The Number of Independent Sets in a Regular Graph

Yufei Zhao (MIT)

Introduction

Let \(G = (V, E) \) be a graph. An **independent set** is a subset of the vertices with no two adjacent. Let \(i(G) \) denote the number of independent sets of \(G \).

Figure 1: The independent sets of a 4-cycle: \(i(C_4) = 7 \).

The following question is motivated by applications in combinatorial group theory [1] and statistical mechanics [4].

Question. In the family of \(N \)-vertex, \(d \)-regular graphs, when is the number of independent sets maximized?

Alon [1] in 1991 and Kahn [4] in 2001 conjectured that, when \(N/2d \in \mathbb{Z} \), \(i(G) \) should be maximized when \(G \) is a disjoint union of \(N/2d \) copies of \(K_{d,d} \), which has \(i(K_{d,d})^{N/2d} \) independent sets since \(i(G_1 \cup G_2) = i(G_1) i(G_2) \) for any graphs \(G_1 \) and \(G_2 \). More precisely, it was conjectured that:

Conjecture (Alon and Kahn). For any \(N \)-vertex, \(d \)-regular graph \(G \):

\[
i(G) \leq i(K_{d,d})^{N/2d} = (2^{d-1} - 1)^{N/2d}.
\]

Note equality holds if \(G \) is a disjoint union of \(K_{d,d} \)'s.

Our result confirms and generalizes this conjecture.

Example: Two 6-vertex 3-regular graphs:

- 13 independent sets
- 15 independent sets

Previous results

Alon [1] \(i(G) \leq (2^{d-1} + 1)^{N/2} \)

Kahn [4] Proved conjecture for bipartite \(G \)

Sapozhenko [6] \(i(G) \leq (2^{d-1} + 1)^{dN/2} \)

Kahn [5] \(i(G) \leq 2^{(1/2 + \epsilon)N} \)

Galvin [2] \(i(G) \leq 2^{(1/2 + \epsilon)N} \)

Main Result

For any \(N \)-vertex, \(d \)-regular graph \(G \), and any \(\lambda \geq 0 \),

\[
P(\lambda, G) \leq P(\lambda, K_{d,d})^{N/2d} = (2^{1+\lambda d} - 1)^{N/2d},
\]

with equality if \(G \) is a disjoint union of \(K_{d,d} \)’s. Here

\[
P(\lambda, G) = \sum_{k \geq 2} i(G^k)^{\lambda^k / k} = \sum_{k \geq 2} (\# \text{ ind. sets of size } k)^{\lambda^k / k}.
\]

Setting \(\lambda = 1 \) yields the Alon-Kahn conjecture.

Proof

We prove our main result by reducing it to the bipartite case, which was proven by Galvin and Tetali [3] (and by Kahn [4] for the non-weighted case).

From \(G \) we build \(G \cup G \) and \(G \times K_2 \):

Key Lemma

For any graph \(G \), there exists a size-preserving injection from \(I(G \cup G) \) to \(I(G \times K_2) \), where \(I(\cdot) \) denotes the collection of independent sets of a graph.

Construction of the injection:

- Start with an independent set \(A \cup B \) of \(G \cup G \):
 - *Merge* the two layers. Obtain \(A \cup B \subset V(G) \).
 - The induced subgraph \(G[A \cup B] \) is a bipartite graph since it is induced by the union of two independent sets. Choose the lexicographically first \(S \subset V(G) \) so that all edges of \(G[A \cup B] \) lie between \(S \) and \(V(G) \setminus S \).
 - Back to \(G \cup G \). Swap each pair of vertices in \(S \), and we obtain an independent set of \(G \times K_2 \).

Claim. This is an injection whose image consists of all independent sets \(C \cup D \) of \(G \times K_2 \) such that \(C \cap D \) is bipartite. Here \(C \subset V \) corresponds to the two “layers” of \(G \times K_2 \).

Proof. The construction always produces an independent set of \(G \times K_2 \) since swapping the vertices of \(S \) eliminates all possible adjacencies in \(G \times K_2 \).

We obtain the inverse map by basically the same procedure. See [7] for details.

Further Questions

Non-regular graphs. Kahn [4] also conjectured that, for any graph \(G \) without isolated vertices

\[
i(G) \leq \prod_{v \in V(G)} (2^{\deg(v)} - 1)^{1/(\deg(v))} \cdot \frac{1}{d}.
\]

Non-entropy proof of bipartite case? So far the only known proofs of the bipartite case of these results use entropy methods [3, 4]. It would be nice to have an elementary and completely combinatorial proof.

Counting graph homomorphisms. Galvin and Tetali [3] generalized Kahn’s result and showed that for any \(d \)-regular, \(N \)-vertex bipartite graph \(G \), and any graph \(H \) (possibly with self-loops),

\[
|\text{Hom}(G, H)| \leq |\text{Hom}(K_{d,d}, H)|^{N/2d}.
\]

Graph homomorphisms generalize the notion of independent sets as well as colorings. It is suspected that the inequality holds also for non-bipartite \(G \) as long as \(H \) is “nice,” but we do not have a proof.

Acknowledgements

This research was conducted at Joseph Gallian’s REU at University of Minnesota Duluth, with funding from NSF and DoD (DMS 0754106), NSA (H98230-06-1-0013) and the MIT Department of Mathematics.

References