
I.M.O. Winter Training Camp 2008:

Invariants and Monovariants

On math contests, you will often find yourself trying to analyze a process of some sort. For
example, consider the following two problems.

Sample Problem 1. Several stones are placed on an infinite (in both directions) strip of squares.
As long as there are at least two stones on a single square, you may pick up two such stones, then
move one to the preceding square and one to the following square. Is it possible to return to the
starting configuration after a finite sequence of such moves?

Sample Problem 2. (Kvant) In the sequence 1, 0, 1, 0, 1, 0, 3, 5, . . ., each term starting with the
seventh is equal to the last digit of the sum of the preceding six terms. Prove that this sequence does
not contain six consecutive terms equal to 0, 1, 0, 1, 0, 1, respectively.

In the first problem, the process consists of moving stones, and in the second problem, it consists
of choosing numbers according to a recurrence. To understand these processes better, it is helpful
to consider invariants and monovariants. These are simple properties that do not change, or change
in very predictable ways as a process continues. If you pick the right property, it can explain a
great deal about what the process is doing, and very difficult problems can become almost trivial!
Let’s see how this can be done here.

Solution to Sample Problem 1. Label the strip with consecutive integers, and let ni denote
the label of the square containing stone #i.

Let X =
∑

i n
2
i , and consider what happens to X each time we do a move. First X decreases by

2t2 as we remove two stones from some square t. Next, X increases by (t− 1)2 + (t + 1)2 = 2t2 + 2
as we replace the stones in squares t− 1 and t + 1. Therefore, every move causes X to increase by
exactly 2.

In particular, after any sequence of moves, X will always be higher than where it began, so we
could not possibly be in the same position we began in.

Solution to Sample Problem 2. Let ni denote the ith term in the given sequence, and define:

Xi = ni + 2ni+1 + 3ni+2 + 4ni+3 + 5ni+4 + 6ni+5.
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Note that X1 = 1 · 1 + 3 · 1 + 5 · 1 = 9. Also for any i ≥ 2, we have:

Xi = ni + 2ni+1 + 3ni+2 + 4ni+3 + 5ni+4 + 6ni+5

≡ ni + 2ni+1 + 3ni+2 + 4ni+3 + 5ni+4 + 6(ni−1 + ni + ni+1 + ni+2 + ni+3 + ni+4) (mod 5)
≡ ni−1 + 2ni + 3ni+1 + 4ni+2 + 5ni+3 + 6ni+4 (mod 5)
≡ Xi−1 (mod 5).

It follows that Xi ≡ X1 ≡ 4 (mod 5) for all i. If we had a subsequence {0, 1, 0, 1, 0, 1}, however,
then the corresponding Xi would be 1 · 2 + 1 · 4 + 1 · 6 = 12 6≡ 4 (mod 5), which is impossible.

Usually an invariant problem is pretty easy once you find the right invariant (or monovariant),
but finding it can be pretty tough! After all, why would you think to try exactly Xi in Sample
Problem 2? In truth, finding the right invariant is an art, and that is what makes these problems
hard. Nonetheless, there are a few things that you should always be thinking about:

• Colorings: Color all the squares in a grid with two or more colors. Usually the chessboard
pattern is a good choice, but other patterns are also sometimes useful. Consider squares of
each color separately.

• Algebraic expressions: Given a set of values, look at their differences, their sum, the sum of
their squares, or occasionally their product. If you are working with integers, try looking at
these values modulo n. (Usually n should be a small prime power.)

• Corners and edges: For grid-based problems, consider any shapes formed. How many bound-
ary edges do they have? How many corners?

• Inversions: If you are permuting a sequence of numbers, consider the number of inversions –
that is, the number of pairs (i, j) such that i and j are listed in the wrong order. Both the
absolute number of inversions and its parity are useful.

• Integers and rationals: Can you find a positive integer that keeps decreasing? Or does the
denominator of a rational number keep decreasing?

• Symmetries: Can you ensure that after each step, a figure is symmetrical in some way?
Perhaps you can logically pair up objects, and two paired objects are always in the same
state? Perhaps the problem can be divided into two essentially identical subproblems? This
is especially useful for game-theory type problems.

You can apply invariants in a number of interesting ways, but often, you will know what to do
when you get there. Instead of listing all the possibilities, I will just say practice makes perfect,
and give you lots of problems to try! There are hints to some of the problems, but try to solve
them on your own first.

Starter problems

1. An 8× 8 chessboard has two opposite corners removed. Is it possible to tile the remaining 62
squares with 31 dominoes?
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2. (Bernoulli Trials, 1998) Arya and Bran are playing a game. They begin with 2008 coins
arranged in a circle, and alternate turns, starting with Arya. On his or her turn, a player
may remove any one coin, or if two adjacent coins remain, he or she may instead remove
both. The player who removes the last coin wins. Show that Bran has a winning strategy,
no matter how Arya plays.

3. The numbers 1, 2, 3, . . . , n are written in a row. It is permitted to swap any two numbers.
If 2007 such operations are performed, is it possible that the final arrangement of numbers
coincides with the original?

4. (AM-GM inequality)

(a) Suppose we are given positive numbers a, b, x with a < x < b. Show that x(a+b−x) > ab.
(b) Given positive real numbers a1, a2, . . . , an, prove that:

a1 + a2 + . . . + an

n
≥ n
√

a1 · a2 · . . . · an.

Remark: This is a general technique called “smoothing”. Suppose you want to show some
function f satisfies f(a1, a2, . . . , an) ≥ 0 for all choices of {ai}. Start with an arbitrary choice.
Then alter it slightly so as to decrease f . Continue doing this until you reach {a′i} for which
you already know f(a′1, a

′
2, . . . , a

′
n) = 0. Then, f(a1, a2, . . . , an) ≥ f(a′1, a

′
2, . . . , a

′
n) = 0, as

required. You need to show that {ai} actually reaches {a′i} after a finite number of steps, and
that’s where invariant theory comes in!

As an aside, if you happened to know that there is some choice of {ai} for which f takes on
its minimum value, you could side-step some of this work. However, this is not always the
case (for example, imagine if f ranged over all positive real numbers).

Olympiad-level problems

5. (USAMO 1997, #1) Let p1, p2, p3, . . . be the prime numbers listed in increasing order, and
let x0 be a real number between 0 and 1. For positive integer k, define

xk =

{
0 if xk−1 = 0,{

pk
xk−1

}
if xk−1 6= 0,

where {x} denotes the factional part of x. (The fractional part of x is given by x−bxc where
x is the greatest integer less than or equal to x.) Find, with proof, all x0 satisfying 0 < x0 < 1
for which the sequence x0, x1, x2, . . . eventually becomes 0.

6. (CMO 2007, #1) What is the maximum number of non-overlapping 2× 1 dominoes that can
be placed on an 8× 9 chessboard if six of them are placed as shown? Each domino must be
placed horizontally or vertically so as to cover two adjacent squares of the board.
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7. (Stanford Putnam training 2007) On an n×n board, there are n2 squares, n− 1 of which are
infected. Each second, any square that is adjacent to at least two infected squares becomes
infected. Show that at least one square always remains uninfected.

8. (Adapted from IOI 2002) A computer screen shows an n× n grid, colored black and white in
some way. One can select with a mouse any rectangle with sides on the lines of the grid and
click the mouse button: as a result, the colors in the selected rectangle switch (black becomes
white, white becomes black). Let X denote the minimum number of mouse clicks required to
make the grid all white. Also, let Y denote the number of grid vertices adjacent to an odd
number of black squares. Show that Y

4 ≤ X ≤ Y
2 .

Remark: USAMO 1998 #4 is essentially a special case of this result.

9. You have a stack of 2n + 1 cards, which you can shuffle using the two following operations:

1. Cut: Remove any number of cards from the top of the pile, and put them on the bottom.

2. Perfect riffle shuffle: Remove the top n cards from the deck and place them in order in
the spaces between the other n + 1 cards.

Prove that, no matter how many operations you perform, you can reorder the cards in at
most 2n(2n + 1) different ways.

10. (USAMO 2004, #4) Alice and Bob play a game on a 6× 6 grid. On his or her turn, a player
chooses a rational number not appearing in the grid and writes it in an empty square of the
grid. Alice goes first and then the players alternate. When all squares have numbers written
in them, in each row, the square with the greatest number in that row is colored black. Alice
wins if she can then draw a path from the top of the grid to the bottom of the grid that stays
in black squares, and Bob wins if she cannot. (If two squares share a vertex, Alice can draw
a path from one to the other that stays in those two squares.) Find, with proof, a winning
strategy for one of the two players.

11. (IMO training camp, 1999) The vertices of a regular n-sided polygon have integer coordinates.
Show that n = 4. It might help to first show that n is even.

12. (AIME 1998, #15) Define a domino to be an ordered pair of distinct positive integers. A
proper sequence of dominoes is a list of distinct dominoes in which the first coordinate of each
pair after the first equals the second coordinate of the immediately preceding pair, and in
which (i, j) and (j, i) do not both appear for any i and j. Let D40 be the set of all dominoes
whose coordinates are no larger than 40. Find the length of the longest proper sequence of
dominoes that can be formed using the dominoes of D40.

13. The numbers from 1 through 2008 are written on a blackboard. Every second, Dr. Math erases
four numbers of the form a, b, c, a+b+c, and replaces them with the numbers a+b, b+c, c+a.
Prove that this can continue for at most 10 minutes.

14. (APMO 2007, #5) A regular (5 × 5)-array of lights is defective, so that toggling the switch
for one light causes each adjacent light in the same row and in the same column as well as
the light itself to change state, from on to off, or from off to on. Initially, all the lights are
switched off. After a certain number of toggles, exactly one light is switched on. Find all the
possible positions of this light.
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15. (IMO 2000, #3) Let n ≥ 2 be a positive integer and λ be a positive real number. Initially,
there are n fleas on a horizontal line, not all at the same point. We define a move as choosing
two fleas, at some points A and B, with A to the left of B, and letting the flea from A jump
to the point C to the right of B such that BC/AB = λ.

Determine all values of λ such that, for any point M on the line and any initial position of
the n fleas, there exists a sequence of moves that will take them all to positions right of M .

16. (IMO training camp, 1999) Recall the scenario of Sample Problem 1. Prove that any sequence
of moves will lead to a position in which no further moves can be made, and moreover that
this position is independent of the sequence of moves.

17. (MOP 1998 homework) Several stones are placed on an infinite (in both directions) strip of
squares, indexed by the integers. We perform a sequence of moves, each move being one of
the following two types:

(a) Remove one stone from each of the squares n− 1 and n and place one stone on square
n + 1.

(b) Remove two stones from square n and place one stone on each of the squares n− 2 and
n + 1.

Prove that any sequence of such moves will lead to a position in which no further moves can
be made, and moreover that this position is independent of the sequence of moves.

18. Anya and Borya are playing a game. They begin with a “pyramid” consisting of 10 rows,
where row i has exactly i coins arranged in a line. On his or her turn, a player chooses any
number of contiguous coins within a single row, and then removes them. (Note that if a coin
is removed, the coins remaining to its left and to its right are not considered contiguous with
each other.) The player who removes the last coin wins. Anya goes first and then the players
alternate. Find, with proof, a winning strategy for one of the two players.

Unusual problems

19. (IMO Correspondence Program 1998 and CM+MM 1997) How many distinct acute angles α
are there for which cos(α) · cos(2α) · cos(4α) = 1/8?

20. (MOP 1998, Po-Shen Loh) Let ω1 and ω2 be equal-radius circles meeting at points B and C.
Let X denote the midpoint of BC and let A be a point on ω1 that is not contained inside ω2.
Extend

−−→
AB and

−→
AC to hit ω2 at A1 and A2 respectively. Then extend

−−→
A1X and

−−→
A2X to hit

ω1 at P1 and P2 respectively. Show that AP1 = AP2.

21. Several checkers are placed on a board. Each turn, a checker may jump diagonally over an
adjacent piece if the opposite square is empty. If a checker is jumped over in this way, it is
removed from the board. Is it possible to make a sequence of such jumps to remove all but
one checker from the board shown below?
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Selected hints

2. As with many 2-player games, symmetry is the key.

10. It’s always symmetry with games! Try pairing up squares.

11. Invariants can show n is even. This further implies n is a power of 2, but why?

12. Think of dominoes as edges on a graph. Could you use all the dominoes if several vertices
had odd degree (i.e., an odd number of incident edges)? What if all the vertices had even
degree?

14. A careful coloring can tell you where the light can’t be. Unfortunately that’s the easy part!

15. If λ < 1
n−1 , there exists a constant C > 0 so that (n− 1 + C)λ = 1. Can you come up with

an invariant depending on C?

16. Invariants are good for showing that any sequence of moves must terminate. Consider other
techniques for uniqueness.

17. 1+
√

5
2 .

18. This game has three important properties: (1) the two players are essentially symmetric, (2)
the game decomposes into similar, independent sub-games, and (3) on your turn, you may
make a move in any one sub-game. These facts imply the game is in some sense equivalent
to Nim, so start thinking about exclusive-or!

19. Yes, it is a bit of a stretch to call this an invariant problem, but there is a reason for it. Can
you simplify cos(α) · cos(2α) · . . . · cos(2tα) in general?

20. This is another sort-of invariant problem. Is there a position for A where the problem is easy?
Now what happens when you move A?

21. Consider the Klein group. This has 4 elements {e, a, b, c} that can be multiplied according to
the following rules. Let x, y, z be an ordering of a, b, c. Then, e · x = x · e = x, x2 = e, and
x · y = z.
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