

A New Paradigm in
Engineering Education
Using Two Disruptive
Technologies: Simulations
& Online Learning

Rajesh Bhaskaran
Sibley School of Mechanical
and Aerospace Engineering
Cornell University

Outline

- 1. Backstory
- 2. Pedagogical framework
- 3. Hands-on simulation MOOC
- 4. A new paradigm

Swanson Simulation Program at Cornell University

- Established in 2000 with an endowment from Dr. John Swanson, ANSYS Inc. founder
- Department: Mechanical & Aerospace Engr.
- Goals:
 - To facilitate routine use of computer simulation in M&AE curriculum
 - To provide support and leadership to the community on simulation in engineering education

Advisory Committee				
ANSYS	ASME			
Boeing	NAFEMS			
GE	Penn State			
MathWorks	CIMData			
PTC	DatapointLabs			

Swanson Simulation Program: Impact on Courses

	Course	Level	Enrollment	Software
1	MAE 3250 Mechanical Structures	Junior	150	ANSYS Mech.
2	MAE 3240 Heat Transfer	Junior	130	ANSYS Mech.
3	MAE 3272 Mechanical Lab	Junior	140	ANSYS Mech.
4	MAE 4272 Thermo-fluids Lab	Senior	160	ANSYS Fluent
5	MAE 4230/5230 Int. Fluid Dynamics	Ugrad/M.Eng	60	ANSYS Fluent
6	MAE 4700/5700 Finite-Element Analysis	Ugrad/M.Eng	50	ANSYS Mech.
7	MAE 4020/5020 Wind Energy	Ugrad/M.Eng	50	ANSYS Mech./ Flu.
8	MAE 4650 Biofluid Mechanics	Ugrad/M.Eng	20	ANSYS Fluent
9	BME 4490 Biomechanics Laboratory	Ugrad	4	ANSYS Mech.
10	MAE 6510 Advanced Heat Transfer	Ph.D./M.Eng	10	ANSYS Mech.
11	MAE 6690 Biofluids	Ph.D.	15	ANSYS Fluent
12	MAE 6640 Mechanics of Bones	Ph.D./M.Eng	15	ANSYS Mech.

Simulation Examples from Cornell Courses

Thermo-Fluids Lab

Temperature Contours

Wind Energy

Cornell Engineering

SimCafe.org: Free Learning Portal for Simulations

- Contains over 50 learning modules on FEA and CFD using ANSYS
- Has been critical for the integration of ANSYS-based simulations into courses
- Learning modules have a uniform structure

2016-17 Usage Statistics

Pageviews	2.1 million
Unique visitors	158,000
Countries	172
Average session	9 minutes

The Simulation Blackbox

Novice thinking

What's Inside the Blackbox?

Expert thinking

- Mathematical model
- 2. Numerical solution procedure
- 3. Hand-calculations of expected results/trends

Verification & Validation

- Verification: Did I solve the model right?
- Validation: Did I solve the right model?

Uniform Process Across Courses

Problem Specification

- 1. Pre-analysis
- 2. Geometry
- 3. Mesh
- 4. Model Setup
- 5. Numerical Solution
- 6. Numerical Results
- 7. Verification + Validation

Just-in-time, problem-based learning

cf. Just-in-case, content-based learning

Novice > Expert thinking

Outline

- 1. Backstory
- 2. Pedagogical framework
- 3. Hands-on simulation MOOC
- 4. A new paradigm

MOOC: A Hands-on Intro to Engineering Simulations

- Holistic approach to teaching math/physics and hands-on simulations
- Simulation app: ANSYS Student
- 6 simulation case studies drawn from 5 engineering courses
- "Big ideas" sections
- Cuts across traditional boundaries
 - Common approach to problems involving different physics
 - Common approach to FEA and CFD
- A new kind of engineering course

Simulation

MOOC Lectures and Assessments

Lectures

- Overlay chalkboard, PowerPoint, ANSYS
- Self-recorded
 - Now edited by undergrad TA's
- Four minutes long on average
- Sage on the stage > Guide by the side
- Bring in industry expert as needed
- Assessments facilitate active learning & guided exploration

MOOC Statistics

	Total
Enrollment	80k
Countries	173
Verified certificates (\$49 each)	2700
YouTube views	1.9 million (5.7 million minutes)

Open Comments Analysis (by Dr. Kim Nicholson)

Top 3 Themes:

- Great course/Amazing
- ❖ Positive experience/I <u>enjoyed</u> learning
- ❖ Thanks

Secondary Themes in Comments:

I gained a better understanding of the underlying math & physics

The connection between math/physics to industry was effective

Please provide more materials/courses of this kind

Student Comments

- 1. After this course, I'm going to do more "Verification and Validation."
- 2. In other courses I attended, the instructor was teaching how to do by just pushing buttons but now I know that there is no demon inside the computer to do the magic; it is just science. Now I know how the software is working, what is the theory behind the calculations and how to check if my model is correct.
- 3. The high quality of the introduction to problems (LOVE the big ideas pieces) and careful stepping through complex mathematics to get the learner to a point where the ANSYS task makes sense is very engaging.
 - I have a good understanding of the mathematics but the way it is explained here would have made my acquisition of that understanding so so much quicker. I [greatly] appreciate this course for the big picture and practical frame it puts over a very complex and what for me at times past was a bewildering area.

Instructor Comment

I will be using ANSYS as a tool for a freshman project-based course.
 I was looking for a tutorial online that the students could use considering that they would have never used ANSYS before.

Yesterday I was lucky enough to stumbled upon your [course]. I signed up to take it and, having gone over the first section, I'm sold! =) You've done an amazing job! Also, it is exactly the sort of thing I was looking for! I wanted the students to know what is under the hood without having to go into so much detail that you never get to use the software!

The question I have is, would it be possible to use part of your course for my course?

A New Paradigm

- Holistic approach
- Multi-disciplinary
- Just-in-time problem-based learning
- Novice > Expert
- Embraces automation
 - Simulation
 - Online learning
- Sage on the stage > Guide by the side
- Scales well
 - One person teaches thousands, one person at a time

Disrupting Engineering Ed to Democratize Simulations

- Win-win
 - Learners
 - Employers
- Challenges
 - Cultural
 - Students are agents of change
 - Simulation app evolution

