"Bashing Geometry with Complex Numbers" Problem Set

Peng Shi *

Reality may be a line, but a little imagination makes it a plane!

1 Slick Bashing

These problems are perfect for complex number solutions. Exploit the power of complex numbers in representing translations, rotations, and reflections, and use the nice formula for centroid and orthocenter.

Problem 1. (Yug MO 1990) Let O and H be the circumcentre and orthocentre of $\triangle A B C$ respectively. Let Q be the reflection of H across O. Let T_{1}, T_{2}, T_{3} be the centroids of $\triangle B C Q, \triangle C A Q$ and $\triangle A B Q$. Prove that $A T_{1}=B T_{2}=C T_{3}=\frac{4}{3} O A$.

Problem 2. (BMO 1984) Let $A B C D$ be an cyclic quadrilateral and let $H_{A}, H_{B}, H_{C}, H_{D}$ be the orthocentres of triangles $B C D, C D A, D A B$, and $A B C$ respectively. Prove that the quadrilaterals $A B C D$ and $H_{A} H_{B} H_{C} H_{D}$ are congruent.

Problem 3. Consider triangle $A B C$ and its circumcircle S. Reflect the circle with respect to $A B, A C, B C$ to get three new circles $S_{A B}, S_{B C}$, and $S_{B C}$. Show that these three circles intersect at a common point and identify this point.

Problem 4. (2000 St. Petersburg MO) The line T is tangent to the circumcircle of acute triangle ABC at B. Let K be the projection of the orthocenter of triangle $A B C$ onto line T (K is the root of the perpendicular from the orthocenter to S). Let L be the midpoint of side AC. Show that the triangle BKL is isosceles.

Problem 5. (Yug TST 1992) The squares $B C D E, C A F G$, and $A B H I$ are constructed outside the triangle $A B C$. Let $G C D Q$ and $E B H P$ be parallelograms. Prove that $A P Q$ is isosceles and $\angle P A Q=\pi / 2$.

Problem 6. (Yug MO 2003) Given triangle $A B C$, construct equilateral triangle $A B C_{1}, B C A_{1}, C A B_{1}$ on the outside of $A B C$. Let P, Q denote the midpoints of $C_{1} A_{1}$ and $C_{1} B_{1}$ respectively. Let R be the midpoint of $A B$. Prove that triangle $P Q R$ is isosceles.

Problem 7. (Napolean's Triangle) Given triangle ABC, construct an equilateral triangle on the outside of each of the sides. Let P, Q, R be the centroids of these equilateral triangles, prove that triangle $P Q R$ is equilateral.

2 Straightforward Bashing

These problems probably have other intended solutions, but they still can be solved by straightforward application of complex numbers.

[^0]Problem 8. (Simson Line) Let Z be a point on the circumcircle of triangle $A B C$ and P, Q, R be the feet of perpendiclars from Z to $B C, A C, A B$ respectively. Prove that P, Q, R are collinear. (This line is called the Simson line of triangle $A B C$ from Z.)

Problem 9. Given cyclic quadrilateral $A B C D$, let P and Q be the reflection of C across lies $A B$ and $A D$ respectively. Prove that $P Q$ passes through the orthocentre of triangle $A B D$.

Problem 10. Let $W_{1} W_{2} W_{3}$ be a triangle with circumcircle S, and let A_{1}, A_{2}, A_{3} be the midpoints of $W_{2} W_{3}, W_{1} W_{3}$, $W_{1} W_{2}$ respectively. From A_{i} drop a perpendicular to the line tangent to S at W_{i}. Prove that these perpendicular lines are concurrent and identify this point of concurrency.

Problem 11. Let $A_{0} A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ be a regular 7-gon. Prove that

$$
\frac{1}{A_{0} A_{1}}=\frac{1}{A_{0} A_{2}}+\frac{1}{A_{0} A_{3}}
$$

Problem 12. Given point P_{0} in the plane of triangle $A_{1} A_{2} A_{3}$. Denote $A_{s}=A_{s-3}$, for $s>3$. Construct points P_{1}, P_{2}, \cdots sequentially such that point P_{k+1} is P_{k} rotated 120° counter-clockwise around A_{k+1}. Prove that if $P_{1986}=P_{0}$ then triangle $A_{1} A_{2} A_{3}$ is isosceles.

Problem 13. (MOP 2006) Point H is the orthocenter of triangle $A B C$. Points D, E and F lie on the circumcircle of triangle $A B C$ such that $A D\|B E\| C F$. Points S, T, and U are the respective reflections of D, E, F across the lines $B C, C A$ and $A B$. Prove that S, T, U, H are cyclic.

3 Smart Bashing

Although almost all geometry problems are doable with complex number bash, you should always try to simplify the problem first by proving various properties of the given configuration. This will drastically reduce the time of bashing. Also, try to set up your bash in the simplest way possible, such as to define some key line as the real axis. The following problems are probably too complex to bash (no pun intended) unless you simplify the problem first.

Problem 14. (2003 IMO, Problem 4) Let ABCD be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines $B C, C A$ and $A B$ respectively. Show that $P Q=Q R$ iff the bisectors of $\angle A B C$ and $\angle A D C$ meet on $A C$.

Problem 15. Let O be the circumcentre of triangle $A B C$. A line through O intersects sides $A B$ and $A C$ at M and N respectively. Let S and R be the midpoints of $B N$ and $C M$, respectively. Prove that $\angle R O S=\angle B A C$.

Problem 16. (IMO Shortlist 1992) Let $A B C D$ be a convex quadrilateral for which $A C=B D$. Equilateral triangles are constructed on the sides of the quadrilateral and pointing outward. Let $O_{1}, O_{2}, O_{3}, O_{4}$ be the centres of the triangles constructed on $A B, B C, C D$, and DA respectively. Prove that lines $O_{1} O_{3}$ and $O_{2} O_{4}$ are perpendicular.

Problem 17. (USA TST 2006, Problem 6) Let $A B C$ be a triangle. Triangles $P A B$ and $Q A C$ are constructed outside of $A B C$ such that $A P=A B$ and $A Q=A C$ and $\angle B A P=\angle C A Q$. Segments $B Q$ and $C P$ meet at R. Let O be the circumcentre of triangle $B C R$. Prove that $A O \perp P Q$.

In an actual contest, I recommend that you do not start complex number bash before absolutely exhausting all other approaches. This is because although complex number bash always works in the end, the algebraic manipulations might take a few hours. Nevertheless, knowing how to complex number bash is nice because even the hardest problems can be done this way if you just keep going. Moreover, if you have already significantly simplified the problem but can't finish it off, complex number bash is a handy tool. With this powerful, universal tool at your disposal, you can tackle hard geometry problems with confidence!

[^0]: * Mostly copied from Yi Sun's MOP 2007 notes, Marko Radovanovic's notes in the IMO Compendium, Kun Y. Li's notes in Mathematical Excalibur 9(1), and Mathlinks.

