalized mean square phase error). For a
prime reflection h and a symmetry equivalent h,, we define:

qg={ @, - ¢+ 2mnht, + Ax(h,—h)] } modulo 2 Tt

For the correct origin shift Ax and the correct space group q should be close
to zero. An F2-weighted sum of g2 over all pairs of equivalents for all
reflections, normalized so that it would have a value of 1.0 for random
phases, is then the figure of merit a.




Finding the origin in a centrosymmetric space group

Only when the inversion center of a centrosymmetric structure is at the
origin will the phases be 0 or 1, otherwise they have general values. To find
the origin shift needed to bring an inversion center to the origin, we can
double the phases (so that they should all be zero if the origin is correct)
and then perform a Fourier transformation:

Py = 2 IFyl? exp(-2Ti*2g) exp(-2Ti*hX)

The electron density should then be shifted by X/2 to bring it to the true
origin, where X is the position of the maximum of this origin shifted
Patterson function. In SHELXT the a figure of merit for this P1 to PT
conversion is referred to as a,. It should be less than about 0.25 for a
centrosymmetric space group.

It is still necessary to take into account that not all inversion centers are
equivalent in all space groups. However it is still much faster to test all
possible non-equivalent inversion centers than to do a full 3D grid search to
find the best value of a.

Calculating a in non-centrosymmetric space groups

A 3D grid search for o would be slow because it is not suitable for a FFT, so
it is divided into 2D and 1D searches. All non-centrosymmetric space groups
in the given Laue group are tested as follows, taking axis transformations to
obtain conventional settings into account where necessary.

1. For P1 no search is required, a is undefined (set to zero).

2. For the space groups Pm, Pc, Pn, Cm and Cc a 1D line search is
performed.

3. For all other polar space groups, a 2D grid search is performed.

4. For all other space groups, a 2D grid search is followed by a 1D line
search.

In all cases (including centrosymmetric) the Ax value obtained by
interpolation is then refined further to minimize a.

Preliminary element assignment

In each of the possible space groups, if necessary after re-orientating the
axes to obtain the conventional setting, further dual-space recycling is
performed to improve the quality of the electron density. The peaks in this
map are integrated to get electron counts and these are used to assign
atoms, assuming that all possible elements present have been specified
(SFAC is used but not UNIT).

There is a problem in putting the electron counts onto an absolute scale.
Currently this is solved by looking for some typical organic junk and
assuming that it is carbon, or for inorganics by looking for typical groups
such as oxyanions. If this cannot be done, the program assumes that the
atom with the highest density corresponds to the element with the highest
atomic number on the SFAC instruction.

At this point some simple chemical rules are applied to avoid nonsense
assignments. If a heavy atom is clearly present but not given on SFAC, the
program suggests Br or I.

The free lunch algorithm

If the data are incomplete, SHELXT can simply invent the data that it would
have liked to have but doesn’t (the free lunch algorithm, Caliandro et al.,
Acta Cryst. (2005) D61 556-565). This can be useful in the following cases :

1. It was not possible to measure complete data, e.g. because a high-
pressure cell was used.

2. To check what the compound is (and possible reject the crystal) before
data collection is complete.

3. To obtain more complete structures of poorly diffracting crystals by
artificially extending the resolution.

4. The electron density integration used in the element assignment works
better if strong but missing low order reflections are included in this way.




Isotropic refinement and the Flack x parameter

After assigning the atoms, an isotropic refinement is performed and R1
calculated. Atoms with very high U-values are eliminated after the isotropic
refinement but to save time no further refinement is performed. This may
well change in future versions.

For non-centrosymmetric space groups, a Flack x parameter is estimated by
the Parsons’ quotient algorithm. If x is greater than 0.5 the coordinates and if
necessary the space group are inverted. Thus the structure determined by
SHELXT almost always has the correct hand!

X can also be good indication as to whether the space group is correct.
However the value so obtained is not as good as the value after the final
refinement.

Bringing the atoms together

The UNIQ instruction in XP was the standard for building molecules, but the
following algorithm used in SHELXT is better, because it does not require
that elements and hence covalent radii are correctly assigned to the atoms!

1. Generate the SDM (Shortest Distance Matrix — shortest distances
between unique atoms, taking symmetry into account).

2. Setaflagto -1 for each unique atom, then change it to +1 for one atom
- it does not matter which.

3. Search the SDM for the shortest distance for which the product of the
two flags is —1; if none, exit.

4. Symmetry transform the atom with flag —1 for this distance so that it is
as close as possible to the atom with flag +1, then change its flag to +1.

5. GOTO3

This diabolically simple algorithm not only builds the molecules as we would
intuitively expect them whatever the space group, but also clusters them in
a chemically sensible way, making the structure instantly recognizable.

Pseudosymmetry

When the space group is centrosymmetric but the heavy atom substructure is
non-centrosymmetric, there can be many apparent solutions. Sometimes the
result is a mess. For this Pt complex, R1 and x indicate the correct model.

R1 Rweak Alpha Space group Flack x File Formula

0.634 0.338 0.051 P4/mmm 240 a C35 N6 Pt96 |

0.203 0.004 0.069 P4(2)/mmc 240 b C42 N12 F6 CI8 Pt
0.637 0.398 0.070 P4(2)/mnm 240 ¢ C22 N8 P46 |

0.208 0.007 0.071 P4/mnc 1240 d C38 N26 F14 Cl4 Pt
0.552 0.137 0.035 P-4m2 0.48 1240 e C59 N2 F8 CI10 Pt67
0.165 0.004 0.051 P4mm 0.50 t240_f C83 N8 F25 CI16 Pt2
0.168 0.004 0.053 P422 0.50 1240 g C39 N16 F14 CI5 Pt
0.181 0.004 0.053 P-42m 0.49 1240 _h C46 N16 F44 Cl12 Pt |
0.146 0.003 0.054 P4(2)mc 0.49 240 i C41 N5 F5 CI2 Pt

0.123 0.003 0.055 P4(2)2(1)2 0.09 1t240_j C30 N6 F14 CI2 Pt
0.139 0.003 0.056 P-42(1)c 0.47 t240_k C26 N16 F12 Pt
0.157 0.004 0.072 P-42(1)m 0.49 t240_| C41 N14 F12 CI3 Pt

0.515 0.120 0.072 P-42c 0.46 240 m C16 Pt68 |

0.529 0.146 0.073 P4(2)22 0.47 240 n C20 N4 P58 |

0.166 0.004 0.073 P42(1)2 0.44 1240 0 C48 N21 F5 Cl4 Pt

0.142 0.006 0.074 P4(2)nm 0.50 240 _p C42 N22 F12 CI2 Pt
0.192 0.007 0.075 P4nc 050 1240 _q C41 N22 F14 CI9 |

0.164 0.007 0.076 P-4n2 0.49 t240_r C42 N22 Fl14 Cl4 Pt

Command line options

If SHELXT started without a filename it prints a list of possible command
line options. —L is useful to override the Laue group specified by the SYMM
cards, e.g. —L15 to try all trigonal and hexagonal space groups.

—a causes the program to try all space groups in the given Laue group
instead of stopping after the first plausible solution and is the first thing to
try if the P1 solution appears successful but no suitable space group has
been found. In extreme cases —a0.5 may be tried.

If the figures of merit in the P1 stage are poor, -i2 or —i4 may be better than
the default —i3. This varies the coefficients for the Fourier maps. Also —ul.4
(tangent formula for E>1.4) or —-m500 (5 times as many tries) may be worth
trying. For very tightly packed structures (e.g. some borides) the volume
per atom should be reduced (e.g. —v8 rather than the default —v13).

If the resolution of the data is poor, it may be worth varying —d and —e from
the values used by the program.




Weak points in the current version

The current version obtains fully correct structures for about 50% of the
structures tested and most of the rest have the right atoms but some of them
are wrongly assigned (typically N/C and S/P). The space group is found
correctly in at least 97% of cases, although some of them had defeated
XPREP. SHELXT showed that several of the ca. 630 test structures had
been refined in the wrong space group!

Most of the small nhumber of failures involved severe pseudo-symmetry or
disorder, especially ‘whole molecule disorder’, or twinning, violating the
assumption that the structure consists of atoms. Non-centrosymmetric
structures with a centrosymmetric arrangement of very heavy atoms can
also be problematic.

The largest structure solved and assigned completely correctly so far had
360 unique atoms in P2,/n, but it was a particularly favorable case. Usually
SHELXD is more effective for very large or twinned structures.

Changes in version 2014/1 and 2014/2

SHELXT is now fully parallel and the code has been hand-optimized. It now
takes a couple of hours rather than days for my set of 630 test structures.

-L16 tries monoclinic with the current a axis as the b axis, -L17 does the
same for c. This can be useful when 8 is accidentally very close to 90°

The option —ul.4 uses the tangent formula for E-values greater than 1.4 in
the P1 solution part. The default —u99 switches It off. The tangent formula
can be useful for large equal-atom structures, but in general it is better not
to use it.

-0 switches off the Patterson seeding (not recommended).

The P1 solutions are sorted on CFOM = 0.01CC - g.R(weak). g is set using
—j. To use just CC, input —j0 on the command line.

If an atom heavier than scandium is expected (SFAC), -a is set
automatically.

Future plans

SHELXT is currently at the beta-test stage and improvements are still being
made; the feedback from beta-testers is essential for this. Most of the beta-
testers are Bruker users and the Bruker email forum proves very useful for
discussing new features. The beta-test has an expiry date because | do not
want to have to support older buggy versions for the rest of my life.

The plan is to release SHELXT as part of the standard SHELX system in
good time for the IUCr Meeting in Montreal in August 2014. It will then no
longer have an expiry date and will be accessible and documented via the
SHELX homepage. SHELXT will also play a part in the SHELX Workshop
on the first day of the Meeting (August 5t).

Future plans include a better treatment of pseudo-symmetry and improved
element assignment, as well as the automatic solution of twinned structures.
This may take some time.

It is to be expected that SHELXT will make SHELXS obsolete but not
SHELXD (still better for twins and very large equal-atom structures).
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